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In Brief
MSstatsPTM detects statistical
differences between
posttranslational modifications
and global protein abundances.
It includes novel methodology to
remove confounding between
the effect of individual
modification versus the global
protein. MSstatsPTM is
implemented as an open-source
R package available on
Bioconductor. The package can
be applied to a variety of
experimental designs, including
those which are label-free and
label-based. The package has
been benchmarked on several
datasets including simulated
datasets, a spike-in controlled
investigation, and multiple
biological experiments.
Highlights
• MSstatsPTM differentiates statistical changes in PTMs and global protein abundances.• Novel methodology removes confounding between the modification and global protein.• MSstatsPTM is an open-source R package available on Bioconductor.• The package is applicable to a variety of experimental designs and labeling methods.• Benchmarked on simulated data, a spike-in mixture, and biological investigations.
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RESEARCH
MSstatsPTM: Statistical Relative Quantification
of Posttranslational Modifications in Bottom-Up
Mass Spectrometry-Based Proteomics
Devon Kohler1 , Tsung-Heng Tsai2 , Erik Verschueren3,4 , Ting Huang1, Trent Hinkle4,
Lilian Phu4, Meena Choi4,*, and Olga Vitek1,*
Liquid chromatography coupled with bottom-up mass
spectrometry (LC-MS/MS)–based proteomics is increas-
ingly used to detect changes in posttranslational modifi-
cations (PTMs) in samples from different conditions.
Analysis of data from such experiments faces numerous
statistical challenges. These include the low abundance of
modified proteoforms, the small number of observed
peptides that span modification sites, and confounding
between changes in the abundance of PTM and the overall
changes in the protein abundance. Therefore, statistical
approaches for detecting differential PTM abundance
must integrate all the available information pertaining to a
PTM site and consider all the relevant sources of con-
founding and variation. In this manuscript, we propose
such a statistical framework, which is versatile, accurate,
and leads to reproducible results. The framework requires
an experimental design, which quantifies, for each sam-
ple, both peptides with PTMs and peptides from the same
proteins with no modification sites. The proposed frame-
work supports both label-free and tandem mass
tag-based LC-MS/MS acquisitions. The statistical meth-
odology separately summarizes the abundances of pep-
tides with and without the modification sites, by fitting
separate linear mixed effects models appropriate for the
experimental design. Next, model-based inferences
regarding the PTM and the protein-level abundances are
combined to account for the confounding between these
two sources. Evaluations on computer simulations, a
spike-in experiment with known ground truth, and three
biological experiments with different organisms, modifi-
cation types, and data acquisition types demonstrate the
improved fold change estimation and detection of differ-
ential PTM abundance, as compared to currently used
approaches. The proposed framework is implemented in
the free and open-source R/Bioconductor package
MSstatsPTM.

Signaling mechanisms allow cells to mount a fast and
dynamic response to a multitude of biomolecular events.
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Signaling is facilitated by the modification of proteins at spe-
cific residues, acting as molecular on/off switches (1–3).
Characterizing relative abundance of a modification site’s
occupancy repertoire across experimental conditions pro-
vides important insights (4). For example, meaningful patterns
of changes in posttranslational modifications (PTMs) abun-
dance can serve as biomarkers of a disease (5). Alternatively,
distinguishing the quantitative changes in a PTM from the
overall changes of the protein abundance helps gain insight
into biological and physiological processes operating on a
very short timescale (6–8). This helps to distinguish between
relative site occupancy changes at steady-state protein levels,
typical for short timescale signaling events, and observed
relative changes of PTMs as a result of underlying gene
expression or protein abundance levels.
Bottom-up liquid chromatography coupled with tandem

mass spectrometry (LC-MS/MS) is a tool of choice for unbi-
ased and large-scale identification and quantification of pro-
teins and their PTMs (9, 10). However, LC-MS-based
interrogation of the modified proteome is challenging, for a
number of reasons. First, the relatively lower abundance of
modified proteoforms dictates that a global interrogation can
only be achieved through large-scale enrichment protocols
with modification-specific antibodies or beads (11). Variability
in the enrichment efficiency inevitably affects the reproduc-
ibility of the number of spectral features (e.g., peptide pre-
cursor ions or their fragments) and their intensities. Second,
contrary to the often large number of identified peptides that
can be used to quantify protein abundance, there are relatively
few representative peptides that span a modification site, and
there may be multiple modified sites on a single peptide (28).
Third, unless early signaling events are interrogated, the
interpretation of the relative changes in modification occu-
pancy are inherently confounded with changes in the overall
protein abundance, complicating the interpretation of the
results (6, 12). Finally, technological aspects of bottom-up MS
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MSstatsPTM: Statistical Relative Quantication of PTMs
experiments, such as presence of labeling by tandem mass
tag (TMT), introduce additional sources of uncertainty and
variation.
The technological difficulties in PTM identification and

quantification increase the uncertainty and the variation in
the data and challenge the downstream statistical analyses.
Frequently data from these experiments are analyzed using
statistical methods that were not originally designed for this
task. Researchers use methods such as t test (13), analysis
of variance (ANOVA) (14), or Limma (15), by taking as input
the intensity ratios of modified and unmodified peptide
summaries and comparing the mean abundance of different
PTM sites. Such approaches do not fully account for all the
sources of uncertainty. As the result, these approaches are
either not directly applicable to experiments with nontrivial
designs (such as experiments with multiple conditions,
paired and time course designs, and experiments with la-
beling) or require the analysts to exercise nontrivial statistical
expertise.
This manuscript proposes a versatile statistical analysis

framework that accurately detects relative changes in PTMs.
The framework requires an experimental design, which
quantifies, for each sample, both the peptides with PTMs and
peptides from the same proteins with no modification sites.
The framework supports data-dependent acquisitions (DDAs)
that are label-free or TMT-based. The statistical methodology
separately summarizes the abundances of peptides with and
without the modification sites and fits separate linear mixed
effects models that reflect the biological and technological
aspects of the experimental design. Unmodified peptides may
or may not span a modifiable site. Next, model-based in-
ferences regarding the PTM and the unmodified protein-level
summaries are combined to account for the confounding
between these two sources.
We evaluated the proposed framework on two datasets

from computer simulations, one benchmark controlled mixture
and three biological investigations. The datasets illustrate a
diverse set of organisms, modification types, acquisition
methods, and experimental designs, showing the applicability
of the framework to a variety of situations. By appropriately
leveraging the information from the unmodified portion of the
protein sequence, the proposed approach improved the ac-
curacy of the estimates of PTM fold changes and produced a
better calibrated false positive (FP) rate of detecting differen-
tially abundant PTMs as compared to existing methods. In
particular, accounting for the confounding from unmodified
protein abundance allowed us to characterize the true effect of
the modification, avoiding the need for more manual and time
intensive follow-up investigation.
The proposed approach is implemented as a freely avail-

able open source R package MSstatsPTM, as part of the
MSstats family of packages (16, 17), and is available on
Bioconductor.
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EXPERIMENTAL PROCEDURES

Data Overview and Availability

Table 1 summarizes the experiments. Two computer simulations
had known ground truth and varied in experimental realism. The first
simulation produced a perfectly clean dataset, with many replicates
and no missing values. The second simulation introduced real-world
characteristics, such as limited modified features and missing
values. Details of computer simulations are available in Supplementary
Sec. 3.1 & 3.2, and on GitHub (https://github.com/devonjkohler/
MSstatsPTM_simulations).

One spike-in experiment also had known changes in modified
spike-in peptides but had real world experimental characteristics.
Finally, three biological experiments demonstrated the applicability of
the proposed approach across different biological organisms, modi-
fications, experimental designs, and acquisition strategies. All bio-
logical experiments used a modified version of the AScore algorithm
(cutoff=15) for site localization (18). The experimental data, R scripts
with MSstatsPTM analysis, and results of the statistical analysis are
available in MassIVE.quant (https://massive.ucsd.edu/ProteoSAFe/
static/massive-quant.jsp) (19).

Dataset 1: Computer Simulation 1—Label-Free Clean

Simulation Design–The simulation represented an idealistic case.
Twenty-four synthetic label-free datasets were generated with
different experimental designs and different biological variation. In
each dataset, 1000 proteins had 10 unmodified features per protein.
Each of the 1000 proteins had one PTM. Each PTM was represented
by 10 modified features. The PTMs of 500 proteins had a differential
fold change between conditions, while the other 500 proteins were
generated with no changes in abundance between conditions.
Furthermore, the fold changes of half of the 500 differential PTMs were
fully masked by changes in the unmodified portion of the protein.
Finally, the fold change of half the 500 nondifferential PTMs was
entirely due to changes in the unmodified portion of the protein. All the
differential PTMs were generated with an expected log base two fold
change of 0.75 between conditions.

Each simulation was generated with random biological variation.
The observed peptide abundances were simulated by adding random
noise N(0, σ2) to the deterministic abundances described above. Two
values σ2 = {.2, .3} were motivated by the experimental datasets in this
manuscript.

Evaluation–We evaluated the ability of the statistical methods to
correctly detect differentially abundant PTMs. We gauged the ability of
the methods to avoid FPs (i.e., specificity), accurately estimate the fold
change between conditions, and analyzed the sensitivity of detecting
differentially abundant PTMs. The evaluation was performed both in
the presence of confounding with changes in the unmodified protein
and after applying adjustment to correct for the confounding.

Dataset 2: Computer Simulation 2—Label-Free With Few Low
Feature Counts and Missing Values

Simulation Design–The data were simulated as above, while
providing a more realistic representation of the experiments. The
feature counts and the proportion of missing values were as observed
on average over all the experimental datasets in this manuscript.
Specifically, PTMs were simulated with two modified peptide features,
and unmodified portions of the protein were simulated with 10 fea-
tures. Additionally, 20% of observations for both modified and un-
modified peptides were missing completely at random.

Evaluation–The methods were evaluated as above. We evaluated
their ability to correctly detect PTM’s specificity, fold change esti-
mation, and sensitivity. These statistics were analyzed both in the
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TABLE 1
Simulated and experimental datasets

Experimental
type

Dataset
No. of

conditions
No. of bio.
replicates

No. of
mod.

peptides

No. of
mod.

features/
site

No. of
unmod.
Features/

site

Data availability Analysis

Known
ground
truth

Computer Simulation
1—Label-free

2/3/4 2/3/5/10 1000 10 10 Github

Computer Simulation
2—Missing and low
features

2/3/4 2/3/5/10 1000 2 10 Github

Spike-in
benchmark—
Ubiquitination—
Label-free

4 2 12,137 1.37 10.17 MSV000088971 RMSV000000669

Biological
experiment

Human—
Ubiquitinatio=n—
1mix-TMT

6 2 or 1 8848 1.21 11.01 MSV000088966 RMSV000000356

Mouse—
Phosphorylation—
2mix-TMT

6 4 or 3 26,433 1.67 11.61 MSV000085565 RMSV000000357

Human—
Ubiquitination—
Label-free

6 2 10,799 1.40 1.65 MSV000078977 RMSV000000358

“Dataset” is the dataset code name. “No. of bio. replicates” shows the number of biological replicates per condition. Simulations were
generated with different numbers of replicates. The designs of two biological experiments were unbalanced with unequal replicates per con-
dition. “No. of mod. features/site” is the number of features (i.e., peptide ions) used to estimate the abundance of a single modification. “No. of
unmod. peptides/protein” is the number of peptide ions without modifications that were used to estimate the global protein abundance. “Data
availability” is the ID of the MassIVE.quant repository or the GitHub repository. “Analysis” is the ID of the MassIVE.quant reanalysis container,
containing analysis code and modeling results. All the experiments were conducted in data-dependent acquisition (DDA) mode.

MSstatsPTM: Statistical Relative Quantication of PTMs
presence of and without confounding with the overall changes in
protein abundance.

Dataset 3: Spike-In Benchmark—Ubiquitination—Label-Free

Experimental Design–Fig. 1A overviews the experimental design.
Four mixtures (i.e., conditions) were created with varying amounts of
human lysate, background E. coli lysates, and human spike-in Ub-
peptide mixture. Unmodified peptides from human lysate were viewed
as the global proteome. Background E. coli lysate were used to
equalize total protein levels. Fifty heavy-labeled Ub-remnant diglycyl-
lysine (KGG) motif peptides from 20 human proteins were spiked into
the mixed background of the lysates. Quantitative changes in protein
and site abundance of these 20 human proteins were the target of the
benchmark. In particular, we distinguished the unadjusted changes
(i.e., changes in the abundances of the modified peptides) and the
protein-level adjusted changes of (i.e., changes in the abundances of
the modified peptides relative to the changes in the abundances of the
human lysate). The true log-fold changes between the relevant com-
ponents of the relevant mixtures are summarized in Fig. 1B. Two
replicate mixtures were created per condition.

Data Acquisition–A detailed overview of the methods used to ac-
quire this data is available in Supplementary Sec. 1. Each mixture was
analyzed with KGG enrichment and without KGG enrichment (i.e., in a
global profiling run), with label-free LC-MS/MS. There was a 90.2%
overlap of protein identifications between the identified background-
modified peptides and proteins quantified in the global profiling run.

Evaluation–We expect the relative abundances of the spike-in
peptides to change as in Fig. 1B. The changes in peptide abun-
dances in all the comparisons except Mix 4 versus Mix 1 were distinct
from changes in the global proteome abundances and distinct from
zero and were viewed as positive controls. In the comparison of Mix4
versus Mix 1, both the modified peptides and the global proteome
background changed two-fold, and as the result, the peptides in this
comparison were viewed as a negative control. The background
E. Coli lysate peptides were not expected to change in abundance in
comparison, after accounting for adjustment, and were viewed as
additional negative controls. We evaluated the ability of the statistical
methods to avoid FPs, as well as their sensitivity in detecting the
differentially abundant spike-in peptides and accurately estimate their
expected fold change.

Dataset 4: Human—Ubiquitination—1mix-TMT

Experimental Design–Luchetti et al. (20) profiled human epithelial
cells engineered to express IpaH7.8 under a dox inducible promoter.
Uninfected cells were measured at 0 and 6 h, while cells infected with
Shigella flexneri (S. flexneri) bacteria were measured at 1, 2, 4, and 6 h
increments, resulting in six total conditions. 11 samples were allocated
to one TMT mixture in an unbalanced repeated measure design. All
conditions had two biological replicates except for the Dox1hr con-
dition, which was allocated one replicate.

Data Acquisition–The search parameters and data acquisition were
as described in (20). The ubiquitinated peptides and the total prote-
ome (i.e., global profiling) were each conducted in a single LC-MS/MS
run. There was a 95% overlap between the identified modified pep-
tides and proteins that were quantified in the global profiling run.

Evaluation–We evaluated the ability of the statistical methods to
detect changes in the abundance of modified peptides both before
and after adjusting for changes in global protein abundance. The six
conditions were labeled Dox1hr, Dox2hr, Dox4hr, Dox6hr, NoDox0hr,
and NoDox6hr. All conditions were compared with each other,
Mol Cell Proteomics (2023) 22(1) 100477 3
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FIG. 1. Dataset 3: Spike-in benchmark—ubiquitination—label-free. A, four mixtures (i.e., conditions) were created with varying amounts of
human lysate, background E. coli lysate, and human spike-in Ub-peptide mixture. Unmodified peptides from human lysate were viewed as the
global proteome. Background E. coli lysate were used to equalize total protein levels. Fifty heavy-labeled KGG motif peptides from 20 human
proteins were spiked into the mixed background of the lysates. Quantitative changes in protein and site abundance of these 20 human proteins
were the target of the benchmark. B, we distinguished the unadjusted changes (i.e., changes in the abundances of the modified peptides) and
the protein-level adjusted changes of (i.e., changes in the abundances of the modified peptides relative to the changes in the abundances of the
human lysate). “Unadj. true log2FC” are the log-ratios of the abundances of the spiked peptides between each condition. “Adj. true log2FC” was
calculated by determining the ratios of the abundances of the spiked peptides and human lysate between each condition and then adjusting the
ratio of the spiked peptides by the human lysate, similarly to (Equation 2).

MSstatsPTM: Statistical Relative Quantication of PTMs
resulting in 15 pairwise comparisons. Since the dataset was a bio-
logical investigation, the true positive modifications were unknown.
Shigella ubiquitin ligase IpaH7.8 was shown to function as an inhibitor
of the protein Gasdermin D (GSDMD). GSDMD was actively degraded
when IpaH7.8 expression was induced by dox treatment in human
cells. We expect IpaH7.8 to function as an inhibitor of GSDMD in the
global profiling run.

Dataset 5: Mouse—Phosphorylation—2mix-TMT

Experimental Design–Maculins et al. (21) studied primary murine
macrophages infected with S. flexneri. The experiment quantified the
abundance of total protein and of phosphorylation in wildtype (WT) and
in ATG16L1-deficient (cKO) samples, uninfected and infected with
S. flexneri. The abundance of total protein and PTMs were quantified at
three time points, uninfected, early infection (45–60 min), and late
infection (3–3.5 h). Twenty-twobiological sampleswereallocated to two
TMT mixtures in an unbalanced repeated measure design, with 11
samples allocated to each mixture. 16 replicates were spread equally
between the early and late WT and cKO conditions, resulting in four
replicates per condition. Both the uninfected WT and cKO contained
three replicates, with mixture one allocating one replicate to uninfected
WT and two replicates to uninfected cKO. Conversely, mixture two
contained one replicate of uninfected cKO and two uninfected WT.

Data acquisition–The search parameters and data acquisition were
as described in (21). This experiment included a total proteome (i.e., a
global profiling run) and a phosphopeptide enrichment run. There was
a 90% overlap between the identified modified peptides and proteins
that were quantified in the global profiling run.

Evaluation–We evaluated the ability of the statistical methods to
detect changes in the abundance of modified peptides both before
and after adjusting for changes in global protein abundance. The six
conditions were labeled KO Uninfect, KO Early, KO Late, WT Uninfect,
WT Early, and WT Late. Nine total comparisons were made, namely
4 Mol Cell Proteomics (2023) 22(1) 100477
KO Early-WT Early, KO Late-WT Late, KO Uninfected-WT Uninfected,
KO Early-KO Uninfected, KO Late-KO Uninfected, WT Early-WT Un-
infected, WT Late-WT Uninfected, Infected-Uninfected, and KO-WT.
Since the dataset was a biological investigation, the true positive
modifications were unknown.

Dataset 6: Human—Ubiquitination—Label-Free No Global
Profiling Run

Experimental Design–Cunningham et al. (22) investigated the
relationship between USP30 and protein kinase PINK1 and their as-
sociation with Parkinson’s Disease. The experiment profiled ubiquiti-
nation sites and analyzed changes in the modified site abundance.
The experiment had four conditions, CCCP, USP30 over expression
(USP30 OE), Combo, and Control. Cell lines were used to create two
biological replicates per condition. The abundance of modified pep-
tides was quantified with label-free LC-MS/MS.

Data Acquisition–The search parameters and data acquisition were
as described in (22). This experiment did not include a separate global
profiling run to quantify unmodified peptides. In addition to low feature
counts for unmodified peptides, this led to substantially fewer
matches between modified and unmodified peptides. There was a
41.9% overlap between the identified background modified peptides
and proteins that were quantified in the global profiling run.

Evaluation–We evaluated the ability of the statistical methods to
detect changes in the abundance of modified peptides both before
and after adjusting for changes in global protein abundance. All the
conditions were compared with each other in a full pairwise com-
parison, resulting in six comparisons. Since the dataset is a biological
investigation, the true positive modifications were unknown.

Background

Goals of PTM Characterization, Input to Statistical Analyses, and
Notation–Consider a label-free LC-MS/MS experiment in the special



MSstatsPTM: Statistical Relative Quantication of PTMs
case of a balanced design with I conditions and J biological replicates
per condition. For simplicity, we assume that the experiment has no
technical replicates, such that each biological replicate is represented
by a single LC-MS/MS run. Fig. 2 schematically illustrates this data
structure for one protein and one PTM site, I = 2 and J = 2. For one
protein, the PTM site is represented by K spectral features (i.e.,
peptide ions, distinguished by their cleavage residues and charge
states). The number of modified and unmodified features typically
varies across proteins. Some log2 intensities can be outliers, and
some spectral features can be missing. The log2 intensity of Feature k,
in Replicate j of Condition i is denoted by y∗ijk . Conversely, the un-
modified portion of the protein is represented by L spectral features,
and the log2 intensity of Feature l from the unmodified portion of the
protein in the same run is denoted by yijl. The features can be quan-
tified as part of a same mass spectrometry run or in a separate
enrichment and global proteome profiling run.

The population quantity of interest is the difference between the log2
abundances of a PTM site in Condition i and Condition i′, denoted by μ∗i
and μ∗i′ respectively. We are interested in testing the null hypothesis

H0 : ΔPTM = μ∗i −μ
∗
i′ = 0 vs Ha : ΔPTM = μ∗i −μ

∗
i′s0 (1)

Unfortunately, this population quantity is inherently confounded
with the overall changes in protein abundance. To account for this, it is
advantageous to consider a different null hypothesis:

H0 : Δadj = (μ∗i − μi)− (μ∗i′ − μi′ )=0 vs Ha : Δadj = (μ∗i − μi)− (μ∗i′ − μi′ )s0

(2)

where μi and μi′ reflect the overall log2 protein abundances in
Condition i and Condition i′. These quantities are estimated using
protein features with and without the modification site.
FIG. 2. Schematic representation of one PTM site, in a special ca
logical replicates per condition. After a log2 transform, we are intere
abundance between condition 1 and condition 2 (i.e., μ∗1−μ∗2 ), relative to th
μ2). These quantities are characterized by the observed spectral features
fully cleaved (solid lines) or partially cleaved (dashed lines). Unmodified f
the modified peptides in condition i, run j, and feature k are denoted by
peptide in condition i and run j are denoted by yijl. PTM, posttranslation
Existing Statistical Methods for Detecting Differentially Abundant
PTMs

ANOVA on Summarized Modified Log2 Intensities–ANOVA (23) is
the simplest statistical model for summarized modified features in
each biological replicate. The summarization often consists of aver-
aging (or taking the median or other robust summary) of the log2 in-
tensities of the modified features in each replicate, e.g., ŷ∗ij =∑K

k=1y∗ijk/K. Alternatively, summarization sums the intensities of the
modified features on the original scale and then takes the log2

ŷ∗ij = log2(∑K
k=1

2y
∗
ijk) (3)

The basic ANOVA model is then

ŷ∗ij = μ∗i + ε
∗
ij , ε

∗
ij ∼iidN (0, σ*2), i = 1,…, I, j = 1,…, J (4)

The model allows us to estimate Δ̂PTM and its standard error. The
estimates are used to test the null hypothesis in (Equation 1) by
comparing the model-based test statistic against the Student
distribution with df = I(J −1) degrees of freedom in balanced designs.
Unfortunately, this approach is fundamentally flawed as it does not ac-
count for the confounding between changes in the PTM abundance and
the overall changes in the abundance of the unmodified portion of the
protein.

ANOVA Based On Ratios of Modified and Unmodified Log2
Intensities

The basic ANOVA can be extended to account for the confounding
of changes in PTM abundance and overall changes in protein abun-
dance (24–26). Typically this is done by first calculating sums of the
se of a label-free experiment with I = 2 conditions and J = 2 bio-
sted in estimating the difference between the population-level PTM
e population-level difference of the overall protein abundance (i.e., μ1 −
(boxes), i.e., peptides of different charge states. The peptides can be

eatures (blue) in the enriched runs are removed. The log2 intensities of
y∗ijk . The log2 intensities of feature l corresponding to the unmodified
al modification.

Mol Cell Proteomics (2023) 22(1) 100477 5



MSstatsPTM: Statistical Relative Quantication of PTMs
intensities of the modified and unmodified features on the original
scale and then considering replicate-wise ratios of the sums and
taking the log2

uij = log2
∑K

k=12
y∗ijk∑L

l=12
yijl

= log2(∑K
k=1

2y
∗
ijk)−log2(∑L

l=1
2yijl) (5)

The approach then models these values with the basic ANOVA,
which corresponds to

uij = (μ∗i − μi)+ ε
′
ij ,where ε

′
ij∼iidN (0, σ′2), i=1,…, I, j=1,…, J (6)

The model allows us to estimate Δ̂adj and its standard error. Based
on this model, we can test the more relevant null hypothesis in
(Equation 2), by comparing the test statistic against the Student dis-
tribution with df = I(J −1) degrees of freedom in balanced designs.

Although effective, the approach is somewhat simplistic. It is not
applicable to experimental designs with more complex sources of
biological and technological variation, such as experiments with
repeated measurements, experiments with multiple batches, or ex-
periments with TMT labeling. Since (Equation 5) performs the adjust-
ment on the replicate level, the experiment must contain a matching
number of replicates in both the modified and unmodified runs.
Technological artifacts such as missing values further undermine the
calculation of uij in (Equation 5). Finally, there is no self contained,
straightforward implementation of the method, such as in the form of a
coding package, and therefore the approach requires a manual
implementation.

Limma

The estimation of nuisance variation of the two ANOVA models
above is often further expanded with Empirical Bayes moderation
implemented in Limma (15, 24, 27–30). A typical application of Limma
on summarized modified log2 intensities takes as input ŷ

∗
ij , obtained as

in (Equation. 3), and for each PTM fits the linear model in (Equation 4).
A typical application of ratio based Limma takes as input uij, obtained
as in (Equation 5), and for each PTM fits the linear model in (Equation
6). The Limma versions of the models differ from the models in
(Equations 4 and 6) in that they specify additional prior distributions for
the model parameters. The priors are estimated from the same data by
combining the information across all the proteins and all the PTM as
described in (27). Testing the null hypothesis is enhanced by
combining the PTM and protein-specific estimates of variation with a
consensus estimate obtained from the estimated priors. As the result,
in experiments with few biological replicates the standard errors are
often smaller, and the degrees of freedom are often larger than without
moderation (15). Thus, the approach tends to increase the sensitivity
of detecting differential abundance.

Since Limma only improves upon the estimation of variation, its
limitations are similar to those of ANOVA. In particular, the method is
only directly applicable to experiments with at most two variance
components and cannot account for all the sources of variation in
experiments with either isobaric labeling or complex designs. There is
no self contained implementation of the methods to PTMs, requiring
manual transformation and application by the user.

Isobar-PTM

Isobar-PTM was also proposed for experiments with LC-MS/MS
quantitative strategies that employ isobaric labels such as TMT or
isobaric tag for relative and absolute quantification (31). Isobar-PTM
expresses MS measurements with a linear model and performs
adjustment with respect to protein abundance using the difference
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between log-ratio of modified peptides in two channels and log-ratio
of protein level. Unfortunately, this statistical modeling framework is
not applicable to either label-free workflows or experiments with
complex designs.

Relative Protein Quantification in MSstats

MSstats (16) and MSstatsTMT (17) are a family of R/Bioconductor
packages for statistical relative quantification of proteins and peptides
in global, targeted, and data-independent proteomics. The packages
take as input log2 intensities yijk . For each protein, the log2 intensities
are first summarized into a single value per protein per run ŷ ij using
Tukey’s median polish (32). The summaries are then used as input to
fit a flexible family of linear mixed-effects models (33–35). The models
are fit separately for each protein. The specific model depends on the
design of the experiment, labeling type, and data acquisition type as
summarized in supplemental Fig.S1. For example, the unmodified
protein features in the simple design in Fig. 2 are modeled with one-
way ANOVA

ŷ ij = μi + εij ,where εij ∼iidN (0, σ2) (7)

In contrast, a group comparison experiment with multiple TMT
mixtures is modeled as

ŷ imj = μi +Mixturem + εimj ,where Mixturem ∼iidN (0, σ2M), εimj ∼iidN (0, σ2)
(8)

Moreover, the model fit for a particular protein depends on the
pattern of missing values in that protein. If some of the terms of the
model reflecting the experimental design are not estimable, a simpler
model is fit for that protein instead.

Parameters of the model are estimated using restricted maximum
likelihood (36). The parameters allow us to estimate the pairwise
comparison Δ̂protein = μ̂ i−μ̂ i′ and its standard error. Similarly to Limma,
MSstatsTMT includes an optional Empirical Bayes moderation of the
standard error (17), increasing the sensitivity of detecting differential
abundance when the number of biological replicates in each condition
is small.

MSstats and MSstatsTMT can also be used at the feature or at the
modification site level, as opposed to protein level. For example,
summarizing the features per PTM site instead of per protein, the
approach allows us to test the null hypothesis in (Equation 1).

The MSstats framework has a number of advantages over the
methods above. First, unlike ANOVA and Limma, MSstats and
MSstatsTMT are applicable to arbitrary complex experimental de-
signs, including designs with multiple sources of variation and un-
balanced designs. Second, the approach is applicable to various data
acquisition types, including label-free DDA and data-independent
acquisition (DIA) and experiments with TMT labeling. Third, the
MSstats packages are compatible with various data processing tools
such as Skyline, Spectronaut, MaxQuant, Progenesis, Proteome
Discoverer, and OpenMS. Finally, the custom MSstats and
MSstatsTMT implementation accounts for potential data artifacts is
numerically scalable and stable and is available through both com-
mand line and a dedicated graphical user interface.

Unfortunately, the MSstats framework focuses on overall protein
abundance and as the result tests the null hypothesis in (Equation
1). It does not account for the confounding between the changes
in PTM abundance and the overall changes in protein abundance.
This manuscript proposes a simple extension to the methodology
in MSstats and MSstatsTMT to test the null hypothesis in
(Equation 2).
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RESULTS

Statistical Methods in MSstatsPTM

Detecting Changes in PTMs, Adjusted for Global Changes in
Protein Abundance–The overall statistical analysis workflow
and its implementation are summarized in Fig. 3. MSstatsPTM
df(ŜE(Δ̂adj))= (ŜE(Δ̂PTM)2 + ŜE(Δ̂protein)2)2 /( ŜE(Δ̂PTM)4
df(ŜE(Δ̂PTM))

+ ŜE(Δ̂protein)4
df(ŜE(Δ̂protein))) (12)
takes as input the modified spectral features y∗ijk and the
corresponding unmodified features yijk . Ideally, the modified
features are acquired separately after an enrichment to
maximize the information content in the resulting dataset, and
the unmodified features are acquired separately as part of a
global proteome profiling. However, the method can also take
as input a combination of modified and unmodified features
acquired within a same run.
Each feature type is first analyzed separately, with

MSstatsPTM methods calling the relevant functionalities in
MSstats (for label-free experiments) or MSstatsTMT (for ex-
periments with TMT labels). In particular, the modified features
are summarized into run-level summaries ŷ∗ij .
The estimated summaries of the modified features are used

as the input to models such as in (Equation 7) or (Equation 8).
The resulting model-based estimates include Δ̂PTM = μ̂∗

i − μ̂∗
i′

and its standard error ŜE(Δ̂PTM). Similarly, the unmodified
features of each protein are summarized for each run into ŷ ij,
and the summaries are used as input to a separate analysis by
MSstats or MSstatsTMT producing Δ̂protein = μ̂i−μ̂i

′ and
ŜE(Δ̂protein). From these summaries, the proposed approach
estimates the adjusted difference Δ̂adj in (Equation 2)

Δ̂adj = (μ̂∗
i − μ̂ i)− (μ̂∗

i′ − μ̂ i′) = (μ̂∗
i − μ̂∗

i′)− (μ̂ i − μ̂ i′ )
= Δ̂PTM − Δ̂protein

(9)

Assuming that the sources of variation in the summaries of
modified features that are unexplained by the model are in-
dependent from the sources of variation in the summaries of
modified features, the standard error ŜE(Δ̂adj) is obtained by
combining the standard errors from the two model fits

ŜE(Δ̂adj) = ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ŜE(Δ̂PTM)2 + ŜE(Δ̂protein)2√

(10)

For example, in the simple case of Figure 2 with J = 2
replicates, where σ̂2

PTM and σ̂2
Protein are respectively the esti-

mates of the error variance for the PTM and protein model
described in (Equation 7), the standard error is calculated as

ŜE(Δ̂adj) = ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ŜE(Δ̂PTM)2 + ŜE(Δ̂protein)2√

=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
J
σ̂2
PTM + 1

J
σ̂2
protein

√
(11)
The estimated standard error is larger than the standard
errors associated with each individual feature type, reflecting
the combined uncertainty in the two estimates. Finally, the
degrees of freedom associated with (Equation 10) are ob-
tained via the Satterthwaite approximation (23, 37)
To test the null hypothesis in (Equation 2), the test statistic
Δ̂adj/ ŜE(Δ̂adj) is compared with the Student distribution with
the degrees of freedom in (Equation 12). The p-values of the
comparison are adjusted for multiple testing using the
approach by Benjamin and Hochberg (38).

Sample Size Calculation for Future PTM Experiments

The statistical framework in MSstatsPTM enables sample
size calculation for future experiments studying changes in
PTM. The procedure has been described in general in (23) and
for protein significance analysis specifically in (39). It requires
us to specify the desired levels of the following quantities: (a)
q, the false discovery rate (FDR) of detecting differential
abundance, (b) β, the average Type II error rate, (c) Δadj, the
minimal log2-fold change in adjusted PTM abundance of in-
terest, (d) m0/(m0 + m1), the fraction of truly differentially
modified PTM sites in the comparison, and (e) σ2PTM and
σ2protein, the anticipated variances associated with the pairwise
comparisons of conditions for the modified and unmodified
protein summaries, respectively. Typically, these variances are
estimated from an existing experiment, conducted with the
same biological material and measurement workflow.
Given the above quantities and assuming a balanced design

that allocates the same number of replicates J′ to both
modified and unmodified profiling runs, the minimal number of
replicates J′ for each of I conditions is chosen to bound the
variance of the estimated log2-fold change SE2(Δadj):

SE(Δadj)2 = [2
J′ (σ2PTM + σ2protein)] ≤ ( Δadj

z1−β + z1−α/2
)2 (13)

where

α = (1−β) ⋅ q
1 + (1−q) ⋅m0/m1

(14)

and z1−β and z1−α/2 are the 100(1−β)th and the 100(1−α/2)th per-
centiles of the standard normal distribution. Solving for J′, the
number of biological replicates per condition is

J′ ≥
(2σ2PTM + 2σ2protein)(z1−β + z1−α/2)2

Δ2
adj

(15)
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FIG. 3. The MSstatsPTM workflow. The names of the MSstatsPTM R functions used for each step are highlighted in purple and the output
notations are highlighted in red. The workflow begins with the acquisition of the enriched and global proteome lysates. The package is applicable
to label-free data acquisitions, such as DDA, DIA, SRM, and label-based data acquisitions, such as TMT. It takes as input lists of identified and
quantified spectral features for the PTM and for the unmodified portion of the protein, produced by spectral processing tools such as MaxQuant,
Progenesis, or Spectronaut. Conversion, summarization and statistical modeling are performed separately for the PTM and for the unmodified
portions of the proteins. Steps 4 and 5 leverage the summarization and modeling functions from MSstats and MSstatsTMT. Model-based
summaries are combined to adjust the changes in the PTM abundance for changes in abundance of the unmodified portion of the protein.
Finally, sample size calculation for future experiments can be performed using the modeling output. DDA, data-dependent acquisitions; DIA,
data-independent acquisition; PTM, posttranslational modification; SRM, selected reaction monitoring.
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The numerator has two sources of variation, reflecting a
larger uncertainty in the adjusted calculation. Therefore, the
adjustment typically requires a larger sample size to gain the
same sensitivity as the unadjusted estimation.
In (Equation 15), we calculated the required sample size;

however, in some cases, the statistical power of an experi-
ment may be of interest. In this case, (Equation 13) is still used,
however the number of replicates, J′ , is fixed and false dis-
covery rate, q, is solved for.

Implementation of MSstatsPTM

The implementation of the open source R package
MSstatsPTM is overviewed in Fig. 3. By leveraging the
implementations in MSstats and MSstatsTMT, the proposed
approach is versatile. It is applicable to a wide variety of
experimental designs, including group comparison, paired
designs, time course designs, and unbalanced designs. It is
applicable to label-free data acquisitions, such as DDA, DIA,
and selected reaction monitoring, and label-based data
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acquisitions such as TMT. It can model experiments where the
experimental designs for PTM profiling and global proteome
profiling vary in properties such as number of biological rep-
licates, data acquisition strategies, and runs.
MSstatsPTM takes as input lists of identified and quantified

spectral features, produced by spectral processing tools such
as MaxQuant, Progenesis, or Spectronaut (Step 3 of Fig. 3).
Conversion is performed separately for the runs enriched in
modified peptides and separately for the global profiling runs.
We require the processing tools to identify the modification
site (i.e., the amino acid in the protein sequence where the
modification occurred). This will generally include the amino
acid abbreviation, plus its number in the protein sequence. For
example, a modification on a 70th amino acid in the sequence,
serine should be marked as “S70”. Occasionally the outputs of
data processing tools only include the peptide sequence with
the modified amino acid highlighted, without indicating the
location in the protein sequence. For these cases,
MSstatsPTM includes functionality for identifying the location,
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given the modified peptide sequence and a FASTA file with
the entire protein sequence. The converters output the
modified spectral features y∗ijk, and the corresponding un-
modified features yijk in the format required for summarization.
The next step is PTM/protein summarization using the

dataSummarizationPTM() function (Step 4 of Fig. 3). Summa-
rization is performed separately for the PTM features and for
the features representing the unmodified portion of the pro-
tein. When summarizing the PTM, modified peptide features
that span the same modification site are summarized together.
Peptides that include multiple modifications are not included
in the single modification summarization and are grouped
separately. The unmodified protein summarization is per-
formed as discussed above for MSstats. When summarizing
the unmodified protein features, the package optionally im-
putes missing values using an Accelerated Failure Time model
(40). When summarizing the modified features, missing value
imputation is also possible but should be performed with care.
PTMs generally exhibit low feature counts and may be missing
due to reasons other than low abundance. These issues can
violate the assumptions underlying the imputation and lead to
numerically unstable results. The outputs of this step are the
run-level summaries for the modified ŷ∗

ij , and unmodified ŷ ij,
features.
Separate statistical models are fit to both feature summaries

using the groupComparisonPTM() function (Step 5 of Fig. 3).
MSstats or MSstatsTMT models are leveraged to automati-
cally reflect the experimental design and the data acquisition.
If the base model is not applicable for a particular PTM or
protein, e.g., due to missing data, a simplified model is fit. The
output of the models are the estimates Δ̂PTM and Δ̂protein, and
their standard errors ŜE(Δ̂PTM) and ŜE(Δ̂protein).
After modeling, the model for the modified peptides is

adjusted for changes in the abundance of the unmodified
portion of the protein, using the methods described above.
Modification sites which lack corresponding global profiling
information cannot be adjusted for changes in protein abun-
dance. In this case, the implementation reverts to testing the
null hypothesis in (Equation 1) using the statistical methods
seen in MSstats, applied separately to each modified peptide.
The final output is the estimate Δ̂adj and its standard error
ŜE(Δ̂adj).
Finally, the statistical models can be used to calculate the

required sample size for future PTM experiments using the
designSampleSizePTM() function (Step 6 of Fig. 3).
In addition to the above functionalities, the implementation

includes visualizations for quality control, data-
ProcessPlotsPTM(), and assessment of the quality of model
fit, groupComparisonPlotsPTM().
The implementation relies on functionalities from the R

packages MSstats (16) and MSstatsTMT (17), which in turn
rely on the R packages lme4 (41) and lmerTest (42).
MSstatsPTM is available on Bioconductor, http://www.
bioconductor.org/packages/release/bioc/html/MSstatsPTM.
html, and Github, https://github.com/Vitek-Lab/MSstatsPTM.

Evaluation

Evaluation Criteria–We compared the performance of
MSstatsPTM to that of Limma and ANOVA, both before and
after adjusting for changes in the unmodified portion of the
protein. Since Isobar-PTM is only applicable to experiments
with TMT labeling, it could not be applied to the datasets with
known ground truth in this manuscript and was therefore
excluded from the comparisons.
MSstatsPTM before adjusting for changes in the unmodified

portion of the protein corresponds to base MSstats or
MSstatsTMT, modeled on the peptide level as described in
supplemental Fig. S1, as appropriate for the experimental
design. MSstatsPTM with the adjustment described in
Statistical Methods in MSstatsPTMwas used without imputing
missing values and without Empirical Bayes moderation.
Unadjusted ANOVA, i.e., ANOVA before adjusting for

changes in the unmodified portion of the protein, was as in
(Equation 4). Adjusted ANOVA, i.e., ANOVAwith the adjustment
wasmodeled as in (Equation 6). Finally, unadjusted Limmaused
the same model formula in (Equation 4), while including a
moderated variance estimation. Adjusted Limma was modeled
as in (Equation 6) including moderated variance estimation. All
the evaluationswere done at the FDR-adjustedp-value cutoff of
q = .05. More details are in Supplementary Sec. 4.
We evaluated MSstatsPTM on simulated and spike-in

datasets with known ground truth in terms of true positives
(TPs), FPs, true negatives (TNs), and false negatives (FNs)
differentially abundant PTMs. The TPs were defined as PTMs
with changes distinct from the overall changes in abundance
of the unmodified portion of the protein. The TNs were defined
as PTMs which, after accounting for the changes in the overall
protein abundance, were not differentially abundant. Addi-
tional summaries were performed including accuracy, recall,
and positive predictive value (PPV)/empirical false discovery
rate (eFDR) as described in (Equation 16).

Accuracy = TP + TN
TP + TN + FP + FN

,Recall = TP
TP + FN

(16)

1−PPV = FP
TP + FP

= empirical False Discovery Rate (eFDR)

For biological experiments with unknown ground truth, we
compared the differentially abundant PTMs with and without
adjusting for changes in unmodified protein abundance.

Protein-Level Adjustment Was Required to Control eFDR in
Differentially Abundant PTM

Fig. 4A summarizes the eFDR reported on Computer
Simulation one dataset by MSstatsPTM, adjusted ANOVA,
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adjusted Limma and base MSstats, unadjusted ANOVA, and
unadjusted Limma methods. The simulation mimicked a
“clean” label-free group comparison experiment, not
compromised by issues such as deviations from model as-
sumptions, missing values, and outliers. All the analyses were
performed to control the eFDR at most 5%. Yet, even under
these favorable circumstances, the models that did not adjust
for confounding from changes in overall protein abundance
produced an excessive number of FPs. The versions of the
models that accounted for the confounding produced error
rates that were much better calibrated at the desired level.

In Noisy Simulations, MSstatsPTM More Accurately
Detected Differentially Abundant PTM

Fig. 4B summarizes the overall accuracy of methods
adjusting for changes in abundance of the unmodified portion
of the proteins in Computer Simulation 2. The simulation
mimicked a more realistic label-free group comparison
experiment, including low counts of modified features and
missing values. We evaluated the impact of low versus high
noise of the number of biological replicates and of the number
of conditions. For low noise, MSstatsPTM outperformed the
existing methods across all conditions and number of repli-
cates, with near 100% accuracy when the replicates were
high. As the noise increased the accuracy of all the methods
decreased, however MStatsPTM still outperformed the exist-
ing methods. The difference was primarily due to two reasons.
First, the ratio-based summarization approach used by Limma
and ANOVA requires measurements for both the PTM and
unmodified protein. In contrast, MSstatsPTM can leverage the
information in the PTM or unmodified portion of the protein if
one of the two is missing. On average over all simulations,
3.94% of the total unmodified protein run summarizations
used by MSstatsPTM were discarded by Limma and ANOVA
due to missing PTM data. No PTM run summarizations were
discarded due to missing protein data. Second, the robust
Turkey Median Polish summarization in MSstatsPTM was
more resistant to outliers.
Supplemental Fig. S2 further compares the fold change

estimation across all modified peptides. MSstatsPTM showed
a tighter distribution of estimated fold changes around the true
fold change. Specifically, the interquartile range (IQR) of the
estimated fold change for MSstatsPTM was on average
32.5% smaller than Limma and ANOVA’s IQR. While the mean
of the estimated fold changes was generally correct for all the
methods, the proposed approach correctly estimated the fold
change more often across all PTMs.

In the Label-Free Benchmark Experiment, MSstatsPTM
Had a Higher Sensitivity

Fig. 5A summarizes the evaluation on the label-free spike-in
group comparison experiment, for all the methods, with and
without adjusting for changes in abundance of the unmodified
portion of the protein. Without adjusting for changes in
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unmodified protein abundance, all the approaches incorrectly
estimated the log2-fold change of the modified spike-in pep-
tides. After adjustment, the estimation was generally in line
with the ground truth for all methods; however, MSstatsPTM’s
distribution of estimated fold changes was tighter. On average
over all comparisons the IQR of the estimates by MSstatsPTM
was 32.86% smaller than that by Limma and ANOVA. As seen
in the previous section, the robust summarization by
MSstatsPTM was particularly useful when the number of
features was low. This was also the case in this experiment,
with an average of 1.37 features per PTM. Additionally, the
ratio-based summarization used by Limma and ANOVA dis-
carded more data than in the simulations. The ratio-based
summarization lost 9.63% of the unmodified protein and
1.94% of the PTM run summarizations used by MSstatsPTM.
This additional information lead MSstatsPTM to a more ac-
curate fold change estimation and better calibrated variance.
Fig. 5B details the detection of differentially abundant PTM

for MSstatsPTM and Limma, with and without the adjustment
for changes in abundance in the unmodified portion of the
protein, for the mix3-mix2 and mix4-mix2 comparisons. As
above, the log2-fold changes of the spike-in peptides were
only correctly estimated when accounting for changes in the
unmodified protein abundance. Additionally, the background
peptides, serving as the null model, show many FPs before
adjustment. After adjustment, the extent of FPs substantially
decreased. Specifically, for MSstatsPTM, the number of FPs
went from 20.88% to 1.84% after the adjustment and for
Limma went from 26.04% to 1.18%. While the proposed
method and Limma both correctly estimated the fold change
of the spike-in peptides, using Limma resulted in many large-
adjusted p-values and lower sensitivity. This was mainly due
to Limma estimating a higher variance, even when including
variance moderation. On average, over all the PTMs in this
experiment, the variance components estimated by Limma
were 35.7% larger than for MSstatsPTM. Volcano plots for all
methods and comparisons can be seen in Supplementary
Section 4.2.

In Two Biological Experiments With TMT Labeling,
MSstatsPTM Corrected for Confounding Between

Changes in the PTM and Changes in the Unmodified
Protein

Fig. 6A summarizes the results of Dataset 4: Human—
Ubiquitination—1mix-TMT in terms of number of differentially
abundant PTMs before and after adjustment. Adjusting for
changes in abundance in the unmodified portion of the protein
caused fewer PTMs to be detected as differentially abundant.
A question is whether this was due to adjustment in the log2-
fold estimation or to an increase in standard errors during the
adjustment (Equation 10). To check that, we considered
modified peptides for which the adjusted log2-fold change
was within 10% of the unadjusted log2-fold fold change, but
which lost statistical significance after the adjustment. In the



FIG. 4. Computer simulations. A, dataset 1, clean simulation, analyzed to control eFDR at most 5% (horizontal line). The methods not
accounting for the confounding between changes in PTM and overall changes in protein abundance produced exceedingly high numbers of
false positives. In contrast, the methods accounting for the confounding correctly calibrated the proportion of false positive differentially
abundant PTM. B, dataset 2, a noisy simulation, which included limited feature observations and missing values. MSstatsPTM had higher
accuracy than ANOVA and Limma given the same noise, number of biological replicates, and number of conditions. eFDR, empirical false
discovery rate; PTM, posttranslational modification.
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case of Dataset 4, only one PTM became nondifferentially
abundant due to an increase in standard error. In other words,
the decrease in differentially abundant PTMs was primarily
due to removing the confounding with global protein abun-
dance and not to larger variance estimates.
Cases where true changes in PTMs were masked by
changes in abundance in the unmodified portion of the protein
were less frequent. One such case is in Fig. 6B. Luchetti et al.
(20) showed that GSDMD was actively degraded when
IpaH7.8 expression was induced by Dox treatment. Our
Mol Cell Proteomics (2023) 22(1) 100477 11



FIG. 5. Dataset 3: Spike-in benchmark—ubiquitination—label-free. A, the distribution of spike-in peptides log2-fold change estimated by
MSstatsPTM, Limma, and ANOVA with and without adjustment. The expected log2-fold change is highlighted by a red ‘X’. Protein adjustment
removed systematic differences from the expected log2-fold change in all models. B, the statistical results of MSstatsPTM and Limma modeling
the mix3-mix2 and mix4-mix2 comparisons before and after adjustment. The solid horizontal line shows the adjusted p-value cutoff of 0.05. The
solid vertical line shows log2-fold change of 0. The dashed vertical line shows the expected log2-fold change of the spike-in peptides. Before
adjustment, the spike-in peptides did not follow the expected log2-fold change but were more in line with expectation after adjustment.
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reanalysis confirmed that the GSDMD protein was down-
regulated when Dox treatments reached the 4 and 6 h marks.
Conversely, ubiquitination of GSDMD at site K62 upregulated
abundance between the same conditions. This upregulation
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was originally confounded by the downregulation of unmodi-
fied GSDMD and made the modification appear to have little
change between no Dox and Dox 4 and 6 h conditions. The
proposed approach accounted for this confounding and the



FIG. 6. Dataset 4: Human—ubiquitination—1mix-TMT, analysis with MSstatsPTM. A, the overlap of differential modified peptides for the
PTM model with and without global protein level adjustment across all pairwise comparisons. B, comparing the profiling of protein GSDMD with
the ubiquitination at site K62. The individual PTM and protein features are shown in gray, while the summarization is highlighted in red. GSDMD,
Gasdermin D; PTM, posttranslational modification; TMT, tandem mass tag.
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modification was detected as differentially abundant, with a
log2-fold change of 2.79 between the Dox 1 h and Dox 4 h
conditions (supplemental Fig. S6). The change in PTM abun-
dance would have been challenging to observe without the
proposed approach. Indeed, the modification contradicts the
previous research focusing on global profiling of the GSDMD
protein (20).
Fig. 7A illustrates a similar result for Dataset 5: Mouse—
Phosphorylation—2mix-TMT. Adjusting for changes in abun-
dance in the unmodified portion of the protein caused fewer
PTMs to be detected as differentially abundant. As above, we
checked whether this change was due to fold change adjust-
ment or an increased standard error. In the case ofDataset 5548
PTMs were not detected as differential abundant due to an
Mol Cell Proteomics (2023) 22(1) 100477 13



FIG. 7. Dataset 5: Mouse—phosphorylation—2mix-TMT, analysis with MSstatsPTM. A, the overlap of differential modified peptides for
the PTM model with and without global protein level adjustment across all pairwise comparisons. B, comparing the profiling of protein TTP with
the phosphorylation at site S178. The individual PTM and protein features are shown in gray, while the summarization is highlighted in red. The
plots are separated according to TMT Mixtures 1 and 2. PTM, posttranslational modification; TMT, tandem mass tag.
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increased standard error. This corresponded to 3.4% of all the
PTMs that became nondifferentially abundant.
Fig. 7B shows an opposite case where the protein ex-

hibits a change in abundance while the modification does
not. Before adjusting for changes in the unmodified protein,
the modification at S178 of protein TTP was shown to be
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differentially abundant between WT uninfect and WT late,
with a log2-fold change of 2.9. However, the unmodified
protein was shown to contribute 69.5% of this change,
while the modification only accounted for 30.5% after
adjustment (supplemental Fig. S7). This caused the modifi-
cation to lose differential abundance.
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In Label-Free Experiment Without a Separate Global
Profiling Run, MSstatsPTM Eliminated the Confounding
Due to Changes in the Unmodified Protein, Albeit Less

Effectively Than in the Presence of a Global Profiling Run

Unlike the other datasets in this manuscript, Dataset 6:
Human—Ubiquitination—Label-free had no unmodified global
profiling run. Therefore, after peptide identification and quan-
tification, data from unmodified peptides were used separately
in place of a global profiling run. This resulted in a sparse
coverage of the modified features by the unmodified protein
counterparts. Of the 10,799 identified ubiquitination sites, only
4526 had features from unmodified portion of the same pro-
tein. A PTM without features from the unmodified portion of
the protein could not be adjusted for the confounding. Addi-
tionally, the lack of a separate global profiling run resulted in
low feature counts and noisier measurements of the unmod-
ified peptides as compared to the other experiments (Table 1).
Fig. 8 shows the number of differentially abundant PTMs

before and after adjustment. After adjusting for changes in
abundance in the unmodified portion of the protein, the
number of differentially abundant PTMs decreased. However,
this was mainly due to the lack of a global profiling run. The
decrease in differentially modified PTMs was smaller among
PTMs with available unmodified protein counterparts. As
above, we tested if this drop in differentially abundant PTMs
was due to an increase in standard error. Here only 25 PTMs
lost differential abundance due to increased standard error.

Noisy PTM Measurements Benefited From Additional
Biological Replicates

Sample size calculations and statistical power analyses help
evaluate the benefit of additional biological replicates, in
FIG. 8. Dataset 6: Human—ubiquitination—label-free no global pr
modified peptides for the PTM model with and without global protein leve
The overlap of differential modified peptides with and without global pro
unmodified portion of the same protein were also available.
particular when measurements are noisy. Since the proposed
approach does not have the restriction of the equal number of
modified and unmodified global profiling runs, it is also inter-
esting to evaluate the interplay between the number of repli-
cates of each type in presence of differing amounts of noise.
In datasets 4 and 5, the variance of the PTMs was higher than
that of the unmodified protein summaries, with median values
of PTM variance of 0.45 and protein variance of 0.3. In dataset
6, the variance of the PTM and the unmodified protein sum-
maries were comparable, with a median variance of 0.45. The
power analysis took as input these median variance values.
Fig. 9 shows that regardless of the relative amount of vari-

ation, larger adjusted log2-fold changes and larger number of
replicates enabled larger statistical power. When the variance
of PTMs was equal to the variance of global protein profiles, it
did not matter whether we increased the number of PTM runs
or the number of unmodified protein runs. However, when the
variance of the PTM summaries was higher than that of the
unmodified protein summaries, allocating more biological
replicates to the PTM profiles lead to a more efficient increase
of statistical power.

DISCUSSION

We proposed a statistical modeling framework for detecting
differentially abundant PTM and its implementation in
MSstatsPTM. The proposed approach removes the con-
founding of changes in PTMs with changes in the unmodified
protein summaries and can reveal modifications of interest
that are otherwise entirely masked by changes in abundance
in the unmodified portion of the protein. This is valuable,
because many PTMs are often found nondifferentially abun-
dant prior to the adjustment, and validating them manually to
establish false negatives is generally unfeasible.
ofiling run, analysis with MSstatsPTM. A, the overlap of differential
l adjustment across all comparisons, including all measured PTMs. B,
tein level adjustment, including only PTMs for which features from the
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FIG. 9. Power analysis with MSstatsPTM, based on variance components from Datasets 4, 5, & 6. Y-axis: statistical power, i.e., the
probability of rejecting the null hypotheses of no protein-adjusted change in a PTM between conditions, when in fact the change exists. X-axis:
log2-fold change, after for adjusting for changes in the unmodified protein. A, the power of detecting differential abundant PTMs, when the
modified features and the unmodified protein summaries have the same variance 0.45. B, the power of detecting differential abundant PTMs,
when the modified features had a larger variance (0.45) as compared to the unmodified protein summaries (0.3). PTM, posttranslational
modification.

MSstatsPTM: Statistical Relative Quantication of PTMs
Our results show that MSstatsPTM is more accurate and
more sensitive than the existing approaches. The gain is due
to a more efficient use of the data and to a more accurate
representation of the systematic and random variations. While
the ratio-based approaches of ANOVA and Limma first
consider differences within samples, MSstatsPTM first con-
siders the differences between conditions. This enables a
greater flexibility in terms of modeling complex designs,
16 Mol Cell Proteomics (2023) 22(1) 100477
accounting for outliers and missing values and planning
subsequent experiments.
The implementation of MSstatsPTM is a straightforward

extension of MSstats and is therefore applicable to the full
breadth of experiment types supported by MSstats. Although
demonstrated here on DDA, it is also applicable to DIA,
selected reaction monitoring, and parallel reaction monitoring
acquisitions. Additionally, the approach can handle
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experiments that use different strategies for modified versus
unmodified peptides, e.g., using label-free methods for
unmodified peptides and TMT labeling for modified peptides
or vice versa.
The proposed approach assumes that all the peptides are

correctly mapped to the underlying proteins and PTM sites
and that the features are informative of the protein and PTM
abundances. However, multiple modification sites per peptide
can confound the abundance of each PTM site. Changes in
the unmodified peptide (as opposed to the unmodified protein)
can also confound changes in PTM abundance. One potential
solution is to quantify the abundance of peptides with one
modification and use this to adjust the peptide with multiple
sites to remove the confounding. However, this method would
likely be challenged by scarcity of modified peptide features
containing both a single and multiple modification sites. As the
result, peptides with multiple modifications are currently
beyond the MSstatsPTM scope.
Overall, MSstatsPTM balances accuracy and practicality

and enables the analysis of complex experiments in high
throughput. Future work is to carry out the inference and
testing for not only the relative change of PTM abundance but
also the fraction of the protein that is modified at the particular
site (site occupancy, or stoichiometry) and attempt to remove
the confounding of individual PTMs in peptides with multiple
modifications.
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