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Abstract

Objectives: Studies are increasingly examining research questions across multiple cohorts using 

data from the preclinical Alzheimer cognitive composite (PACC). Our objective was to use 

modern psychometric approaches to develop a harmonized PACC.

Method: We used longitudinal data from the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI), Harvard Aging Brain Study (HABS), and Australian Imaging, Biomarker and Lifestyle 

Study of Ageing (AIBL) cohorts (n = 2,712). We further demonstrated our method with the 

Anti-Amyloid Treatment of Asymptomatic Alzheimer’s Disease (A4) Study prerandomized data 

(n = 4,492). For the harmonization method, we used confirmatory factor analysis (CFA) on the 

final visit of the longitudinal cohorts to determine parameters to generate latent PACC (lPACC) 

scores. Overlapping tests across studies were set as “anchors” that tied cohorts together, while 

parameters from unique tests were freely estimated. We performed validation analyses to assess 

the performance of lPACC versus the common standardized PACC (zPACC).

Results: Baseline (BL) scores for the zPACC were centered on zero, by definition. The 

harmonized lPACC did not define a common mean of zero and demonstrated differences in 

baseline ability levels across the cohorts. Baseline lPACC slightly outperformed zPACC in the 

prediction of progression to dementia. Longitudinal change in the lPACC was more constrained 

and less variable relative to the zPACC. In combined-cohort analyses, longitudinal lPACC slightly 

outperformed longitudinal zPACC in its association with baseline β-amyloid status.

Conclusions: This study proposes procedures for harmonizing the PACC that make fewer strong 

assumptions than the zPACC, facilitating robust multicohort analyses. This implementation of item 

response theory lends itself to adapting across future cohorts with similar composites.

Keywords

cognition; Alzheimer’s disease; harmonization

The preclinical Alzheimer cognitive composite (PACC) is derived from a small set of 

neuropsychological tests that measure episodic memory, executive function, and general 

mental status across observational studies and secondary clinical trials of preclinical 

Alzheimer’s disease (AD; Donohue et al., 2014; Donohue, Sun, et al., 2017). Decline 

on the PACC reflects the early changes that characterize preclinical AD (Donohue et al., 

2014; Papp et al., 2017). The original composite combines measures of episodic memory, 

executive function, and global cognition, with a heavier weighting toward episodic memory 

(Donohue et al., 2014). More recent iterations of the PACC include a measure of verbal 

fluency (PACC-5), which has increased the explained variance associated with Aβ-related 

cognitive decline (Lim et al., 2016; Papp et al., 2017).

Studies that have created a PACC include study-specific tests for each cognitive domain 

included in the PACC; the only exception to this rule is the Mini-Mental State Examination 

(MMSE; Folstein et al., 1975), which is included in the neuropsychological battery of most 

cohorts. Historically, calculating the PACC for an individual required standardization of 

performance on each neuropsychological test at each assessment, to that of the study sample 

at baseline (BL). Standardized scores for each test are then averaged (Mormino et al., 2017; 
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Papp et al., 2020) or summed (Donohue et al., 2014) for each assessment. Although the 

cognitive test items used to form the PACC are well validated, sum scoring or averaging 

these items makes important assumptions about the psychometric properties of the tests 

which may then render the composite less informative or sensitive to AD-related processes. 

This limits the direct comparison of scores between studies and limits generalizability to 

other samples (McNeish & Wolf, 2020). While studies exist that have used the standardized 

version of the PACC across cohorts (Buckley et al., 2018; Insel et al., 2019; Mormino et 

al., 2017; Papp et al., 2020), it behooves the field to investigate more sophisticated cognitive 

harmonization approaches to determine if violation of the strong assumptions required for an 

average or sum of standardized scores to be an appropriate choice for obtaining a composite 

score for the PACC is associated with lower validity than other psychometric modeling 

choices that make fewer strong assumptions.

The strict assumptions required for standardization include equal weighting of tests, 

regardless of difficulty level, and equality in item-level scores of the same test across 

cohorts (Schneider & Goldberg, 2020). Such assumptions, when not met, may obscure 

the detection of true change (Schneider & Goldberg, 2020). Critically, standardization 

cannot guarantee that incremental change in one cohort reflects the same monotonic 

change across other cohorts when test versions or components differ across cohorts. 

This means that a one-unit change or difference in Study A does not have the same 

meaning as a one-unit change or difference in Study B, which is contrary to the goals 

of efforts to harmonize composite scoring for the studies employing the PACC. Further, 

although episodic memory and executive function domains are well represented in each 

PACC variant, the neuropsychological tests representing these domains may not exhibit 

measurement equivalence across cohorts. That is, different tests may be used to reflect the 

episodic memory construct, which themselves are not equivalent. This issue is highly similar 

to the measurement issue highlighted by Chapman and Chapman in the 1970s (Chapman 

& Chapman, 1978), where within a diagnostic battery, different measurement properties 

could lead to different conclusions about the diagnosis. Here, the issue is differences in 

measurement properties of subsets of the PACC that are different across different study 

cohorts, as opposed to the cross-domain differences highlighted by Chapman and Chapman. 

The general concerns are similar. The commonly used zPACC produces a veneer of equality 

as a composite score that appears to have the same units for each domain within each study 

and to have the same units across studies.

Alternative modeling approaches of standardization have been proposed to ensure cognitive 

data harmonization (Chan et al., 2015; Gibbons et al., 2011; Gross et al., 2015; Park et al., 

2012). One approach is to treat the PACC as a latent trait that is anchored by tests that are 

shared across cohorts. Item response theory (IRT), outlined in Crane et al. (2008), asserts 

that anchor items facilitate better longitudinal modeling with data-driven weighting of test 

components and allow for the parameterization of such anchor items. This approach also 

enables direct comparability between cohorts.

One major advantage of using IRT models is the ability to use item-level (granular) data 

to estimate each of the item parameters to harmonize a latent trait across the cohorts. This 

sits in opposition to standardization approaches that use the total test score. The use of 
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total (sum) scores again makes strong assumptions, here about the linearity of the scaling 

metric. When these assumptions have been tested with data they have been found to be 

violated (Crane et al., 2008). Furthermore, IRT models do not assume that all indicators have 

equal difficulty. For example, it has long been appreciated that different semantic categories 

in verbal fluency tasks may have different difficulty levels (Laiacona et al., 1998). IRT 

parameterization allows for different item parameters to account for those different difficulty 

levels; these differences can be masked by a total score (or equivalently by an average).

The simplest IRT models are single-factor models, where all the covariation among 

indicators of a latent trait is modeled as being due to relationships with the common factor. 

IRT models can also accommodate a secondary domain structure to model additional factors 

to explain covariance across items within tests. For example, in modeling memory, if we 

administer a multitrial word list learning and recall task along with other items tapping 

memory, we expect scores from each learning and recall trial to be more closely correlated 

with each other than with the other items tapping memory. This correlation structure would 

reflect the fact that the same list of words is assessed in each learning and recall trial, so 

we would expect correlation to be tighter across those trials than with any other indicator 

of memory. The secondary domain structures we employ model this additional source of 

covariation. For our purposes, this secondary factor is a nuisance. The secondary factor 

accounts for the fact that particular words on a word list may be more salient for some 

individuals than for others, leading to differential ability on the word list method factor. Our 

modeling goal was to capture the general factor that reflects overall cognition as captured by 

all of the items, accounting for methods effects with secondary domain structures as needed. 

Failing to include a word list-specific factor would overestimate the strength of association 

for each learning trial on the overall memory factor, as there is no other place in the model 

for the word list-specific correlation to go than on the general memory factor. Modeling 

the word list-specific factor produces scores generated from a model that comes closer to 

the theorized relationships among these items. A simple total or average across all of the 

learning trials makes much stronger assumptions, many of which are in conflict with current 

scientific theories about cognition (Borsboom, 2005).

IRT methods have been implemented to compute composite scores of memory and executive 

function in cohorts of AD research for integration across data sets (Dowling et al., 2010; 

Dumitrescu et al., 2020; Gross, Sherva, et al., 2014; Langa et al., 2020; Mukherjee et al., 

2020). We seek to expand this technique to the PACC, as researchers increasingly examine 

modified versions of this composite within new cohorts (Betthauser et al., 2020; Buckley 

et al., 2018; Burnham et al., 2016; Chhetri et al., 2017; Jessen et al., 2018; Papp et al., 

2020), and attempt to investigate PACC change across cohorts (Buckley et al., 2018; Papp 

et al., 2020). To build upon the development of the original PACC publications (Donohue 

et al., 2014), we have developed a harmonized PACC score across Alzheimer’s Disease 

Neuroimaging Initiative (ADNI), Harvard Aging Brain Study (HABS), and Australian 

Imaging, Biomarker and Lifestyle Study of Ageing (AIBL) data. We also demonstrate 

the flexibility to incorporate other data sets as they become available, by calculating 

a harmonized PACC score for the baseline Anti-Amyloid Treatment of Asymptomatic 

Alzheimer’s Disease (A4) Study data set. In this study, we detail the method and then 

compare the performance of the harmonized PACC that uses IRT scoring relative to the 
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commonly used standardized PACC that uses z scores. We hypothesize that the harmonized 

latent PACC (lPACC) scores may show differences in lPACC scores across studies, while 

the standardized PACC (zPACC) by definition will not. For validation, we examined the 

influence of baseline Aβ status on longitudinal changes in either lPACC or zPACC, with 

the hypothesis that the lPACC model may show stronger relationships with Aβ status than 

zPACC. For an additional validation, we examined baseline lPACC and zPACC scores 

to predict progression to mild cognitive impairment (MCI) or dementia; we hypothesized 

baseline lPACC scores would explain more variation in the risk of progression compared to 

the zPACC.

Method

Participants

Three well-characterized observational cohorts of cognitively intact older adults that have 

previously published a version of the PACC were used for our base model: ADNI (n = 

795), HABS (n = 427), and AIBL (n = 1,490). We also report demographic characteristics 

for the baseline prescreening cohort from the A4 study (n = 4,492); we use this cohort to 

demonstrate our method for creating a harmonized PACC from the base model. Data used in 

the preparation of this article were obtained from the ADNI database (adni.loni.usc.edu). 

The ADNI was launched in 2003 as a public–private partnership, led by Principal 

Investigator Michael W. Weiner, MD (current status information at adni-info.org). For AIBL, 

data were collected by the AIBL study group. AIBL study methodology has been reported 

previously (Ellis et al., 2009), with most study data publicly available at ida.loni.usc.edu. 

A4/LEARN study data were accessed via ida.loni.usc.edu. Participants provided written 

informed consent prior to study procedures (Aisen et al., 2010; Dagley et al., 2017; Ellis et 

al., 2009; Sperling et al., 2020). Study protocols were approved by each institutional review 

board (Massachusetts General Brigham and Austin Health).

Inclusion criteria for each study have been published previously (Aisen et al., 2010; 

Dagley et al., 2017; Ellis et al., 2009; Sperling et al., 2020). Briefly, we included all 

participants who were determined by neuropsychologists to be cognitively normal (CN) 

upon enrollment. Of note, AIBL’s initial recruitment was enriched for apolipoprotein 

(APOE) ε4 carriers (Ellis et al., 2009). We used the baseline prescreening data set from 

the A4 clinical trial cohort, in which individuals were recruited based on their increased 

risk of cognitive decline and subjective memory concerns (Sperling et al., 2014). The 

prescreening cohort was not yet screened for Aβ abnormality. The specific inclusion criteria 

for each study’s CN sample are as follows: ADNI: Mini-Mental State Examination (MMSE) 

= 24–30, logical memory delayed recall (LMDR) ≥ 9 for 16+ years of education, ≥5 for 

8–15 years of education, ≥3 for 0–7 years of education, clinical dementia rating (CDR) 

= 0; HABS: MMSE = 25–30, CDR = 0, education-adjusted LMDR cutoffs equivalent to 

ADNI; AIBL: MMSE = 26–30, CDR = 0, LMDR cutoffs equivalent to ADNI; A4: MMSE = 

25–30, CDR = 0, LMDR = 6–18. HABS and ADNI administered neuropsychological visits 

annually, while in AIBL, visits were at 18-month intervals. The average number of years and 

follow-up visits for each cohort are as follows: ADNI = 2.9 (SD 3.0) years with 3.7 (3.0) 

time points; HABS = 4.6 (3.1) years with 5.3 (3.0) time points; AIBL = 4.3 (3.1) years with 
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2.8 (2.0) time points. Only baseline PACC data were available for the A4 study. In ADNI, 

HABS, and AIBL, there was a subset who had only baseline data available: ADNI = 286; 

HABS = 82; AIBL = 242. For each study, a subset of the included participants had available 

APOE genotype data or an Aβ scan (see Table 1). This study was not preregistered and did 

not have a preregistered analysis plan.

Preclinical Alzheimer Cognitive Composites

For ADNI, HABS, and AIBL, we used the PACC-5 composite, which includes a semantic 

processing test (Papp et al., 2017). A4, however, does not include this component, and 

so only the standard version of the PACC (Donohue et al., 2014) was examined. All 

neuropsychological tests in the PACC for each cohort are detailed in Table 2.

For all cohorts, the standardized method (zPACC) was used as a comparison to the 

harmonized PACC (lPACC). The zPACC was calculated by standardizing each total test 

score to its baseline mean and standard deviation and then averaging across these tests at 

each visit within each cohort. The methods used here for computing the zPACC are aimed to 

replicate the standardized PACC measure used in previously published analyses (Lim et al., 

2016; Mormino et al., 2017; Papp et al., 2017). The tests included in each cohort’s zPACC 

are shown in Table 2.

Method for PACC Harmonization

The harmonization approach is a multistep process, which has been detailed in previous 

publications (Dumitrescu et al., 2020) and summarized here. Using confirmatory factor 

analysis (CFA), all neuropsychological tests are loaded onto a primary latent factor. Item 

parameters from all neuropsychological test items are estimated within the base model 

which includes last visit (LV) data from ADNI, HABS, and AIBL. Cohort-shared tests and 

items (i.e., MMSE, LMDR, and category fluency—animals) are anchored across studies, 

which means their item parameters are forced to be the same across studies.

Granular data were available for three trials of the Free and Cued Selective Reminding Test 

(FCSRT) in HABS and A4 and sets of different category fluency items were available for 

HABS and AIBL. For HABS and A4 studies, individual trial (granular) data for FCSRT 

were available, and for AIBL and HABS, granular data were available for multiple category 

fluency semantics (i.e., raw scores for each of animals, furnitures, and fruits in HABS 

instead of a total score). Typically, the FCSRT free recall total score is doubled and added 

to the cued score for the zPACC (Donohue et al., 2014). For the creation of the harmonized 

PACC, the three trials remained as separate components. The free recall scores were still 

double weighted within each trial in order to reflect FCSRT literature (Donohue et al., 

2014).

We included secondary structures in the base model for those to account for methods effect 

(FCSRT) and theoretical dependency (category fluency items) to check whether bifactor 

CFA models provided better fit statistics and stabilized high standardized loadings on some 

items (see diagrammatic representation in Figure 1). We selected last visit data from current 

data pull for our base model to capture greater range in test/item scores. Our full code for the 
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harmonization approach is provided here: https://github.com/rfbuckley/paccharmonization. 

An outline is below and depicted in Figure 2:

1. Recoding raw scores

a. Raw continuous neuropsychological tests that have scores with a range 

greater than 10 are recoded into a maximum of 10 categorical bins 

based on their distribution at the last visit so that they can be used 

as categorical items in Mplus (Muthén & Muthén, 2017). These bins 

are coded the same across all tests/items that are common across the 

cohorts. Tests that are unique to each cohort are recoded based on last 

visit distribution within that cohort (Figure 2 Steps 1A/2A). Although 

continuous variables can be analyzed in CFA, the use of categorical 

scores provides factor scores with less bias (Gross, Jones, et al., 2014; 

Rhemtulla et al., 2012; Proust-Lima et al., 2007) as there is no need to 

assume a linear relationship between standard scores and the underlying 

global cognition factor. To avoid the issue of sparseness affecting model 

estimates, each category of a given item was required to contain at least 

five observations.

b. We chose the final visit to derive the loadings and thresholds for the 

items rather than the baseline visit as there is a greater range in test/

item scores as clinically normal individuals progress through a study. 

This also helps us calibrate the lower thresholds of items so that we 

do not need to extrapolate out of range at later visits or as individuals 

progress to MCI or dementia. The main goal for this step is to ensure 

a maintenance of the tail end distribution and account for nonlinear 

relationships between the individual tests and the underlying primary 

factor (Proust-Lima et al., 2007).

2. Three-step CFA on the combined model

a. Using the CFA model on a data set with all cohorts’ (ADNI, HABS, 

AIBL) final time points; all neuropsychological test scores were 

loaded on the latent factor using robust maximum-likelihood (MLR) 

estimation, with the variance on the general factor set to 1, to derive 

loadings and thresholds of each test/item (Figure 2 Step 1B).

i. Additionally, for tests with granular data (FCSRT and category 

fluency items) the variance of each secondary domain was set 

to 1 (see Figure 1).

b. This model was used to estimate item parameters for each item; these 

parameters were then used to obtain scores for each time point for 

each participant. Loadings and thresholds from the calibration model 

were applied to each cohort’s longitudinal data set to obtain scores. The 

mean and variance of the latent factor were freely estimated (Figure 2 

Step 2B).
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c. Using the prior model’ s raw item loadings and thresholds, and the 

latent factor’s mean and variance, all parameters were set for the 

final CFA for each cohort. This final step is recommended to produce 

more robust estimates. Scores from the latent factor (lPACC) were then 

subsequently extracted (Figure 2 Step 2C).

Aβ Positron Emission Tomography

HABS and AIBL acquire 11C-Pittsburgh Compound-B (PiB), positron emission tomography 

(PET) data, while ADNI uses the 18F-AV45 (Florbetapir) tracer. ADNI and AIBL acquired 

Aβ-PET data 50–70 min postinjection, whereas HABS PiB-PET data were acquired 40–60 

min after injection. Each study’s processing pipeline has been published previously (Dagley 

et al., 2017; Landau et al., 2012; Rowe et al., 2010). Briefly, all PET data underwent 

reconstruction and attenuation correction and normalized to an Montreal Neurological 

Institute (MNI) template using SPM12. ADNI used whole cerebellum as a reference region, 

while AIBL and HABS used cerebellar gray matter as a reference. ADNI and AIBL reported 

standardized uptake value ratios (SUVRs), while HABS uses a distribution value ratio 

(DVR) of the frontal, lateral, and retrosplenial regions (FLR). Published cohort-derived 

cutoffs for high Aβ burden are as follows: HABS: >1.185 DVR (Buckley et al., 2018); 

AIBL: >1.40 SUVR (Rowe et al., 2010); ADNI: >1.11 SUVR (Landau et al., 2012).

Magnetic Resonance Imaging: Adjusted Hippocampal Volume

All studies acquired 3T Magnetization Prepared Rapid Gradient Echo Imaging (MPRAGE) 

structural magnetic resonance imaging (MRI). Details regarding MRI data acquisition have 

been previously outlined (Aisen et al., 2010; Dagley et al., 2017; Ellis et al., 2009). For all 

cohorts, adjusted hippocampal volume (HV) was calculated using the following algorithm 

(Mormino et al., 2014):

β = Beta coefficient bihemispheric HV regressed onto
intracranial volume Adjusted HV = Bihemispheric HV
− (β × (ICV − sample mean ICV)) .

Statistical Analyses

A series of CFAs were performed using the Mplus software (Version 8, Muthén & Muthén, 

Los Angeles CA). Figure 1 presents a graphical depiction of the approach. The choice of 

running a bifactor versus single-factor CFA was made by directly comparing the bifactor 

and single models in just the HABS cohort and using a weighted least squares with mean 

and variance adjusted (WLSMV) estimator. The rationale for the WLSMV estimator is that 

fit indices are possible to compare between the models. In the full model that involved 

all cohorts, however, all CFAs were run using a MLR estimator, which does not generate 

model fit statistics. MLR estimator was used due to the way we defined our base model, 

since this estimator can account for missingness from neuropsychological tests that are 

available in one cohort, but not another. Standardized item parameter estimates from all 

neuropsychological tests/items from the base CFA model, means and variances of primary 

factor, and standard errors of measurement (SEM) along the estimated latent trait (lPACC) 

scores are shown (Figure 3G).
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We used R Version 3.6.3 for all comparisons between the lPACC and the zPACC scores. 

Correlations between the lPACC and zPACC scores were calculated within each cohort at 

baseline. We then analyzed demographic and HV relationships with both baseline lPACC 

and zPACC within each cohort. To describe similarities or differences in how the lPACC and 

zPACC change over time, we extracted best linear unbiased prediction (BLUP) slopes using 

linear mixed-effect models including random effects of intercept and time as an estimate of 

rates of change in the lPACC and zPACC. As the relationship between baseline Aβ status 

and PACC decline has been extensively reported (Burnham et al., 2016; Buckley et al., 

2018; Donohue, Sperling, et al., 2017; Lim et al., 2016; Mormino et al., 2017; Papp et 

al., 2017, 2020), we performed longitudinal analyses with all cohorts in one model using a 

linear mixed model to examine the influence of baseline Aβ status on either the lPACC or 

zPACC over time. Models were adjusted for age, sex, education, and study over time with 

random intercept and slope in the model to replicate previous publications’ analyses. Lastly, 

we performed a Cox proportional hazards model to compare the lPACC and zPACC in their 

association with rates of progression to MCI or dementia while covarying for baseline age, 

sex, education, APOE genotype, Aβ status, and cohort. For all analyses, we compared effect 

sizes to ascertain differences between the lPACC and zPACC.

Application of Harmonized Loadings to A4 Cohort

To demonstrate the ability of our method to extract harmonized PACC scores from new data 

sets, we applied the loadings from our main model to baseline data from the A4 cohort. 

From this, it can be demonstrated that (a) modern psychometric methods can be used to 

extend to a new study and (b) the mean and standard deviation in a new sample can be 

evaluated on the same metric to determine whether the z-score assumption of equal means 

across all cohorts is appropriate for the A4 study.

We performed a similar stepwise CFA on the A4 data set. First, we leveraged 

neuropsychological tests that overlapped with our base model (MMSE, Wechsler Adult 

Intelligence Scale-Revised [WAIS-R], FCSRT; Table 2). With these overlapping tests, we 

set the loadings for all latent structures from the loadings from the base model. We also 

recoded the overlapping tests based on the base model’s categorical bins. An important 

detail is regarding the recording to categorical bins; if some category bins were missing for 

overlapping/anchor items in A4 study, the threshold parameters were adjusted accordingly. 

We then repeated the same CFA methods (Three-step CFA on the combined model section). 

To determine thresholds and loadings of the unique item(s) in A4, we allowed the unique 

tests to load onto the latent factor with the mean and variance allowed freely estimated (only 

a single loading and threshold need to be specified for identification). Once all loadings 

and item thresholds were determined, we ran two CFA models with those set parameters. 

In the first CFA, the factor’s mean and variance were freely estimated, and the final CFA, 

we set the resulting factor’s mean and variance and extracted the lPACC scores for the A4 

cohort. We report the model loadings, mean, variance, and SEM. Code and other materials 

for conducting PACC harmonization can be found here: https://github..com/rfbuckley/pacc-

harmonization. Processed lPACC data are available upon request and approval by each 

respective cohort.
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Results

Single-Factor Versus Bifactor Comparison

We ran initial models only in the HABS cohort to examine the fit of the single factor versus 

a bifactor approach. Using fit statistics of the comparative fit index; CFI (which ranges 0–1, 

with higher values indicating better fit; values >0.95 are consistent with good fit), Tucker–

Lewis index; TLI (which ranges 0–1, with higher values indicating better fit; values >0.95 

are consistent with good fit), and root mean square error of approximation; RMSEA (which 

has a lower bound of zero and lower values indicate better fit; values <0.08 are adequate 

fit and <0.06 is excellent fit; Hu & Bentler, 1999), we found that the bifactor model fit 

better than the single factor (CFIsingle = 0.92/CFIbifactor = 0.98, TFIsingle = 0.89/TFIbifactor 

= 0.97, RMSEAsingle = 0.18/RMSEAbifactor = 0.09). We also found that 142 last visit data 

points (33%) had an absolute difference between the models of >0.3 in their lPACC scores 

using single versus bifactor modeling. Briefly, if scores under the two methods are trivially 

different from each other, there is no need for the increased computational complexity of the 

bifactor model. We operationalize “trivially different” as <5% of scores being different by 

at least 0.3 units. The 0.3 units is the default stopping rule for computerized adaptive tests. 

In this instance, the choice of a bifactor model was clear on multiple bases—all three fit 

statistics for the single-factor model were better for the bifactor model, and well over 5% 

of people had score differences of greater than 0.3. Based on these findings, we opted for 

bifactor scoring for the lPACC.

Outputs of CFA Statistics in Each Cohort Based on Last Visit Loadings

Full demographic information for each cohort sample is shown in Table 1. The component 

loadings from the CFA on the last visit data from all cohorts are displayed in the “last 

visit” section of Table 3. Notably, different indicators in the same category had different 

loadings (i.e., categories animals, vegetables, and fruits). The longitudinal lPACC score 

means, variances, and average SEMs are found in Table 3. It is important to note that the 

lPACC means and variances were very different across the cohorts. This supports the notion 

that each tests’ loadings onto the PACC within each cohort reflects very different latent 

structures. The SEM is a continuous function across the range of cognitive ability and is 

proportional to the inverse square root of the total information function of the combined 

tests within each cohort. A higher SEM at certain scores indicates poorer measurement in 

that range. Figure 3G shows the smooth estimates of SEM across the estimated latent trait, 

lPACC. SEMs were higher for ADNI, indicating poorer measurement precision relative to 

the other cohorts, while A4 showed slightly poorer measurement precision at higher lPACC 

scores.

lPACC and zPACC Correlate Similarly With Demographics at Baseline

Across all studies, the baseline distributions of both the lPACC and zPACC were normal 

and displayed similar score variance around the mean. However, the baseline distributions 

of the lPACC for HABS and AIBL were shifted slightly above and below 0, respectively 

(Figure 3B). The intercept lPACC and zPACC median and range was 0.113 [−2.33, 3.31] and 

0.028 [−2.60, 2.06], respectively. Importantly, while the zPACC, by definition, had mean and 

standard deviations of approximately 0 and 1, respectively, the mean and standard deviations 
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for the lPACC were vastly different by cohort, ADNImean(SD) = 0.23(0.6), AIBLmean(SD) = 

−0.21(0.7), HABSmean(SD) = 1.05(0.8).

We then examined demographic and HV correlations at baseline using lPACC and zPACC 

within each cohort as a metric of external validity (Table 4). The lPACC and zPACC were 

associated with age and adjusted HV similarly. The lPACC associations with education were 

generally weaker than for zPACC, and lPACC scores were much more pronounced between 

the sexes in HABS and AIBL relative to the zPACC (Table 4).

Longitudinal lPACC Performs Similarly in a Linear Mixed Model With Aβ Status to zPACC

Extracted lPACC slopes were normally distributed across all the cohorts (see Figure 3C), 

with slightly more constricted variance around the mean compared to the zPACC score. The 

zPACC slopes showed outliers in the negative tail (Figure 3C), as can be demonstrated in 

the median and range of the distributions: lPACC slope median and range: −0.036 [−0.519, 

0.124]; zPACC slope median and range: −0.021 [−0.876, 0.154]. We merged ADNI, HABS, 

and AIBL longitudinal data to observe how each version of the PACC performed over time 

as influenced by baseline Aβ status using linear mixed models. The t value for Aβ status on 

lPACC change was larger than that of the longitudinal zPACC: lPACC: t(6,978) = −10.43, 

SE = 0.006, p < .001; zPACC: t(6,978) = −9.89, SE = 0.006, p < .001 (Figure 4).

Cox Proportional Hazards Model

We performed a survival analysis with all cohorts using baseline amyloid status, sex, age, 

years of education, APOE genotype, and either lPACC or zPACC to predict progression to 

MCI or dementia. Each model was fitting to 181 events of progression to MCI or dementia. 

Both the zPACC and lPACC performed similarly; however, the lPACC slightly outperformed 

the zPACC. The hazard ratios (HR) for the lPACC were HR(95% confidence interval [CI]) = 

0.491(0.386–0.626), p < .0001, and for zPACC were, HR(95% CI) = 0.424 (0330–0.546), p 
< .0001. The pseudo-R2 for the lPACC model was higher at 58% variance explained in the 

model, relative to 56% for the zPACC model.

Harmonizing Base Model to A4 Cohort

The purpose of this section is to demonstrate how other cohorts can be harmonized to 

the base model. We used the overlapping MMSE scores with the other three cohorts, and 

the overlapping FCSRT and digit symbol scores with HABS. The loading for the unique 

test (LMDR Robert Miller Story), the lPACC mean and variance, and the standard error 

of means for the A4 CFAs are reported in Table 3. We found baseline A4 lPACC scores 

were distributed similarly to ADNI lPACC scores (Table 3). Demographic and adjusted HV 

correlations between lPACC and zPACC within A4 were consistent with patterns seen in 

HABS and AIBL (Table 4).

Discussion

In this work we presented a method to harmonize the PACC across three well-characterized 

cohorts of clinically unimpaired older individuals, followed by demonstrating an extension 

of our approach to a fourth similar cohort. This is a more sophisticated approach to cognitive 
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data harmonization than standardization that captures the essence of the contribution 

of specific cognitive domains through IRT. The initial intention of the PACC was to 

combine multiple tests that changed significantly in clinically normal older adults with 

elevated amyloid. The IRT approach used in deriving the lPACC allows for a more direct 

quantification of this global composite. Overall, the procedure performed as expected 

compared to previous applications of this method with other composites (Dumitrescu et 

al., 2020). Examining estimated SEMs, we found measurement precision to be poorer 

for ADNI relative to other cohorts, and HABS and AIBL to be the highest. The latter 

had the most test items available for the bifactor model. We were able to recapitulate 

cross-sectional findings from the zPACC while revealing performance differences between 

cohorts at the intercept. By definition, the zPACC will look similar across all the cohorts at 

the intercept because they are forced to a normal (0, 1) distribution using the standardization 

approach. Notably, however, the means and standard deviations of the lPACC scores at 

the intercept were markedly different, highlighting the inherent differences between the 

cohorts in these composites potentially arising from recruitment priorities idiosyncratic to 

each cohort. As such, the assumption of the standardization approach, that all composites are 

equally weighted and abide by the same distributional properties, is clearly and impressively 

violated in this case. This was also demonstrated by the different means and standard 

deviations for the overlapping tests (MMSE and LMDR) presented in Table 2, suggesting 

that an individuals score on the zPACC is dependent on the sample in which the individual 

comes from, even if the underlying scores are exactly the same. By contrast, using IRT 

approaches, such as the one we present, will produce a factor score that is considerably 

less dependent on the cohort than the standardization approach. That is, item responses will 

be scored similarly across the study/ cohort/country the individual is tested in. Indeed, it 

seems clear that the global mean score of the zPACC is obscuring critical cross-sectional 

study differences that should be acknowledged. This further supports our argument that 

modern psychometric approaches to harmonizing cognitive data provide more flexible 

parameterization that does not require the vast assumptions of the z-score approach.

There are some important decisions made in the CFA approach that requires highlighting. 

The last visit was chosen to form the basis of this harmonization method. The rationale was 

to capture a greater between-subject score variability in the extreme ends of the distri-bution. 

A specific advantage to using the last visit distribution is to minimize overinflated estimates 

of decline over time based on the constrained variance available at the baseline, particularly 

regarding the MMSE in a CN sample. As shown in Figure 3D and E, the lPACC score range 

was constrained and resulted in less curvilinear decline relative to the zPACC. This decision 

could be applied to the zPACC but has typically not been used in previous studies. Another 

potential rationale for the constrained variance in the lPACC over time could be due to a loss 

of information when converting the continuous test scores into categorical in the rescoring 

step. We chose to categorize the test data to produce less bias in the resulting factor scores 

(Gross, Sherva, et al., 2014; Proust-Lima et al., 2007; Rhemtulla et al., 2012); however, it is 

possible that this may impact calibration of data at the tail ends of the distribution of scores.

Another important decision is the selection of a baseline CN cohort for our method as 

it limits the application of the lPACC beyond CN participants to those with cognitive 

impairment. The PACC was intended for detection of Aβ-related change in a CN sample 
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(Donohue et al., 2014), and so we aimed to develop a harmonization approach that focused 

on score distributions within this group. Examinations of the lPACC or zPACC in diagnosed 

patients (i.e., MCI or dementia) using scores calibrated on clinically normal adults is 

problematic due to the need to extrapolate beyond the distribution deriving the metric. 

To avoid the issue of constricted score ranges in CN individuals, we have opted for a 

large cohort that exhibits a full range of cognitive scores at the last visit to ensure that a 

floor effect does not occur in the estimated scores. Regardless, it is important to note that 

our sample has a constrained distribution relative to MCI and dementia, even at the last 

visit, which will result in thresholds and loadings that would be unrealistic for a clinically 

impaired sample and may underestimate change in these groups. Future studies requiring 

harmonized PACC in clinically impaired samples would need to calibrate scores based on 

data from a sample with greater cognitive range.

Further, the harmonization method applied here used item-level (granular) data, which is 

markedly different from the standardized approach, which only uses total scores from each 

test. The rationale behind using granular data is that total summed scores make important 

assumptions about the weight of each item and what each item contributes to the total 

score. A second issue is related to curvilinearity: Standard scores make important (and 

often untested) assumptions that the resulting score has linear scaling properties. This is 

not always the case, as has been demonstrated with the MMSE (Crane et al., 2008; Lopez 

et al., 2005; Proust-Lima et al., 2007; Tombaugh & McIntyre, 1992; Wind et al., 1997). 

Inclusion of as much granular data as available is preferred to calculate a model that captures 

sources of covariation that we expect are operating in the data such as methods effects from 

multiple list learning trials. As computing infrastructure and digital data collection become 

more ubiquitous in the clinic and in research studies, it will become increasingly possible to 

capture and use granular data, which could also be summed into total scores if assumptions 

of those scores are met. In many cases, however, those assumptions do not hold, and the 

granular data permit modeling that better reflects the ability levels of the participant. In 

cases where only total scores are available, it is still possible to harmonize with the base 

model, but there will be some drawbacks. For instance, if category fluency granular data is 

unavailable, the total score can be used but not anchored to the other cohorts. On a positive 

note, however, even if only one test is overlapping with the other cohorts, it is possible to 

harmonize the PACC to the base model.

We observed impressive cohort score differences at the baseline using the lPACC, 

potentially highlighting differences between the cohorts, like recruitment differences, that 

a standardized composite such as the zPACC obscures. Additionally, when A4 data were 

harmonized to the base model, we observed that loading differences were different for 

logical memory. The A4 study uses the Robert Miller version of logical memory, while the 

base cohorts use the Anna Thompson version of logical memory. Previous analyses have 

shown discrepancies in difficulty between story versions based on their sentence length and 

grammatical complexity (Morris et al., 1997). This further exemplifies how test version 

and administration variation can differentially influence composite scores and should not be 

weighted equally across cohorts unless that equal weighting can be confirmed. The modern 

psychometric approach enables us to formally test whether cognitive testing is equally 

difficult. And as in the present case when the two stimuli have very different parameters, 
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the flexible IRT approach enables us to treat these as separate items, still enabling resulting 

scores to be on the same metric while accounting for these differences in item levels. It is 

also possible, however, that other factors may contribute to such a different loading structure 

for logical memory in A4: First and foremost, A4 uses a four-test composite to define the 

PACC, which is unlike the other cohorts that use a five-test composite. It is possible that 

the A4 lPACC scores are less precise due to fewer components contributing to the overall 

variance structure. The A4 study is also unique in that only baseline neuropsychological 

scores were available. The component loadings applied from the other three cohorts were 

calibrated to the last available visits, and as such, this difference in overall score variance 

could also contribute to a low factor loading for A4’s logical memory test.

Although less “decline” was evident on the lPACC, we found that lPACC slightly 

outperformed the zPACC in both the linear mixed models (longitudinal PACC) and 

survival analyses (baseline PACC). It is important to note, however, that the magnitudes 

of effect were somewhat similar. A potential explanation for this could be that the lPACC 

compensates for having fewer outliers by exhibiting constrained longitudinal variance 

relative to the zPACC, resulting in the maintenance of the overall effect size of the 

association between baseline Aβ status and PACC change.

It is important to recognize the demographic characteristics of the cohorts in this 

study; participants in these studies represent a highly educated and predominantly white 

demographic stratification. We will need to account for differential item functioning when 

we add diverse cohorts to our harmonization pipeline. This limitation is not unique to this 

approach and also applies to standardization and other composite measures. Still, in future 

analyses, we aim to include cohorts that are more racially and educationally diverse to 

better understand the role of race, ethnicity, education, and economic status on the PACC. 

Further, there is somewhat limited international representation, and so future work will 

seek to harmonize data sets from cohorts in other countries. Other limitations of our study 

relate to the availability of granular-level data; the MMSE may have some differences in 

administration across the cohorts (i.e., the administration or scoring of WORLD backwards 

or the orientation questions), but due to the lack of item-level data in many of these cohorts, 

this latent structure could not be included in the bifactor model. Further, it is possible that 

the administration of different MMSE versions could affect the final scores (i.e., spelling vs. 

subtraction scores). We need to examine whether modeling granular-level MMSE data might 

increase the sensitivity of lPACC performance relative to zPACC.

The PACC harmonization technique produces scores on the same metric irrespective of 

study specific, test item, or test battery idiosyncrasies. These results present an opportunity 

to conduct statistically powerful and demographically diverse analyses across multiple 

cohorts using directly comparable scores. A major advantage to this approach is a reduction 

in noise that the standardized PACC variants introduce when treating them equally across 

cohorts. Although our methods limit the application of our specific loadings and thresholds 

to diagnostic groups, our methods are open source which will enable investigators’ own 

harmonization and/or replication of our results. In summary, this harmonization approach 

to the PACC allows for cocalibrating across cohorts, thus broadening the opportunity for 

larger sample analyses involving cohorts of preclinical AD individuals. It is important, 
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however, to acknowledge the low-precision measurement of the lPACC in some cohorts, 

indicating that this composite may not be appropriate to use in situations that require 

precision measurement at high scores. Harmonization approaches have been published 

for domain-specific cognitive composites, such as episodic memory, executive function, 

language, and visuospatial abilities (Crane et al., 2012; Choi et al., 2020), and so it is 

upon the researcher to ensure the appropriate cognitive composite for their specific research 

question. As the zPACC is used in AD clinical trials, such as the A4 study, there is a clear 

need for a harmonized version of this composite to allow for multicohort analyses that 

benefit from analyzing research questions with these types of data sets.
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Key Points

Question:

Does a harmonized version of the preclinical Alzheimer cognitive composite (PACC), 

computed using item response theory, perform better than a traditional standardized 

version?

Findings:

The harmonized PACC reveals inherent baseline differences between the cohorts that 

the standardized PACC masks. The harmonized PACC performs similarly, albeit slightly 

better, as a longitudinal outcome variable relative to the standardized PACC.

Importance:

This harmonized PACC can be used in multicohort analyses applies modern 

psychometric approaches to translating this composite across cohorts.

Next Steps:

Our next steps will be to gather more diverse cohorts in order to build a more 

generalizable sample for the legacy model.
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Figure 1. Bifactor CFA Model Structure at Last Visit
Note. CFA = confirmatory factor analysis; FCSRT = Free and Cued Selective Recall Test 

trials 1–3; MMSE = Mini-Mental State Examination; LMDR = logical memory delayed 

recall; lPACC = latent PACC; f1/f2 = secondary latent structures for FCSRT and categories 

(granular data); each arrow indicates loading of each neuropsychological test onto the latent 

factors f1, f2, and lPACC.
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Figure 2. Harmonization Workflow Diagram
Note. CFA = confirmatory factor analysis; ADNI = Alzheimer’s Disease Neuroimaging 

Initiative; HABS = Harvard Aging Brain Study; AIBL = Australian Imaging, Biomarker and 

Lifestyle Study of Ageing; FCSRT = Free and Cued Selective Recall Test; lPACC = latent 

PACC; CN = cognitively normal.
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Figure 3. zPACC and LPACC Score Distributions Across Cohorts
Note. The left column displays zPACC scores, and the right column displays lPACC 

scores. (A, B) The baseline distribution of the scores by cohort, (C, D) longitudinal slopes 

(extracted from linear mixed-effects model) by cohort, and (E, F) a spaghetti plot of PACC 

performance per participant by cohort. The lPACC scores are shifted from zero at the 

baseline and show a constrained variance over time compared to the zPACC scores, and 

(G) smoothed estimates of standard errors of measurement (inverse square root of the total 

information across test items in each cohort) as a function of the estimated latent trait (from 

−3 to 3). PACC = preclinical Alzheimer cognitive composite; lPACC = latent PACC; zPACC 

= standardized PACC; SEM = standard error of measurement; ADNI = Alzheimer’s Disease 

Neuroimaging Initiative; HABS = Harvard Aging Brain Study; AIBL = Australian Imaging, 

Biomarker and Lifestyle Study of Ageing; A4 = Anti-Amyloid Treatment of Asymptomatic 

Alzheimer’s Disease.
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Figure 4. Baseline Aβ Status on Longitudinal PACC Change With All Cohorts
Note. High Aβ is in red, while low Aβ is in blue. The lPACC (right panel) compared with 

zPACC (left panel). PACC = preclinical Alzheimer cognitive composite; lPACC = latent 

PACC; zPACC = standardized PACC.

Hampton et al. Page 24

Neuropsychology. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hampton et al. Page 25

Ta
b

le
 1

C
oh

or
t D

em
og

ra
ph

ic
 C

ha
ra

ct
er

is
tic

s

C
oh

or
t

D
at

as
et

N
A

ge
 (

SD
)

Se
x 

(%
F

)
A
β 

st
at

us
(%

+)
A

P
O

E
ε4

(%
)

E
du

ca
ti

on
R

ac
e/

et
hn

ic
it

y
(%

W
/%

N
H

)

M
M

SE
m

ed
ia

n
[r

an
ge

]

L
M

D
R

m
ed

ia
n

[r
an

ge
]

zP
A

C
C

 m
ed

ia
n

[r
an

ge
]

A
D

N
I

B
L

 o
nl

y
27

7
71

.1
 (

6.
4)

63
33

32
16

.9
 (

2.
3)

91
/9

5
29

 [
25

–3
0]

13
 [

3–
21

]
0.

25
 [

−
1.

91
–1

.4
1]

L
on

gi
tu

di
na

l
50

9
74

.2
 (

5.
8)

52
35

30
16

.4
 (

2.
6)

91
/9

7
B

L
29

 [
24

–3
0]

13
 [

5–
23

]
−

0.
08

 [
−

2.
01

–1
.5

9]

LV
29

 [
7–

30
]

13
 [

0–
24

]
−

0.
09

 [
−

10
.6

9–
1.

76
]

H
A

B
S

B
L

 o
nl

y
82

70
.8

 (
8.

5)
60

45
23

15
.0

 (
2.

9)
79

/1
00

29
 [

21
–3

0]
13

 [
0–

21
]

0.
00

1 
[−

1.
35

–1
.9

1]

L
on

gi
tu

di
na

l
34

5
71

.5
 (

7.
9)

60
28

28
15

.9
 (

2.
9)

B
L

29
 [

25
–3

0]
14

 [
6–

25
]

0.
11

 [
−

2.
39

–2
.0

6]

78
/9

8
LV

29
 [

12
–3

0]
16

 [
0–

24
]

−
0.

02
 [

−
7.

92
–2

.3
6]

A
IB

L
B

L
 o

nl
y

30
3

72
.3

 (
6.

5)
54

35
29

14
.7

 (
2.

9)
N

/A
28

 [
24

–3
0]

11
 [

0–
20

]
−

0.
10

 [
−

1.
81

–1
.6

4]

L
on

gi
tu

di
na

l
1,

17
6

70
.7

 (
6.

7)
58

24
29

14
.6

 (
3.

0)
B

L
29

 [
20

–3
0]

11
 [

0–
23

]
0.

07
 [

−
2.

60
–1

.9
9]

N
/A

LV
29

 [
7–

30
]

12
 [

0–
24

]
0.

00
2 

[−
7.

72
–1

.9
5]

A
4

B
L

 o
nl

y
4,

49
2

71
.3

 (
4.

7)
59

30
33

16
.6

 (
2.

8)
91

/9
6

29
 [

25
–3

0]
12

 [
4–

14
]

0.
04

 [
−

3.
02

–1
.7

9]

N
ot

e.
 A
β 

=
 A

m
yl

oi
d 

st
at

us
; A

PO
E

 =
 a

po
lip

op
ro

te
in

; W
 =

 W
hi

te
; N

H
 =

 N
ot

 H
is

pa
ni

c;
 B

L
 =

 B
as

el
in

e;
 L

V
 =

 L
as

t v
is

it;
 M

M
SE

 =
 M

in
i-

M
en

ta
l S

ta
te

 E
xa

m
in

at
io

n;
 L

M
D

R
 =

 lo
gi

ca
l m

em
or

y 
de

la
ye

d 
re

ca
ll;

 
zP

A
C

C
 =

 s
ta

nd
ar

di
ze

d 
PA

C
C

; A
D

N
I 

=
 A

lz
he

im
er

’s
 D

is
ea

se
 N

eu
ro

im
ag

in
g 

In
iti

at
iv

e;
 H

A
B

S 
=

 H
ar

va
rd

 A
gi

ng
 B

ra
in

 S
tu

dy
; A

IB
L

 =
 A

us
tr

al
ia

n 
Im

ag
in

g,
 B

io
m

ar
ke

r 
an

d 
L

if
es

ty
le

 S
tu

dy
 o

f 
A

ge
in

g;
 A

4 
=

 
A

nt
i-

A
m

yl
oi

d 
T

re
at

m
en

t o
f 

A
sy

m
pt

om
at

ic
 A

lz
he

im
er

’s
 D

is
ea

se
; P

A
C

C
 =

 p
re

cl
in

ic
al

 A
lz

he
im

er
 c

og
ni

tiv
e 

co
m

po
si

te
.

Neuropsychology. Author manuscript; available in PMC 2024 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hampton et al. Page 26

Ta
b

le
 2

PA
C

C
 N

eu
ro

ps
yc

ho
lo

gi
ca

l T
es

t C
om

po
ne

nt
s 

Pe
r 

C
oh

or
t

D
om

ai
n

A
D

N
I

H
A

B
S

A
IB

L
A

4

G
lo

ba
l

To
ta

l M
M

SE
 s

co
re

To
ta

l M
M

SE
 s

co
re

To
ta

l M
M

SE
 s

co
re

To
ta

l M
M

SE
 s

co
re

St
or

y 
re

ca
ll 

m
em

or
y

L
og

ic
al

 m
em

or
y 

de
la

ye
d 

re
ca

ll 
(A

nn
a 

T
ho

m
ps

on
 s

to
ry

)
L

og
ic

al
 m

em
or

y 
de

la
ye

d 
re

ca
ll 

(A
nn

a 
T

ho
m

ps
on

 s
to

ry
)

L
og

ic
al

 m
em

or
y 

de
la

ye
d 

re
ca

ll 
(A

nn
a 

T
ho

m
ps

on
 s

to
ry

)
L

og
ic

al
 m

em
or

y 
de

la
ye

d 
re

ca
ll 

(R
ob

er
t M

ill
er

 s
to

ry
)

E
xe

cu
ti

ve
 f

un
ct

io
n

T
ra

ils
 B

 ti
m

e
D

ig
it

 S
ym

bo
l S

ub
st

it
ut

io
n 

Te
st

 (
W

A
IS

-R
; 

90
 s

)
D

ig
it 

Sy
m

bo
l S

ub
st

itu
tio

n 
Te

st
 (

W
A

IS
-I

II
; 1

20
 s

)
D

ig
it

 S
ym

bo
l S

ub
st

it
ut

io
n 

Te
st

 
(W

A
IS

-R
; 

90
 s

)

V
er

ba
l f

lu
en

cy
C

at
eg

or
y 

fl
ue

nc
y—

an
im

al
s

C
at

eg
or

y 
fl

ue
nc

y—
an

im
al

s 
+

 v
eg

et
ab

le
s 

+
 

fr
ui

ts
C

at
eg

or
y 

fl
ue

nc
y—

an
im

al
s 

+
 f

ur
ni

tu
re

 +
 n

am
es

L
is

t 
le

ar
ni

ng
 

M
em

or
y

A
D

A
S-

co
g 

de
l w

or
d 

re
ca

ll
F

re
e 

an
d 

C
ue

d 
Se

le
ct

iv
e 

R
em

in
di

ng
 T

es
t 

(F
C

SR
T

)
C

al
if

or
ni

a 
V

er
ba

l L
ea

rn
in

g 
Te

st
—

2n
d 

E
d.

 
(C

V
LT

-I
I,

 lo
ng

 d
el

ay
)

F
re

e 
an

d 
C

ue
d 

Se
le

ct
iv

e 
R

em
in

di
ng

 T
es

t 
(F

C
SR

T
)

N
ot

e.
 B

ol
de

d 
te

st
s 

re
fl

ec
t c

oh
or

t s
ha

re
d 

te
st

s 
be

tw
ee

n 
st

ud
ie

s 
th

at
 s

ha
re

 r
ec

od
in

g 
di

st
ri

bu
tio

n 
an

d 
co

nf
ir

m
at

or
y 

fa
ct

or
 a

na
ly

si
s 

(C
FA

) 
lo

ad
in

gs
 a

nd
 th

re
sh

ol
ds

 (
M

M
SE

 in
 a

ll 
st

ud
ie

s;
 lo

gi
ca

l m
em

or
y 

de
la

ye
d 

re
ca

ll 
an

d 
th

e 
an

im
al

s 
ca

te
go

ry
 in

 A
D

N
I,

 H
A

B
S,

 a
nd

 A
IB

L
; W

A
IS

-R
 a

nd
 F

C
SR

T
 in

 H
A

B
S 

an
d 

A
4)

. M
ea

ns
 a

nd
 s

ta
nd

ar
d 

de
vi

at
io

ns
 (

SD
) 

ar
e 

pr
ov

id
ed

 u
nd

er
 th

e 
M

M
SE

 a
nd

 lo
gi

ca
l m

em
or

y 
sc

or
es

 f
or

 
A

D
N

I,
 A

IB
L

, a
nd

 H
A

B
S 

to
 d

em
on

st
ra

te
 d

if
fe

re
nc

es
 a

cr
os

s 
th

e 
co

ho
rt

s.
 P

A
C

C
 =

 p
re

cl
in

ic
al

 A
lz

he
im

er
 c

og
ni

tiv
e 

co
m

po
si

te
; A

D
N

I 
=

 A
lz

he
im

er
’s

 D
is

ea
se

 N
eu

ro
im

ag
in

g 
In

iti
at

iv
e;

 H
A

B
S 

=
 H

ar
va

rd
 A

gi
ng

 
B

ra
in

 S
tu

dy
; A

IB
L

 =
 A

us
tr

al
ia

n 
Im

ag
in

g,
 B

io
m

ar
ke

r 
an

d 
L

if
es

ty
le

 S
tu

dy
 o

f 
A

ge
in

g;
 A

4 
=

 A
nt

i-
A

m
yl

oi
d 

T
re

at
m

en
t o

f 
A

sy
m

pt
om

at
ic

 A
lz

he
im

er
’s

 D
is

ea
se

; M
M

SE
 =

 M
in

i-
M

en
ta

l S
ta

te
 E

xa
m

in
at

io
n;

 
W

A
IS

-R
 =

 W
ec

hs
le

r 
A

du
lt 

In
te

lli
ge

nc
e 

Sc
al

e-
R

ev
is

ed
; W

A
IS

-I
II

 =
 W

ec
hs

le
r 

A
du

lt 
In

te
lli

ge
nc

e 
Sc

al
e-

II
I;

 A
D

A
S 

=
 A

lz
he

im
er

’s
 d

is
ea

se
 A

ss
es

sm
en

t S
ca

le
; C

V
LT

 =
 C

al
if

or
ni

a 
V

er
ba

l L
ea

rn
in

g 
Te

st
.

Neuropsychology. Author manuscript; available in PMC 2024 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hampton et al. Page 27

Ta
b

le
 3

C
om

po
ne

nt
 L

oa
di

ng
s,

 U
ns

ta
nd

ar
di

ze
d 

M
ea

n/
V

ar
ia

nc
e,

 a
nd

 S
ta

nd
ar

d 
E

rr
or

s 
of

 M
ea

su
re

m
en

t F
ro

m
 A

ll 
C

oh
or

ts
 L

as
t V

is
its

 a
nd

 C
oh

or
t-

Sp
ec

if
ic

 

L
on

gi
tu

di
na

l C
FA

s

M
od

el
N

eu
ro

ps
yc

ho
lo

gi
ca

l t
es

t/
it

em
A

D
N

I
H

A
B

S
A

IB
L

A
4

N
79

5
42

7
1,

17
6

4,
49

2

St
d 

lo
ad

in
g

L
as

t v
is

it 
m

od
el

M
M

SE
0.

55
9a

0.
55

9a
0.

55
9a

0.
55

9a

L
M

D
R

0.
63

3a
0.

63
3a

0.
63

3a
—

L
M

D
R

_A
4

—
—

—
0.

28
1

D
ig

it 
sy

m
bo

l
—

0.
71

7b
—

0.
71

7b

D
ig

it 
sy

m
bo

l A
IB

L
—

—
0.

65
9

—

FC
SR

T
 tr

ia
l 1

—
0.

64
6b

—
0.

64
6b

FC
SR

T
 tr

ia
l 2

—
0.

68
3b

—
0.

68
3b

FC
SR

T
 tr

ia
l 3

—
0.

62
0b

—
0.

62
0b

T
ra

ils
 B

0.
60

8
—

—
—

A
D

A
S-

co
g

0.
59

6
—

—
—

A
ni

m
al

s
0.

58
8+

0.
58

8a
0.

58
8a

—

V
eg

et
ab

le
s

—
0.

70
6

—
—

Fr
ui

ts
—

0.
69

5
0.

69
5

—

N
am

es
—

—
0.

65
8

—

Fu
rn

itu
re

—
—

0.
67

6
—

C
V

LT
—

—
0.

71
9

—

L
on

gi
tu

di
na

l m
od

el
M

ea
n/

va
ri

an
ce

0.
24

1/
0.

56
7

0.
82

3/
0.

95
1

−
0.

31
2/

0.
61

8
0.

24
0/

0.
43

1

SE
M

 m
ea

n(
SD

)
0.

50
 (

0.
04

)
0.

28
 (

0.
07

)
0.

32
 (

0.
05

)
0.

34
 (

0.
02

)

N
ot

e.
 S

td
 =

 s
ta

nd
ar

di
ze

d;
 S

E
M

 =
 s

ta
nd

ar
d 

er
ro

r 
of

 m
ea

su
re

m
en

t; 
A

D
N

I 
=

 A
lz

he
im

er
’s

 D
is

ea
se

 N
eu

ro
im

ag
in

g 
In

iti
at

iv
e;

 H
A

B
S 

=
 H

ar
va

rd
 A

gi
ng

 B
ra

in
 S

tu
dy

; C
FA

 =
 c

on
fi

rm
at

or
y 

fa
ct

or
 a

na
ly

si
s;

 A
IB

L
 =

 
A

us
tr

al
ia

n 
Im

ag
in

g,
 B

io
m

ar
ke

r 
an

d 
L

if
es

ty
le

 S
tu

dy
 o

f 
A

ge
in

g;
 A

4 
=

 A
nt

i-
A

m
yl

oi
d 

T
re

at
m

en
t o

f 
A

sy
m

pt
om

at
ic

 A
lz

he
im

er
’s

 D
is

ea
se

; M
M

SE
 =

 M
in

i-
M

en
ta

l S
ta

te
 E

xa
m

in
at

io
n;

 L
M

D
R

 =
 lo

gi
ca

l m
em

or
y 

de
la

ye
d 

re
ca

ll;
 F

C
SR

T
 =

 F
re

e 
an

d 
C

ue
d 

Se
le

ct
iv

e 
R

em
in

di
ng

 T
es

t; 
A

D
A

S 
=

 A
lz

he
im

er
’s

 d
is

ea
se

 A
ss

es
sm

en
t S

ca
le

; C
V

LT
 =

 C
al

if
or

ni
a 

V
er

ba
l L

ea
rn

in
g 

Te
st

.

a Te
st

s 
th

at
 o

ve
rl

ap
 b

et
w

ee
n 

co
ho

rt
s 

ha
ve

 th
ei

r 
lo

ad
in

gs
 lo

ck
ed

 in
 th

e 
ba

se
 m

od
el

.

b Sh
ar

ed
 lo

ad
in

gs
 f

or
 th

e 
se

co
nd

ar
y 

m
od

el
 to

 A
4.

Neuropsychology. Author manuscript; available in PMC 2024 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hampton et al. Page 28

Ta
b

le
 4

C
or

re
la

tio
ns

 o
f 

zP
A

C
C

 a
nd

 lP
A

C
C

 a
t t

he
 B

as
el

in
e 

W
ith

in
 E

ac
h 

C
oh

or
t R

ep
or

te
d 

U
si

ng
 P

ea
rs

on
’s

 C
or

re
la

tio
n 

C
oe

ff
ic

ie
nt

s 
an

d 
t-

Te
st

 E
ff

ec
t S

iz
e 

St
at

is
tic

s

A
D

N
I

H
A

B
S

A
IB

L
A

4

V
ar

ia
bl

e
E

st
im

at
e

zP
A

C
C

lP
A

C
C

zP
A

C
C

lP
A

C
C

zP
A

C
C

lP
A

C
C

zP
A

C
C

lP
A

C
C

r
0.

96
*

0.
83

*
0.

77
*

0.
81

*

E
du

ca
tio

n
r

0.
27

*
0.

27
*

0.
18

**
0.

15
**

*
0.

29
*

0.
18

*
0.

15
*

0.
06

*

A
ge

r
−

0.
37

*
−

0.
38

*
−

0.
36

*
−

0.
31

*
−

0.
40

*
−

0.
35

*
−

0.
31

*
−

0.
30

*

Se
x

d
0.

18
**

0.
19

**
0.

40
*

0.
57

*
0.

42
*

0.
51

*
0.

53
*

0.
58

*

H
V

ad
j

r
0.

26
*

0.
25

*
0.

24
*

0.
21

*
0.

26
*

0.
19

*
0.

31
*

0.
28

*

N
ot

e.
 H

V
ad

j =
 h

ip
po

ca
m

pa
l v

ol
um

e 
ad

ju
st

ed
 f

or
 in

tr
ac

ra
ni

al
 v

ol
um

e;
 A

D
N

I 
=

 A
lz

he
im

er
’s

 D
is

ea
se

 N
eu

ro
im

ag
in

g 
In

iti
at

iv
e;

 H
A

B
S 

=
 H

ar
va

rd
 A

gi
ng

 B
ra

in
 S

tu
dy

; A
IB

L
 =

 A
us

tr
al

ia
n 

Im
ag

in
g,

 B
io

m
ar

ke
r 

an
d 

L
if

es
ty

le
 S

tu
dy

 o
f 

A
ge

in
g;

 A
4 

=
 A

nt
i-

A
m

yl
oi

d 
T

re
at

m
en

t o
f 

A
sy

m
pt

om
at

ic
 A

lz
he

im
er

’s
 D

is
ea

se
; P

A
C

C
 =

 p
re

cl
in

ic
al

 A
lz

he
im

er
 c

og
ni

tiv
e 

co
m

po
si

te
; l

PA
C

C
 =

 la
te

nt
 P

A
C

C
; z

PA
C

C
 =

 s
ta

nd
ar

di
ze

d 
PA

C
C

.

* p 
<

 .0
00

1.

**
p 

<
 .0

01
.

**
* p 

<
 .0

1.

Neuropsychology. Author manuscript; available in PMC 2024 February 01.


	Abstract
	Method
	Participants
	Preclinical Alzheimer Cognitive Composites
	Method for PACC Harmonization
	Aβ Positron Emission Tomography
	Magnetic Resonance Imaging: Adjusted Hippocampal Volume
	Statistical Analyses
	Application of Harmonized Loadings to A4 Cohort

	Results
	Single-Factor Versus Bifactor Comparison
	Outputs of CFA Statistics in Each Cohort Based on Last Visit Loadings
	lPACC and zPACC Correlate Similarly With Demographics at Baseline
	Longitudinal lPACC Performs Similarly in a Linear Mixed Model With Aβ Status to zPACC
	Cox Proportional Hazards Model
	Harmonizing Base Model to A4 Cohort

	Discussion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Table 1
	Table 2
	Table 3
	Table 4

