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Abstract: The increase in the population rate has increased the demand for safe and quality food
products. However, the current agricultural system faces many challenges in producing vegetables
and fruits. Indiscriminate use of pesticides and fertilizers, deficiency of water resources, short shelf
life of products postharvest, and nontargeted delivery of agrochemicals are the main challenges. In
this regard, carboxymethyl cellulose (CMC) is one of the most promising materials in the agriculture
sector for minimizing these challenges due to its mechanical strength, viscosity, wide availability,
and edibility properties. CMC also has high water absorbency; therefore, it can be used for water
deficiency (as superabsorbent hydrogels). Due to the many hydroxyl groups on its surface, this
substance has high efficacy in removing pollutants, such as pesticides and heavy metals. Enriching
CMC coatings with additional substances, such as antimicrobial, antibrowning, antioxidant, and
antisoftening materials, can provide further novel formulations with unique advantages. In addition,
the encapsulation of bioactive materials or pesticides provides a targeted delivery system. This
review presents a comprehensive overview of the use of CMC in agriculture and its applications for
preserving fruit and vegetable quality, remediating agricultural pollution, preserving water sources,
and encapsulating bioactive molecules for targeted delivery.

Keywords: carboxymethyl cellulose; superabsorbent hydrogels; active edible coatings; encapsula-
tion; bacteria

1. Introduction

The development of industry and industrial activities has increased the levels of en-
vironmental pollution caused by the heavy use of nondegradable materials. Therefore,
the production of degradable and environmentally compatible materials should be con-
sidered an important direction in industrial activities. Similarly, the world’s population
is expanding daily, and the United Nations now predicts that the world population in
2050 will be 9.7 billion people [1]. Therefore, research should focus special attention on
agriculture and meeting the food needs of this population. The quantity and quality of
food can be improved by adapting ideas from drug delivery systems and nanotechnology
for use in the agricultural sector [2]. However, many of the materials used in drug delivery
and nanotechnology are derived from synthetic polymers produced from petroleum and
coal and are incompatible with agricultural products destined for consumption. They are
also incompatible with the environment, as they do not undergo natural recycling.

By contrast, biological materials, such as starch, cellulose, chitin, chitosan, zein, and
gelatin, by virtue of their adaptability, durability, and price, could gradually replace syn-
thetic polymers to resolve the problems inherent in synthetic materials [3–5]. One versatile
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material is carboxymethyl cellulose (CMC), a cellulose derivative that is widely used in
industry. CMC is a linear polysaccharide of anhydro-glucose connected as repeating units
joined by β-1,4-glycosidic bonds. This composition has mechanical strength, tunable hy-
drophilicity, viscosity, and abundant availability. CMC is widely used in the food, paper,
textile, and pharmaceutical industries, as well as in biomedical engineering, wastewater
treatment, energy production, and maintaining the quality of agricultural products [6]. Of
the several naturally occurring polysaccharides, cellulose and chitin are the most important
biopolymers that have been put to many uses in biomedical fields (tissue engineering,
wound healing, and drug delivery). The advances made have expanded to the use of
the nanotechnology and biopolymers in the food [7–9], pharmaceutical [10,11], and agri-
cultural [12] industries. The size of particles distinguishes nano-CMC from micro-CMC.
The size of nano-CMC ranges from 5–100 nm, while micro-CMC ranges from 100–200
µm. When the size is down to the nanoscale, the high specific surface area of nano-CMC
increases the efficiency [13].

Nano-based formulations have many applications in pesticide and nutrient delivery,
and many other agricultural activities. For use in the field, these formulations should
have high stability in outdoor conditions (sun, heat, and rain) while also retaining good
solubility, dispersion, stability, mobility, and targeted delivery characteristics [14]. Many
studies have documented the potential of nano-/micro-CMC-based formulations for the
encapsulation and targeted delivery of biological control agents (BCAs) [15–17]. For
example, encapsulation in micro-CMC and targeted application has been shown to extend
the shelf life of bioactive compounds while reducing the required number of applications
and concentration [18].

At present, research has revealed that CMC is effective in the controlled release of
agrochemicals. The relevant characteristics of nanomaterials, such as intelligent controlled-
release properties, efficiency (high potential and productivity of CMC depending on the
target), and environmental friendliness, can be exploited in the design of intelligent formu-
lations for pesticide delivery [14,19,20]. For example, the controlled release of an herbicide,
such as acetochlor, based on a diffusion mechanism [21] improves the soil-retaining capacity
and urea leaching loss rate of sandy soil [22,23]. The effectiveness of the application of
CMC depends on its purity, degree of polymerization (DP), degree of substitution (DS), and
uniformity [6]. CMC products are currently used in the three different categories shown in
Figure 1.
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These polymers feature a number of useful properties, such as responsiveness to pH,
time, temperature, chemical species, and biological conditions [24]. The many uses of
hydrogels in different industries make them promising options for agriculture. Several
scientists have recently shown that CMC has the potential to serve as an active material
in the remediation of heavy metals (HMs) and chemical pesticides [25,26]. In addition,
hydrogels based on CMC can be used as superabsorbents in agriculture due to their ability
to absorb and retain water [27]. Coating fruits and vegetables with edible polymers such as
CMC can provide a protective barrier against physical, biochemical, and microbial damage
and can substitute for conventional preserving methods.

The potential of CMC-based formulations indicates that this biopolymer could be a
safe substance for agricultural applications aimed at the formulation of BCAs, remediation
of pesticides and HMs, water retention under drought stress, and protection of agricultural
products from different types of damage. This literature review presents an extensive
overview of the use of CMC in agriculture, including the preservation of the quality of
fruits and vegetables, remediation of agricultural pollution, preservation of water sources,
encapsulation of bioactive molecules, and targeted delivery of those molecules.

In Table 1, a summary of CMC applications is given, which will be explained in
detail later.

Table 1. A summary of the application of CMC in agriculture.

Application Results Reference

CMC and poly 4-vinylpyridine (P4VP) hy-drogel-N, N,
-methylene bis acrylamide Enhanced the urea absorption [28]

CMC-PVP hydrogel Used as potential eco-friendly water-saving materials [29]
The root targeted delivery vehicle (RTDV) with CMC in
wheat Improvement in seed yield [30]

Dual-functional redox responsive hydrogel by CMC Capture heavy metal ions in the soil [31]
CMC-zein-based nanopesticide delivery system Improve adhesion and antiultraviolet properties [20]
Alginate-CMC Highest encapsulation efficiency; a disease control agent [32]

NPK fertilizer-CMC- acrylic acid Easier and faster diffusion of water molecules into the
hydrogel, and larger water absorption [27]

Citric acid cross-linked CMC hydrogels Control of insects [33]
CMC is proposed as a coating agent to encapsulate zinc
hydroxide nitrate–sodium
dodecylsulphate–imidacloprid (ZHN–SDS–IC) for the
implementation of controlled release formulation (CRF)
in pesticide

Creating an external gel layer on the surface of
ZHN-SDS-IC-CMC as an additional barrier that slows
IC diffusion.

[34]

Nanoemulsion edible coating using caboxymethyl
cellulose

This coating prevented aging caused by oxidative
damage of tomatoes by maintaining the level of
antioxidant enzymes.

[35]

Avocado peel-coconut-CMC in strawberries
Biopolymer coatings with plant extracts as a potential
method for ecological preservation in strawberries
against microbial deterioration.

[36]

2. Cellulose and Carboxymethyl Cellulose and Their Properties

Among the naturally occurring biopolymers, cellulose is the most abundant, with large
quantities found in the plant cell walls, algae, and oomycetes (in the form of microfibrils).
Cellulose is a linear homopolysaccharide composed of β–1,4-linked D-glucopyranose units
(Figure 2), which can be converted into valuable cellulose esters and ethers [37–39].
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Figure 2. Chemical structure of cellulose and carboxymethyl cellulose.

Cellulose is insoluble in water [40,41]. Its extensive occurrence in nature makes it an
inexhaustible resource, so this polymer can be used to produce useful products. Various
sources contain cellulose, including used bedding, straw, rice husks, waste wood, and
sunflower waste. The sources can range from wood to agricultural waste and can be viewed
as inexhaustible resources for industrial activities [42,43].

Cellulose neither melts nor dissolves readily in hot or cold water solvents due to
its strong inter- and intramolecular hydrogen bonds to nearby oxygen [44]. It has other
undesirable properties, such as moisture sensitivity and low resistance to microbial at-
tacks [44–46]. Therefore, this polymer should ideally be converted into more amenable
derivatives. The sources of cellulose, its derivatives, and the methods of producing its
derivatives are shown in Figure 3.
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CMC is one of the most important cellulose derivatives. This polymer, due to its
characteristic properties, such as mechanical strength, tunable hydrophilicity, viscous
properties, and low-cost synthesis process, as well as the availability and abundance of
raw materials, is now widely used in various advanced application fields [6]. The unique
chemical structure of CMC is the presence of -CH2-COOH groups attached to some of
the hydroxyl groups of the cellulose units. This chemical structure makes CMC soluble
in water, unlike cellulose. In addition to its water solubility, it has a high viscosity and
moderate strength, and is odorless, tasteless, nontoxic, nonallergenic, flexible, transparent,
and resistant to oil and fats, moisture, and oxygen transmission [47–50]. Figure 2 depicts
the chemical structure of CMC.

The synthesis of CMC from its various conventional (plant-based) and nonconven-
tional (waste materials) precursors and their essential characterization techniques, such as
scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravi-
metric analysis, will be discussed extensively in later sections [6]. Residues of agricultural
products, such as straw and stubble left over from crop harvests, contain large amounts
of cellulose that can be used for specific economic and environmental benefits [51]. Plant-
based precursor materials used as the source of CMC are the following: (1) waste materials
and (2) nonwaste materials. Agricultural wastes that contain high amounts of cellulose
include maize stalks, cacao pod husks, the pulp of Eucalyptus globulus, orange peel, sugar-
cane bagasse, Asparagus officinalis stalk ends, rice straw, wheat straw, coconut fibers, corn
cobs, cotton ginning trash, cotton linters, dried duckweed, durian fruit rind, fig stems,
Mimosa pigra peel, mulberry paper, oil palm fibers, palm bunches, palm kernel, papaya peel,
pineapple peel, rice hull, rice stubble, sago pulp, sugar beet pulp, and sugarcane straw [52].
The synthesis of CMC has been reported from paper sludge, wood residue, textile wastes,
mixed office waste, and terry towel waste [53–55]. Table 2 depicts differences between
cellulose and CMC.

Table 2. Differences between cellulose and carboxymethyl cellulose.

Characteristics Carboxymethyl Cellulose (CMC) Cellulose

Solubility in water Insoluble Soluble
Mechanical strength Moderate strength Moderate strength
Availability Abundance Abundance

Sources

This is a derivative of cellulose; however, the
synthesis of CMC has been reported from paper
sludge, wood residue, textile wastes, mixed office
waste, and terry towel waste

Cell wall of plants, algae, and oomycetes

Synthesis method
Alkalization or etherification of cellulose using
sodium monochloroacetic acid and different sodium
hydroxides

-

Toxicity Nontoxic Nontoxic

Applications As hydrogel, as absorbent, in encapsulation, targeted
delivery

In textiles, biomedical, industrial,
electronics

3. Synthesis and Characterization of CMC

CMC is an anionic and water-soluble linear polymer. This compound is ionic in
nature. Due to its ionic properties, this compound is sensitive to the presence of most
electrically charged molecules. This compound is odorless and clear and forms a clear
solution. Furthermore, CMC coatings have some other desirable characteristics, including:
perfect water solubility, tastelessness, odorless, high viscosity, non-toxicity, moderate
strength, transparency, flexibility, resistance to fats and oils, moderate moisture, and oxygen
transmission [56].

Hydrogels such as CMC are useful for absorption due to the presence of hydrophilic
polymer networks and are prepared through chemical or physical cross-linking. In physical
methods, molecular chains are held together by intermolecular forces such as molecular
entanglements, electrostatic interactions, and H-bonding so that they are easily distributed.
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In chemical methods, chains are cross-linked by cross-linking agents, resulting in more
stable hydrogels than those prepared by physical methods [57].

Different methods for the synthesis of CMC have been reported in different studies. For
example, cellulose obtained from rice straw with an alkaline pulping process was used to
make CMC nanocellulose in a tramadol drug-loaded capsule [51]. Generally, the synthesis
of CMC includes alkalization and etherification, as explained in this section. However,
in brief, in the alkalization and etherification process, firstly cellulose is alkalized with
sodium hydroxides (NaOH), then the CMC from is synthesized through the etherification
of cellulose using sodium monochloroacetic acid [58]. A summary of the synthesis and
preparation of NaCMC [51] is shown in Figure 4.
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In other research, cellulose was first extracted from asparagus stalks and stored in
a polyethylene glycol bag. Different concentrations of NaOH (20, 30, 40, 50, and 60) and
350 mL of isopropanol were blended with 15 g of cellulose powder. The etherification
reaction solution was heated (45–75 ◦C, 1 h) and then filtered. The filtrate was suspended
in methanol (100 mL) and neutralized with acetic acid (10 mL) to form a yellowish solid
product. The solid product was washed with ethanol (5 times, 50 mL), followed by a
one-time wash with absolute methanol to remove sodium glycolate and chloride, and then
dried (temperature: 60 ◦C, time: 3 h) [59,60]. After determining the desired source for
cellulose extraction and CMC synthesis, calculation of the degree of CMC substitution is
required. The degree of substitution (DS) of CMC (Equation (1)) means the average number
of hydroxyl groups of cellulose substituted with carboxymethyl and sodium carboxymethyl
groups [59]. The yield of CMC was calculated using Equation (2) [59–61].

DS =
1150M content

(7120− 412M− 80C)Content
+

(162 + 58A)C content
(7120− 80C)content

(1)

Yield of CMC (wt.%) =
Weight of dried CMC (g)

Weight of dried cellulose (g)
(2)

The purity of CMC can be determined using the method described by Golbaghi,
Khamforoush, and Hatami Golbaghi et al. [62]. Two grams of CMC precipitate was added
to distilled water (50 mL, 80 ◦C) and dissolved. The solution was centrifuged (4000 rpm)
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and the solid precipitate was removed. The solution was mixed with pure acetone (50
mL) to recover the CMC. The CMC obtained was filtered, dried at 70 ◦C, and its purity
determined using Equation (3) [59–61].

Purity (%) =
Weight of dried residue

Weight of specimen used
× 100 (3)

Several parameters related to CMC should be checked to characterize CMC; these
include: (1) morphology analysis by scanning electron microscopy (SEM), (2) confirmation
of the presence of functional groups with FT-IR, (3) recording of XRD patterns of the
products by X-ray diffractometry, and (4) determination of solubility and pH of CMC
by adding 5 g of powder to 50 mL of double distilled water [59–61]. In one study, 15 g
of oil palm frond cellulose powder was alkalized (at 30 ◦C for 60 min in a water bath
shaker) with 50 mL of 37.9%, 40%, 45%, 50%, or 52.1% NaOH in 450 mL isopropanol. Upon
completion of the alkalization process, the etherification process was initiated by adding
various amounts of monochloroacetic acid (10.7, 12, 15, 18, and 19.2 g) at 50 ◦C for 3 h.
After filtration, the slurry was suspended in methanol and neutralized with 90% acetic acid.
The resulting powder was designated as the CMC product. Byproducts were removed by
washing the powder four times with 80% ethanol. The yield of CMC was calculated based
on the amount of cellulose. The cellulose and CMC morphology was analyzed by SEM.
The moisture content, degree of substitution (DS), and purity of CMC were determined.
The substitution reaction was confirmed by the presence of the COO-, -CH2, and -O-
groups in the IR spectrum. The results showed a rough exterior surface of cellulose with
twisted and ruptured fibers (due to the use of strong chemicals and a high temperature
in the cellulose extraction process). However, the synthesized CMC showed decreased
roughness (due to a change in cellulose crystallinity) [63]. In another study, cotton samples
were prepared with different degrees of polymerization and used to synthesize CMC. The
alkaline treatment was performed with sodium hydroxide and boiling water. The perborate
treatment was performed with sodium perborate, urea, nonionic wetting agent, and cold
water. The carboxymethylation reaction was performed with isopropyl alcohol, NaOH,
Na2CO3, methanol, and acetic acid. The degree of substitution (DS) of CMC was calculated,
and the carboxyl content of CMC was measured. Silver nanoparticles (AgNPs) prepared
using this CMC were useful as antimicrobial agents for textiles [64].

A number of studies that prepared CMC by different methods are given in Table 3.
The general methods for CMC synthesis are similar in most cases, with differences only
in the number of materials used, temperature, and time. CMC synthesis methods from
different cellulose sources, including almond shells, papaya peel, Mimosa pigra peel, sugar
beet pulp, Cavendish banana pseudostem, and sago waste, have been reported [60,65–69].

Table 3. Synthesis of CMC.

Source of CMC The Method of Synthesis CMC Characterization Methods Reference

Mixed office waste

NaOH (0.063–0.156 M); 115 mL isopropanol (30 min at
25 ◦C); stirring was continued (60 min); predissolved
sodium monochloroacetate (0.075–0.118 M) in 10 mL
isopropanol; the reaction mixture was heated (40–70 ◦C)
for 1–4 h; alkali with acetic acid (5 M). The reaction
mixture was filtered, washed with 70% methanol, and
dried at 60 ◦C in a hot air oven.

FTIR and SEM [54]
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Table 3. Cont.

Source of CMC The Method of Synthesis CMC Characterization Methods Reference

Oil palm empty fruit
bunch

NaOH (10–40%); isopropanol (1.5 h to perform the
alkalization reaction). The solution was heated at a
reaction temperature of 45 to 75 ◦C for 1 to 4 h
(etherification reaction). The slurry was filtered, and the
solid product was washed five times with 50 mL of
ethanol, followed by a one-time wash with methanol to
remove sodium glycolate and chloride, and then dried
in the oven at 60 ◦C for 3 h.

FTIR, XRD, SEM [61]

Terry towel waste

An amount of 40% NaOH, isopropyl alcohol
(alkalization reaction, 90 min); monochloroacetic acid
was added to the mixture for 30 min (then kept at 55 ◦C
for 3.5 h). Methanol (70%, v/v) was added to the reactor,
and the mixture was neutralized with acetic acid (90%
v/v). The CMC was recovered by filtration and washed
six times with ethanol:water (70:30, v/v). Finally, the
product was washed with methanol and oven dried at
60 ◦C. Two etherification treatments were performed.
The synthesized CMC was then ground and filtered
through a 60-mesh nylon cloth.

FTIR, TGA [55]

Wheat straw

Ethanol, NaOH (for alkalization treatment 1 h at 30 ◦C)
and sodium monochloroacetate (40 ◦C for 0.5 h); then,
the reaction mixture was heated at 70 ◦C for 2 h. The
mixture was cooled to room temperature, added to 100
mL of 80% (v/v) ethanol, and neutralized with acetic
acid. After filtration, the product was washed three
times with 80% (v/v) ethanol and dried in an oven at
50 ◦C for 16 h.

FTIR, XRD, SEM [70]

Thai rice straw

Isopropanol and NaOH (for alkalinization process
overnight). The methylation process was initiated by
adding sodium monochloroacetate to the suspension
within 30 min; the reaction mixture was incubated at
50 ◦C for 3 h. The obtained CMC was purified by
suspending it in 70% ethanol and neutralizing the
suspension with glacial acetic acid. The CMC was
washed with 70% ethanol, 80% methanol, and 95%
ethanol. The CMC was dried (vacuum oven at 70 ◦C
overnight).

FTIR, XRD [71]

Corn husk

NaOH was added to a pure cellulose and ethanol
solution (mechanical stirring, at room temperature, 4 h)
for the alkalization reaction. The carboxymethylation
reaction: monochloroacetic acid (MCA) was slowly
added with constant stirring. The product was then
filtered and suspended in 200 mL of methanol. The
slurry was neutralized using glacial acetic acid. The
sample was washed using a 70% ethanol solution and
then dried at 60 ◦C.

FTIR, XRD [72]

4. CMC Applications in Agriculture

CMC is widely used in industry because of its capacity to act as a water-retaining,
emulsifying, or film-forming agent, and because it is nontoxic, renewable, inexpensive,
hydrophilic, and biodegradable [73]. These features promote its use as a carrier molecule
with different characteristics, depending on the purpose. Global climate change and the
decreases in annual rainfall across the globe [52,74], as well as various pests and diseases
that cause significant damage to agricultural products every year, have directed special
attention to cellulose-based hydrogels. In the agricultural sector, the use of nanotechnology
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to produce pesticides to create new formulations has led to the development of efficient
and safe pesticides. The purpose of developing these nanomaterials is to allow the release
of sufficient amounts of their active substances in response to environmental stimuli and
biological needs through controlled-release mechanisms [14]. Various polymers have
been used as carriers for agricultural inputs (fertilizers and pesticides), pharmaceuticals,
and dietary supplements. Hydrogels are ideal for improving water efficiency in water-
stress agriculture [75,76]. The availability of water and fertilizers influences agricultural
production. Furthermore, the increase in fertilizer costs has had a direct impact on the recent
rise in food prices, so fertilizers with lower costs and higher efficiency need attention [76,77].
Targeted fertilizer delivery systems with a high delivery capability, controlled release of
nutrients, control of pests and diseases, and increasing resistance to drought are special
goals that should be considered in the agricultural sector.

4.1. CMC in the Targeted Delivery System

The significant progress made recently in materials science, nanotechnology, and
hydrogels has led to the suggested use of advanced delivery systems in different fields
of agriculture [78–80]. Nutrition management plays a very important role in the high
performance of plants. If the nutrients needed by the plant are available in sufficient
quantities, its defense system will overcome many pests and diseases. Drought is another
limiting factor that can endanger crop production, performance, and quality. Therefore,
improving the utilization of water resources and fertilizer nutrients is important, especially
for urea, which is the most widely used fertilizer and has a high nitrogen content (46%).
This fertilizer is absorbed by the plant in only small amounts and cannot be easily adsorbed
to the charged particles of the soil. For this reason, irrigation washes excess fertilizer from
the surface of agricultural land and causes environmental pollution [81].

One way to overcome these current limitations of fertilizer use is to use controlled-
release fertilizers, which have several advantages, including a lower fertilizer loss rate,
sustainable nutrient supply, lower application frequency, and minimal potential negative
effects associated with overdosage. Superabsorbent polymers are promising for use as
water- and nutrient-managing agents in arid and desert areas [81]. Polymer coatings are
the most common mechanism of the controlled release of chemical fertilizers. The polymer
coating slowly decomposes during the growing season, and the fertilizer is gradually
provided to the plant. Coating fertilizers with a polymer such as CMC helps immobilize
the fertilizer particles, making them resistant to runoff and leaching [82].

Mohamed, Fahim, and Soliman [76] recently synthesized CMC (0.25 g/L) and poly 4-
vinylpyridine (P4VP) hydrogel systems with different ratios in the presence of cross-linker
N,N’-methylene bisacrylamide and investigated their biodegradability in soil for future
large-scale use in agriculture. The hydrogel characteristics were characterized by FTIR spec-
troscopy, thermal gravimetric analysis, X-ray diffraction, and scanning electron microscopy.
The hydrogel yield, swelling ratio (SR) under different pH values, biodegradability of
the hydrogel, loading capacity of the CMC/P4VP hydrogel, and fertilizer (calcium nitrate
and urea) release from CMC/P4-VP hydrogel were calculated according to the following
formulas:

Hydrogel extent of degradation was monitored by calculating the weight loss (Wtloss)
according to Equation (4):

Wtloss = [

(
wti −wtf

wti

)
× 100] (4)

wti is the initial weight of samples before starting the degradation;
wtf is the weight of the sample after specified time intervals of biodegradation.
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The loading capacity of the hydrogels was calculated using Equation (5) with different
fertilizer ratio:

Fertilizer loading = [

(
wti −wt0

wt0

)
× 100] (5)

Wtf is the weight of the loading hydrogel;
Wt0 is the weight of the unloaded hydrogel

Hydrogel yield was calculated according to Equation (6):

Hydrogel yield = [

(
wtH

wti

)
× 100] (6)

wtH is the final weight of dried hydrogel;
wti is the initial weights of CMC and P4VP.

The fertilizer release from the hydrogel after loading on CMC/P4VP was investigated
by atomic absorption spectrometry under the following conditions: 8 mL buffer solution,
pH 8, temperature = 20.4◦C, and relative humidity = 47.6%. The urea loaded onto the
hydrogel filled the hydrogel pores. The swelling ratio (SR) result confirmed a high swelling
capacity (1100–1420%) for the CMC/P4VP hydrogel. The FTIR results indicated a strong
interaction between the CMC fertilizer and P4VP fertilizer.

Biodegradation of the polymer is a desired feature in the environment and agriculture.
In this experiment, the hydrogel lost 50% of its weight on day five. The structure of the
CMC:P4VP:Urea with a l:1:1 ratio showed the highest loading capacity (62%) compared
to the CMC:P4VP:Ca(NO3)2 with a 1:1:1 ratio (35%). The formation of the H-bond be-
tween CMC and urea appeared to enhance the urea absorption. Fertilizer release was
examined using different mathematical models (e.g., zero order, first order, Korsmeyer–
Peppas, and Higuchi models). The release mechanism was characterized as Super Case
II transport, which is strongly affected by pH changes [76]. These findings point to the
importance of using CMC (2%)-based hydrogels as agricultural inputs. Previous studies
have shown that vermiculite is not suitable for agricultural applications because it relies on
a diffusion mechanism. By contrast, NPK-filled hydrogels can show a controlled release of
nutrients [29].

A CMC (20%, 40%, 50%, 60%, and 80%)-PVP hydrogel produced (thickness: 2 mm) in
one study [29] was allowed to swell in water overnight and then at room temperature. The
samples were weighed at different time intervals, and the moisture retention capability was
measured. Urea was loaded by immersing dry CMC-PVP hydrogels into urea solutions of
different concentrations (time: 24 h), and the swollen gels were dried (room temperature,
3 days). The samples retained about 50 wt.% of their water content (after 24 h, 25 ◦C)
and showed an increased release of urea, suggesting that CMC/PVP superabsorbent
hydrogels may be used as potential eco-friendly water-saving materials for agricultural
applications [29]. Other research has used a root-targeted delivery vehicle (RTDV) in wheat.
This system was formed by dissolving CMC (7%) chains in water, mixing them with liquid
fertilizer, and then cross-linking using iron and calcium salts [30]. A summary of RTDV
synthesis as a targeted delivery system is shown in Figure 5.



Polymers 2023, 15, 440 11 of 31

Polymers 2023, 15, x FOR PEER REVIEW 10 of 32 
 

 

structure of the CMC:P4VP:Urea with a l:1:1 ratio showed the highest loading capacity 

(62%) compared to the CMC:P4VP:Ca(NO3)2 with a 1:1:1 ratio (35%). The formation of the 

H-bond between CMC and urea appeared to enhance the urea absorption. Fertilizer 

release was examined using different mathematical models (e.g., zero order, first order, 

Korsmeyer–Peppas, and Higuchi models). The release mechanism was characterized as 

Super Case II transport, which is strongly affected by pH changes [76]. These findings 

point to the importance of using CMC (2%)-based hydrogels as agricultural inputs. 

Previous studies have shown that vermiculite is not suitable for agricultural applications 

because it relies on a diffusion mechanism. By contrast, NPK-filled hydrogels can show a 

controlled release of nutrients [29]. 

A CMC (20%, 40%, 50%, 60%, and 80%)-PVP hydrogel produced (thickness: 2 mm) 

in one study [29] was allowed to swell in water overnight and then at room temperature. 

The samples were weighed at different time intervals, and the moisture retention 

capability was measured. Urea was loaded by immersing dry CMC-PVP hydrogels into 

urea solutions of different concentrations (time: 24 h), and the swollen gels were dried 

(room temperature, 3 days). The samples retained about 50 wt.% of their water content 

(after 24 h, 25 °C) and showed an increased release of urea, suggesting that CMC/PVP 

superabsorbent hydrogels may be used as potential eco-friendly water-saving materials 

for agricultural applications [29]. Other research has used a root-targeted delivery vehicle 

(RTDV) in wheat. This system was formed by dissolving CMC (7%) chains in water, 

mixing them with liquid fertilizer, and then cross-linking using iron and calcium salts [30]. 

A summary of RTDV synthesis as a targeted delivery system is shown in Figure 5.  

 

Figure 5. Root-targeted delivery vehicle (RTDV) synthesis as a targeted delivery system. 

This research showed that the tillers grew much taller in wheat supplied with the 

RTDV than in plants given daily fertilizer. The RTDV appeared to create conditions for 

the development of grains on the plant and increased the number of seeds, and 

significantly improved the seed yield. RTDVs were effective at increasing the growth and 

yield of wheat plants [30]. A dual-functional redox-responsive hydrogel was synthesized 

in other research [31]. This hydrogel was designed for two purposes: (1) the controlled 

release of agrochemicals and (2) the synchronous capture of heavy metal ions. CMC was 

used to construct a responsive matrix with cystamine as the linker. The redox reaction was 

carried out with the aim of in vivo drug delivery and organic synthesis through the 

exchange reaction of disulfide bonds [31]. These hydrogels were used in paddy soil 

contaminated with Cu2+ and Hg2+. After release, the hydrogels could capture heavy metal 

Figure 5. Root-targeted delivery vehicle (RTDV) synthesis as a targeted delivery system.

This research showed that the tillers grew much taller in wheat supplied with the
RTDV than in plants given daily fertilizer. The RTDV appeared to create conditions for the
development of grains on the plant and increased the number of seeds, and significantly
improved the seed yield. RTDVs were effective at increasing the growth and yield of
wheat plants [30]. A dual-functional redox-responsive hydrogel was synthesized in other
research [31]. This hydrogel was designed for two purposes: (1) the controlled release of
agrochemicals and (2) the synchronous capture of heavy metal ions. CMC was used to
construct a responsive matrix with cystamine as the linker. The redox reaction was carried
out with the aim of in vivo drug delivery and organic synthesis through the exchange
reaction of disulfide bonds [31]. These hydrogels were used in paddy soil contaminated
with Cu2+ and Hg2+. After release, the hydrogels could capture heavy metal ions in soil
via strong complexation (ion-thiol groups) disconnected disulfide bonds that could benefit
plant growth and soil remediation [31]. However, although CMC has advantages in various
industries, it also has limitations. Increasing the fertilizer concentration inside the hydrogel
will also increase the release of the initial burst release of the fertilizer, making the overall
release less stable. In addition, the presence of many ionic compounds, such as nitrogen,
phosphorous, and potassium, in chemical fertilizers weakens the bond strength of CMC
transverse joints and destroys their integrity. Therefore, a lower fertilizer concentration will
increase the release duration and stability. Furthermore, soil moisture and climate change
are some of the factors that can lead to inconsistencies in a controlled release, which may
cause plants to be starved of nutrients or unable to use the released fertilizer [83].The initial
release of fertilizer from hydrogel accounts for up to 90% in the first 80 h (approximately
3 days) [30]. However, this high release from hydrogels may not be ideal for agriculture.
Plants need to have nutritional elements at their disposal and absorb them gradually and
continuously. This especially applies to crops with a long growing season, such as wheat,
barley, and alfalfa. In addition, the delivery of a high concentration of nutrients in the early
stages of plant growth (such as germination), which occurs following sudden release (due
to increased concentration), can harm the plant [30].

CMC-based hydrogels can be coated with more stable and resistant materials to
withstand adverse conditions for long periods to achieve maximum efficiency. Cross-
linking with metal ions, radiation, or with other naturally derived polymers is important in
CMC (20%) hydrogels [84]. CMC derived from natural materials can hold much water in its
structure and be used as a slow-release fertilizer [85]. Studies have shown that hydrogels
prepared by cross-linking with a natural polymer show good biodegradability and mild
and controllable reaction conditions, indicating that this is the most ideal method for the
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synthesis of CMC gels [84,86–88]. The research showed that adding fiber improved the
tensile strength of CMC-sodium alginate-glycerol composite films [89]. Thickeners such as
starch, sodium alginate, or gelatin can improve the mechanical properties of CMC films [90].
In a study, it was found that the combination of carboxyl groups of CMC-aldehydes and
different isocyanides, led to the formation of a wide range of derivatives of CMC, which
increased the efficiency of CMC and was an environmentally friendly process [91].

In a study, a novel superhydrophobic sodium carboxymethyl cellulose (CMC) modified
polyurethane (MPU) as a membrane material for controlled release fertilizer (CRF) by the
cross-polymerization of 4,4’-diphenylmethane diisocyanate (MDI) and poly CMC-based
modified PU (CMC) was fabricated. The results showed that polyurethane-coated fertilizer
and modified polyurethane-coated fertilizer coatings were prepared by attaching hydroxyl
groups to isocyanate to form a carbamate. Modified polyurethane had a lower water
absorption rate than polyurethane, and the modified polyurethane-coated fertilizer coating
showed excellent hydrophobicity. The modified polyurethane-coated fertilizer coating
surface is much smoother and flatter than the polyurethane-coated fertilizer coating surface.
The lifetime of nitrogen release in the modified polyurethane-coated fertilizer increased
to 140 days [92]. CMC and quaternary chitosan (QCS) synthesized for use as an emulsion
delivery system had good long-term stability and can be used for drug delivery and in
food production [84,93].

4.2. CMC for Encapsulation of Bioactive Materials

A nanopesticide formulation has many advantages, such as a remarkable targeted
delivery, intelligent controlled-release properties, pronounced efficiency, and environmental
friendliness [12]. Nanocarriers and nanotechnology can protect pesticides from high
temperatures and radiation, thereby significantly improving their chemical stability [94,95].
A CMC-zein-based nanopesticide delivery system was used to improve adhesion and
antiultraviolet properties [20]. Zein (from maize residues) is a safe protein with unique
solubility, biocompatibility, biodegradability, antioxidation, and nontoxicity properties,
and it can be used as a drug carrier in the food, cosmetic, and medical fields [20,96,97].
This protein, in the form of nanoparticles (NPs), has the potential to release bioactive
molecules when used as natural delivery systems and following encapsulation [98]. Hao,
Lin, Lian, Chen, Zhou, Chen, Xu, and Zhou [20] considered the following options: (1) CMC-
g-PDMDAAC was formed by the graft copolymerization of sodium-CMC and DMDAAC
as functional monomers, (2) Avermectin (AVM) was selected as a model pesticide, and
(3) an AVM@P-Zein/CMC-g-PDMDAAC nanopesticide was prepared by electrostatic
interaction encapsulation. In this study, FTIR, TGA, SEM, and particle size analyzers were
utilized to characterize the structure of CMC-g-PDMDAAC and AVM@P-zein/CMC-g-
PDMDAAC. Investigation of the encapsulation efficiency, antiUV light performance, and
sustained-release rate of the pesticides confirmed that CMC-g-PDMDAAC encapsulated in
AVM@P-Zein lowered the sustained-release rate of the pesticides (at 300 h, the release rate
had slowed down by 10%) [20].

CMC can also be used to improve the performance of phosphorylated-zein-based
nanopesticides. The stability, ultraviolet resistance, and adhesion capacity are important
components determining the performance of phosphorylated-zein-based nanopesticides.
The chromogenic (carboxyl and hydroxyl) groups of CMCs can absorb part of the ultraviolet
light and have certain antiultraviolet effects [99]. Research using a freeze-drying technique
encapsulated bioactive crude ethanolic extracts of Eucalyptus camaldulensis with alginate-
CMC by mixing a sodium alginate solution–CMC solution (in a ratio of 2% to 1%) and
adding 1 mL of varying amounts (50, 500, and 1000 mg) of ethanolic leaf extract of E.
camaldulensis (stirred for 20 min). This mixture was added to a 3% CaCl·2H2O solution
at a flow rate of 1 mL/min under high-speed homogenization (15,000 rpm, 10 min). The
mixture was stirred for 60 min and centrifuged at 10,000 rpm for 30 min. A high percentage
yield (from 70.4% to 81.5%) was obtained, demonstrating minimal material loss and the
highest encapsulation efficiency [32]. The efficacy of these microcapsules against bacterial
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pathogens, such as Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus, showed
that Eucalyptus camaldulensis encapsulated with alginate-CMC had good antimicrobial
activities and could be used as a disease control agent with excellent encapsulation efficiency
and a high percentage yield. These microcapsules also showed a high swelling index, but
it was reduced as the extract concentration increased. The swelling index indicated the
hydrophilic nature of the alginate and the hydrocolloidal properties of the CMC. These
capsules were cytocompatible with human colon cells [32].

NPK fertilizer was also encapsulated in CMC-based nanocomposite acrylic acid (AA)
in the presence of polyvinylpyrrolidone (PVP) and silica nanoparticles for water retention
in the soil [27]. The FTIR results confirmed the successful encapsulation of the NPK fertil-
izer compound within the superabsorbent. Investigation of the hydrogel using scanning
electron microscopy revealed high porosity. This porous network has advantages, as it
increases the contact surface area of the hydrogel nanocomposite, allows easier and faster
diffusion of water molecules into the hydrogel, and promotes water absorption. The water
absorption capacity of hydrogels is significantly influenced by the salinity and pH of the
swelling medium (the water content decreases in saline solutions and at high pH). These
observations showed that a hydrogel/PVP/silica/NPK formulation could improve the uti-
lization of fertilizers in agricultural and horticultural applications [27]. Table 4 summarizes
studies on the CMC encapsulation of bioactive materials and targeted delivery systems in
agriculture and other disciplines.

Table 4. Application of CMC for encapsulation of bioactive materials.

Microcapsule/Hydrogel Goal Result Reference

QUE 1-loaded CHC-CMC nanoparticles Food Industries
The enclosure of QUE in CDNPs improved its
chemical stability and solubility, and higher
biological activity.

[100]

Pea proteins-CMC encapsulation of linoleic
acid Food Industries Better physico-chemical properties. [101]

RPH 2–CMC nanoparticles Food, Medical A good biocompatible inhibitor of proliferation
of breast cancer cells. [102]

SAP 2-AM 3- CMC- -MBA 4- loaded with
potassium nitrate

Agriculture
The swelling ratio was 190 g/g of dry gel; the
amount of released KNO3 increased with an
increasing loading percentage of SAP.

[103]

PAAm 5-MC 6-MMt 7 loaded with urea Agriculture For application in agriculture as a nutrient
carrier vehicle. [104]

Citric acid cross-linked CMC hydrogels and
their bentonite composite Agriculture Useful for the efficient control of insects having

an alkaline gut pH. [33]

The encapsulation of Bti 8 in a matrix of
CMC as the polymeric matrix and aluminum
sulfate as the gelation agent

Agriculture

In total, 100% mosquito larval mortality, from the
second day of treatment, and higher larvicidal
activity of Bti at higher temperatures up to 50 ◦C
compared to a nonencapsulated Bti
spore/crystal mixture.

[105]

1 quercetin; 2 superabsorbent polymer; 3 acrylamide; 4 N,N′-methylenebisacrylamide; 5 polyacrylamide; 6 methyl-
cellulose; 7 calcic montmorillonite; 8 Bacillus thuringiensis subspecies israelensis.

A change in the acidity of the environment is one factor that can affect CMC en-
capsulation performance. Acidic and alkaline soils each have a different effect on the
encapsulation efficiency. Zein encapsulated by CMC as a pesticide showed different en-
capsulation efficiencies under acidic and basic conditions. The particle size and negative
charge increased in response to pH changes. Increasing acidity caused carboxylate groups
to undergo deprotonation and increased the negative charges on the capsule surfaces. The
encapsulation efficiency and particle size at pH 9 were 80.18% and 304.17 nm (the highest
value), respectively. At a low pH, the particle size became smaller, resulting in a shorter
release route and a faster release rate [20].

Increases and decreases in rainfall can change the soil pH, which will change the
encapsulation efficiency. Different tillage systems and microorganisms in the soil can
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also affect the pH. Another limiting factor controlling the release from microcapsules is
temperature. The release of polyphenols is lower at a low temperature (4 ◦C) than at body
temperature (37 ◦C) [32]. These cases demonstrate the factors that can limit the use of
CMC in the form of microcapsules in agriculture and point to the need to use intermediate
materials for the preparation of microcapsules to maintain the beneficial properties of CMC.

4.3. CMC as Superabsorbent Hydrogels

In many countries, precipitation is confined to a few seasons per year and is insuf-
ficient for agricultural purposes at other times. Additionally, equipment such as drip
irrigation systems is not amenable to home applications, and plants suffer from water
stress during long journeys. In traditional agricultural systems, many plants are irrigated
through traditional methods, such as flood irrigation, which makes large quantities of water
accessible to the plant once at a certain time but reduces water consumption efficiency. This
irrigation also results in much water absorption by weeds, which is a problem in agriculture.
Therefore, a product that absorbs and retains a substantial amount of water with swelling
behavior and permits the slow release of water would be highly advantageous. Figure 6
shows the swelling behavior of superabsorbent hydrogels. These products are important in
modern agriculture because of their potential to modify soil permeability and evaporation
rates.
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Superabsorbent hydrogels (SAHs) are 3D networks and hydrophilic structures with
a high capacity for water absorption. By expanding, they can take up and hold amounts
of aqueous solutions equivalent to up to 95% of their initial dry weight [107,108]. SAHs
slowly release water into the soil and maintain soil moisture longer under water-stress
conditions, thereby allowing plants to thrive through prolonged periods of water scarcity,
increasing the yield productivity [109]. Li et al. [110] utilized SAHs as a soil additive
and compared their effects on the water content, soil microbial populations, and crop
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production of Triticum aestivum. They found that incorporating SAHs into the soil had no
observable negative consequences and improved both the soil physical qualities and crop
productivity. Therefore, in times of drought, SAHs can be used as a private subsurface
reservoir, capturing all the water that would normally be lost to evaporation (such as
rainwater) and allowing continued agricultural production [109]. Figure 7 shows the
agricultural advantages of SAHs for water holding.
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Figure 7. The advantages of using superabsorbent hydrogels (SAHs) for water holding in agriculture.

With the aim of conserving water and enhancing crop productivity, SAHs based on
cellulose are increasingly being employed in agricultural applications because of their
many desirable characteristics, including their high hydrophilicity, biocompatibility, per-
meability, and high swelling ratio [111,112]. CMC, among the other cellulose derivatives
(e.g., hydroxypropyl methylcellulose, hydroxyethyl cellulose, and methyl cellulose), is
more amenable for preparing SAHs due to its high water absorbency and swelling ratio in
distilled water and salt solutions [113]. One gram of 10% CMC-based SAHs can absorb ap-
proximately 450 g of water [113]. However, this ratio can change if CMC is combined with
other materials. Indeed, in addition to the simplest CMC-based SAHs, some CMC-based
SAHs have been fabricated to incorporate other chemical compounds that mainly play
the role of cross-linkers. Feket et al. [113] produced SAHs containing 70% CMC and 30%
starch and found a maximum water absorption of 350 g per g of SAHs. Salleh et al. [114]
produced SAHs by combining cellulose from oil palm branches and sodium-CMC and
using epichlorohydrin as a cross-linker to fabricate SAHs.

Other research has confirmed the revolutionary impact of cellulose-based SAHs in
modern agricultural science. Cannazze et al. [115] revealed that soil amended with cellulose-
based SAHs could conserve water and slowly release it to plant roots in times of drought.
Therefore, these compounds are solutions that promise to solve the water shortage problem
in the agricultural sector. Li et al. [116] claimed that SAHs also affect the soil microbial
population under water deficit. Under water scarcity conditions, they revealed that SAH-
treated soil had a high bacterial richness. Satriani et al. [117] applied a superabsorbent
cellulose biopolymer in an irrigation system and reported an enhancement in the crop
water productivity index. Based on the reviewed documents, SAHs appear to be practical
substances for overcoming the problem of drought and water scarcity in agriculture. Table 5
shows some studies on the application of CMC as a superabsorbent hydrogel in agricultural
activities.
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Table 5. Application of CMC as a superabsorbent hydrogel.

Method/Goal Result Reference

CMC-polyvinylpyrrolidone cross-linked with gamma irradiation and
loading urea on hydrogel

Slow urea release, good water retention
capacity, being economical, and
environmentally friendly

[81]

Superabsorbent hydrogels polyvinylpyrrolidone-CMC of different
copolymer compositions by gamma radiation and loading NPK
fertilizer on hydrogel

Slow release, high swelling, and slow
water retention [118]

Superabsorbent hydrogels based on cross-linked CMC- acrylamide
As water-managing materials for
agriculture and horticulture in drought
conditions

[111]

Application of polyvinyl Alcohol-CMC hydrogel as a superabsorbent
compound in the soil Increase water retention in desert regions [119]

CMC and poly vinyl pyrrolidone synthesized by gamma radiation
and loading urea on hydrogel

Slow urea release and good water
retention capacity [81]

Synthesis carboxymethyl cellulose (CMC) via a free radical
polymerization technique with acrylamide and
2-Acrylamido-2-methylpropanesulfonic acid (AMPS) as hydrophilic
monomers

Nutrient carrier and amendment for
sandy soil for advanced agricultural
applications

[28]

The copolymer of CMC and mixtures of different comonomers Suitable in agriculture purposes [120]
Carboxymethyl cellulose/nano-CaCO3 composite amended in the
loamy sand soil on maize growth

As an alternative soil amendment for
agricultural applications [121]

4.4. CMC to Remediate Pesticides and Heavy Metals from Agricultural Water

Water is the world’s most plentiful nonrenewable resource, and water contamination
has recently risen to the top of the global priority list [122]. Industrial growth, different
human activities, the demand for more food, and the indiscriminate use of synthetic agro-
chemicals all increase contaminants, especially heavy metals (HMs) and pesticides, in
aquatic ecosystem components, such as groundwater aquifers [123]. The most common pol-
lutants in agricultural water are pesticides and HMs, which enter the human food chain by
entering plant tissues and animal bodies, catastrophically affecting sustainable agriculture
and endangering human health. Although some plants have detoxification mechanisms,
most do not; consequently, HMs are transported into plants through contaminated water
and incorporated into the food chain [98,124]. Some chemical pesticides and several HMs,
such as zinc (Zn), copper (Cu), nickel (Ni), cobalt (Co), mercury (Hg), arsenic (As), and
lead (Pb), pose strong carcinogenic risks [6]. However, as highly mobile elements, lead (Pb),
cadmium (Cd), arsenic (As), and mercury (Hg) are the most toxic [125].

Accordingly, exploring methods for cleaning up HMs and pesticides in environmental
components, such as agricultural water, is a research emphasis for sustainable agriculture.
Activated carbon, as an effective absorbant, is commonly employed in industry to filter out
unwanted substances, such as chemicals and heavy metals, from water systems. Activated
carbon is effective in treating wastewater, but it has a high price, so its use is not logical
for purifying agricultural water. Different hydrogels have the ability to provide abundant
adsorption sites such as -OH, -NH2, -COOH, and -SO3H, which are useful for binding to
target metal ions. CMC is used as a hydrogel with hydroxyl and carboxyl groups as an
adsorbent to remove metal ions. Moreover, the high swelling capacity of different water
hydrogels helps release heavy metal ions in their networks. The potential of CMC as an
active material has been demonstrated in a wide range of water treatment systems [57].
CMC’s hydroxyl and carboxymethyl groups can form chelates with heavy metal ions [126].

For instance, Cao et al. [127] synthesized monodispersed CMC-stabilized Fe-Cu
bimetal NPs that could dechlorinate 1,2,4-trichlorobenzene with 90% removal efficiency. Al
Othman et al. [128] synthesized copper-CMC NPs and these NPs could remove tetracycline
antibiotics with a 90% removal efficiency from water. The efficiency of chitosan/CMC
hybrid adsorbents for the removal of different HMs from wastewater was assessed by
Manzoor et al. [129], who showed that these composites, fabricated using arginine cross-
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linkers, have a great capacity for removing lead and cadmium ions from water. In another
practical study, Li et al. [130] prepared an absorbent based on a metal-organic framework
modified by ethylenediaminetetraacetic acid (UiO-66-EDTA) into cellulose nanofibers
(CNFs). The pore structure of the produced absorbents was modulated using different
CMC concentrations. The produced UiO-66-EDTA/CNF/CMC exhibited great potential
for the absorption of HMs, with a removal efficiency of 91%. Figure 8 depicts the efficacy
UiO-66-EDTA/CNF/CMC absorbents in the absorption of three HMs.
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Figure 8. The potential of the prepared absorbers produced based on a metal-organic framework
modified by ethylenediaminetetraacetic acid into cellulose nanofiber (CNF) and treated with car-
boxymethyl cellulose. (A–C) depict the prepared absorbers filters’ performance in removing Cu2+,
Co2+, and Cr3+, respectively [130].

Similar positive results from numerous other studies indicate that CMC-based com-
posite materials can be considered potential substances for removing pesticides and HMs
from contaminated agricultural water. Embedding CMC-based absorbents in irrigation
equipment or the production of CMC-based filters can effectively bring healthy water to
plants and the food chain. In addition to the above capacity, CMC can be used in hydrogel
form to absorb pesticides and HMs. Godiya et al. [126] applied hydrogel composites con-
sisting of CMC incorporating polyacrylamide to absorb Cu2+, Pb2+, and cd2+. Similarly,
Wu et al. [131] obtained magnetic composite hydrogels to absorb Mn2+, Pb2+, and Cu2+.
Composite hydrogels comprised of CMC and alginate incorporating Fe3O4 nanoparticles
showed a great absorption capacity for Mn2+, Pb2+, and Cu2+ by 71.83, 89.49, and 105.93
mg.g−1. Although there are few documents regarding the application of CMC hydrogels
to absorb pesticides, some documents prove the capacity of CMC hydrogels to absorb
pesticides. In this regard, Abdel Gaffar et al. [132] prepared CMC-based hydrogels that
have significant potential to absorb 4-chlorophenol and 2,4-D from water solutions. Table 6
shows some studies on the application of CMC to remove heavy metals.
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Table 6. Remediation and heavy metals removal by CMC.

Method/Goal Results Reference

Carboxymethyl cellulose (CMC) bridged chlorapatite for
removal of zinc and cadmium from water High uptake of heavy metal from water [133]

CMC-polyacrylamide for the wastewater remediation Wastewater treatment and catalytic application [126]
Nanoparticles stabilized with CMC for in situ
destructions of chlorinated ethane

The biological degradation with CMC as the carbon
source and hydrogen from the abiotic/biotic processes [134]

Iron nanoparticles stabilized by (NaCMC) for chromium
removal

CMC as an effective stabilizer in nanoparticles for the
effective removal of chromium [135]

A novel biochar supported nanoscale zero-valent iron
stabilized by CMC for the removal of chromium

A low-cost, “green”, and effective sorbent for removal of
Cr(VI) in the environment. [136]

Synthesize cross-linked beads from chitosan and CMC
with arginine as a cross-linker for adsorption of Pb(II)
and Cd(II)

Remove Pb(II) and Cd(II) from aqueous solution with
high removal efficiency [129]

A novel carboxymethyl cellulose sodium (CMC-Na)
encapsulated phosphorus (P)-enriched biochar for Pb(II),
Cd(II), and Ni(II) removal

A low-cost and high-efficiency adsorbent [137]

5. CMC Applications in Food Industry

To protect food products from microorganisms and physiological activities, stabilizers
are needed. Stabilizers are responsible for maintaining physical stability and sensory
properties. Stabilizers are used to prevent physical disintegration, stop phase separation in
multicomponent formulations, and result in a favorable product taste and odor. Materials
used as stabilizers in the dairy industry are polysaccharides and gelatin. CMC is one
of the types of polysaccharides that is used as a stabilizer [138]. The ability to form
a semipermeable shield against gases and water vapor, help to maintain cell strength,
add gloss to coated foods, increase mechanical handling properties, and loss of volatile
compounds are other benefits of food coatings [139].

The degree of carboxymethylation for CMC formulated for food applications should
be between 0.5 and 1. In other words, it is the degree of substitution and degree of
polymerization that determine the performance of CMC in food products. For example,
depending on the type of formulation, CMC forms complexes with milk proteins. It is also
used in ice cream to control ice crystal growth and in yogurt as a rheological modifier [138].

CMC has been reported to have a wide range of benefits, such as increased vis-
coelasticity, oil/grease resistance, and enhanced coating properties. Gel-CMC biopolymer
composites can form transparent edible coatings or films and act as a carrier for active
additives such as antioxidants and antimicrobial agents [36,140].

Maintaining safety and improving nutritional and sensory quality are the most im-
portant challenges in food preservation. The shelf life of food depends on many factors,
including the quality of raw materials, product formulation, type of preparation, packaging,
and storage conditions [141]. Hydrolysis and oxidation of proteins and lipids, enzymatic
degradation (texture and color change), and browning are among the events that nega-
tively affect the quality of food products [141–143]. Naturally derived biomaterials such as
CMC, in the application of other technologies such as nanoencapsulation, extrusion, and
emulsion, can delay the deterioration of food compounds. The encapsulation method is
used to preserve the nutritional value, taste, and smell and improve the characteristics of
biologically active substances [141].

Furthermore, layer-by-layer self-assembly, emulsion techniques, mixing and stirring
method, and extrusion-drop method are techniques that increase CMC efficiency [89,144].
In the following, we discuss the applications of CMC as an edible coating for various
purposes.

6. CMC as Edible Coating Substances in the Preservation of Agricultural Products

Vegetables and fruits have a short shelf life after harvest as a consequence of physi-
ological and biochemical deterioration and microbial decay. Postharvest crop losses can
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be attributed to several factors, including improper storage and protection, improper
packaging, and bacterial and fungal diseases. The high nutritional and water contents
of vegetables and fruits make them susceptible to changes in physiological processes,
including respiration and metabolism [145]. Overall, this damage reduces the quantities
of quality items available to consumers who desire fresh, healthful packaged fruits and
vegetables. Therefore, postharvest procedures are essential to reduce the amount of food
waste and maximize the marketability of vegetables and fruits. Several physical (e.g., UV
light, chilling, heating, freezing, and controlled atmosphere packaging) and chemical (e.g.,
H2O2, ozone, bromine, synthetic wax, and chemical fungicide treatments) methods are the
most common techniques for the postharvest preservation of fruits and vegetables [146].
However, these techniques all have disadvantages; for example, chilling injury in freezing,
vitamin losses in heating, costly applications in packaging under controlled atmospheres,
while chemical methods can have negative effects on consumer health and promote en-
vironmental degradation [147–150]. Therefore, any employed strategy must protect the
product from postharvest damage and losses while also being economical, safe, ecologically
friendly, and straightforward.

An edible coating can be an efficient and eco-friendly choice for increasing storability
and diminishing postharvest losses. CMC, as a cellulose derivative that dissolves in water,
has been utilized as an edible coating on vegetables and fruits. It is odorless, tasteless,
and noncaloric and has excellent layer-forming characteristics that make it useful as a
coating or for packing postharvest products. It can allow for longer fresh food storage after
harvest by acting as a barrier to moisture and preventing spoilage [140,151,152]. Coating
postharvest crops using edible polymers, such as CMC, is a more cost-effective way to
package products and results in a significant economic benefit.

CMC has the potential to prevent physical, physiological, and microbial damage to
postharvest products [140]. In this regard, the application of active coatings provides
significant advantages over common coating layers [153]. An active coating can provide
different substances, such as biological control agents (BCAs), NPs, antibrowning agents,
antioxidation agents, or other functional materials, to the CMC polymer to generate edible
film coatings with antimicrobial, antibrowning, and antisenescence properties that can be
applied in many food and agricultural situations. Table 7 shows some applications of CMC
as an edible coating in the protection of food products.

Table 7. CMC edible coating in preservation of agricultural products.

Method/Goal Results Reference

Polysaccharides from Osmunda japonica-CMC (0.7%) for
preserve tomato

Increased quality of postharvest tomatoes and reduced
weight loss and ascorbic acid [154]

Locust bean gum/carboxycellulose nanocrystal
(LBG/C-CNC) coating for improving properties in
strawberries

Antibacterial properties and as effective preservation [155]

CMC as an edible coating in fresh-cut melons A superior antimicrobial protection and increased
product storability [156]

CMC extracted from Brewer’s spent grain as a new
approach to coating strawberries Protective properties in room temperature [157]

Application of CMC with the aim of the development of
bio-based films and with new functionalities in coffee
grounds

Preservation in the physicochemical properties [158]

CMC-moringa leaf and seed as a novel postharvest
treatment in avocado fruit

Suppressing diseases, prolonging the shelf life, and
increase in avocado quality [159]

The ability of carboxymethylcellulose (CMC)-Astragalus
honey (Astragalus gossypinus) to control rancidity and
microbial spoilage of pistachio kernel during storage at
room temperature

Increase in the shelf life of pistachio kernel [160]

The effects of CMC on quality aspects of white
asparagus

Increase quality of asparagus (with retarding moisture
loss and reducing hardening in their basal part) [161]
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6.1. CMC-Based Active Coating for Physical and Physiological Protection

The postharvest and during-harvest processing of agricultural products may hurt
fruits and vegetables. The physical damage and resulting wounds can lead to the loss of
intracellular water and shriveling of fresh tissues, leading to losses in fruit marketability
and desirability. Applied edible films, such as CMC, act as physical barriers, boost mechan-
ical strength, and reduce the physiological processes (e.g., transpiration and respiration)
that cause the plant material to lose its freshness. Combining CMC with other additive
substances can provide a formulation with more potential to preserve the product quality.
The formulations that offer more advantages are the active coatings [153]. Several materials,
such as CaCl2, CaCO3, and calcium pectate, have been reported to prevent fruit softening,
postpone senescence, and increase shelf life [162]. Figure 9 shows a schematic picture of
edible CMC/calcium salt coatings used to prevent fruit surface oxidation, softening, and
senescence. Deepthi et al. [163] investigated the effect of calcium salts on the storage behav-
ior of guava fruits and verified that calcium delays ripening and increases fruit shelf life.
Moradinezhad et al. [164] assessed the Ca salt effect on increasing the long shelf life of jujube
fruits, which have a short shelf life at room temperature. They asserted that the immersion
of the fruits significantly delayed fruit rot and shrinking. Applying CMC coatings enriched
with some additive agents to strengthen the fruit peel prolongs the shelf life of fruit and
vegetables, effectively preserving fruit during the packaging and transportation processes.
This approach increases the marketability of damage-susceptible and thin-skinned fruit. An
experiment by Alharaty et al. [165] revealed that coatings enriched in CaCl2 prolonged the
fruit postharvest shelf life for up to 15 days and prevented the establishment of pathogenic
fungi on the fruit. Therefore, utilizing CMC-based coatings enriched with calcium salts is a
safe way to increase the postharvest shelf life of fruits. Another area of future research is to
examine whether these coatings can be used to incorporate calcium into a diet for patients
with calcium deficiency or who suffer from osteoporosis.
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6.2. CMC-Based Active Coating for Microbial Protection

Antimicrobial edible coating films can be practical and safe formulations for extending
storage life and reducing postharvest losses. Antimicrobial substances incorporated into
edible coating films can obstruct the entrance of phytopathogenic agents, such as bacteria
and fungi, and kill phytopathogens. These coatings, by inhibiting the growth and damage
caused by microorganisms, can extend the freshness and safety of perishable fruits and
vegetables. Among the active ingredients, biological control agents (BCAs; e.g., fluorescent
Pseudomonas [17,166], Streptomyces [149,167], and Bacillus antagonistic species [150,168]),
plant extracts, biogenic NPs with antimicrobial properties [169–171], chitosan biopoly-
mers [172], and essential oils [173] can be added to active coatings to provide antimicrobial
potential. The metabolites and bacteriocins produced by antagonistic bacteria reduce the
decay of fruits, thereby enhancing the shelf life of postharvest products.

Most BCAs are commercially formulated as wettable powders, liquids, and granular
formulations. Desiccation stress, which occurs during the production of a dry formulation,
is extremely damaging to living microbial cells and has a profound effect on the viability of
active ingredients, particularly nonsporulating bacteria [174,175]. In addition, the efficacy of
biological metabolites and agents as free compounds is diminished in liquids and granular
formulations due to their volatility, early breakdown, and poor miscibility in aqueous
fluids [176]. The application of antimicrobial agents, either BCAs or NPs, directly onto
the surface of postharvest products shortens the effective time of the active antimicrobial
agents against the target pests or pathogens on the surface of the fruit, increases the need
for more dose applications, and reduces business profits. By contrast, loading the agents
into edible coatings, such as CMC, maintains an optimum dose of active ingredients on
the postharvest surface products. Oliviera et al. showed that Lipia sidoides essential oils
loaded into CMC had dramatic antifungal effects against Rhizopus stolonifer under in vitro
and in vivo conditions. Figure 10 shows the effectiveness of edible active CMC coatings
enriched with biological control agents and nanoparticles.
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Tesfay et al. [159] reported that coating avocado fruits with 1% CMC and moringa
leaf extract significantly improved fruit quality and delayed the rate of ripening. Saekow
et al. [177] synthesized ZnONPs biologically and assessed the effect of ZnONP-loaded CMC
on the quality factors of a tomato and the efficacy of this formula to suppress Alternaria
alternate. When compared with untreated controls, tomato fruits treated with ZnONPs in a
CMC coating showed significantly decreased respiration rates and less weight loss, while
the levels of fruit antioxidants increased. They reported that this active formula (CMC+
ZnONPs) delayed the severity of A. alternate infection. In a similar study, Yinzhe et al. [178]
synthesized an efficient formula by encapsulating brewer’s yeast in CMC and alginate.
They claimed that the treatment of grapes with this active coating effectively decreased
fruit biomass losses.

6.3. CMC-Based Active Coating for Biochemical Protection

In addition to using active coatings as antimicrobial materials, active coatings can be
used as a barrier to halt biochemical changes, such as browning and oxidation. Browning
is a prominent oxidative reaction that has a detrimental effect on the marketability of fruits
and vegetables throughout storage and marketing [179]. In this regard, applying functional
coatings with the capability to encapsulate antioxidants and antibrowning agents is a viable
strategy for ensuring the long-term storage of fresh-cut fruit with phenolic compounds and
delaying the browning of fruit tissues and peel. During the browning process, phenolic
compounds are converted into polyphenolic compounds by polyphenol oxidase (PPO),
which produces brownish pigments in the presence of oxygen [140]. Applying an edible
active coating based on CMC creates a barrier on the surface of postharvest products,
reduces oxygen diffusion, and decreases the activity of PPO enzymes, leading to the
delayed browning of the products.

Thivya et al. [180] synthesized active coatings from sodium alginate (SA), CMC, and
the wastes from shallot onions (SOWEs). They claimed that the produced film imparted
new physical and mechanical features to the coated fruits and had an antioxidant activity.
The SA/CMS/SOWEs offered excellent antibrowning activity in fresh-cut potato and apple
fruit after 5 and 12 h storage time. Yu et al. [181] enhanced the quality and preservation
time of Brassica chinensis by coating the vegetables with liquid paraffin containing CMC.
The CMC-based coating reduced water loss, improved enzyme activity, and increased
the reactive oxidative species (ROS) scavenging activity. Typically, CMC-based coatings
provide a barrier on the surface of products and reduce physical lesions and damage while
producing phenol compounds, thereby decreasing the browning process. However, an
active coating containing antibrowning substances can be produced by adding several
ingredients, including ascorbic acid, cysteine, phenolic acids, glutathione, carboxylic acids,
resorcinol, and phenolic acids, to the formula. These formulations can increase the mar-
ketability of sensitive fruits, such as bananas and avocados, by protecting against oxidative
reactions. Using antibrowning agents in fruits with high phenolic compounds is very
important and can be effective in increasing the shelf life and marketability of bananas,
for example, after harvest. This application is also practical in fresh-cut fruits, such as
apples. Figure 11 depicts schematically the application of CMC-based coatings enriched
with antibrowning substances.
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7. Perspectives and Future Outlook

CMC and CMC-based formulations have recently gained attention due to their edibil-
ity, safety, affordability, and ready availability. Future studies on CMC formulations should
address the following aspects to inspire future research and increase current knowledge of
more recent technologies and CMC-based formulations:

(1) Understanding the sustainability and toxicology issues of the micro- and nano-
CMC technologies.

(2) Assessment of the efficiency of superabsorbent hydrogel in retaining water under
field conditions.

(3) Enrichment of superabsorbent hydrogels and CMC-based capsules with plant
growth-promoting agents.

(4) Synthesis of active coatings enriched with probiotic bacteria that have antimicrobial
effects against phytopathogens. Utilizing this type of coating on fruits will decrease the
entry of chemical pesticides into the food chain while improving the digestive systems of
consumers.

8. Conclusions

Increasing global heat, industrialization of countries, drought, soil and water salinity,
and soil contamination with heavy metals as abiotic factors have faced many restrictions
on agriculture. The emergence of new breeds of pathogens and pests as biotic agents are
other limitations of agriculture.

In addition, providing healthy and high-quality food is one of the priorities of gov-
ernments today. In response to this demand, efforts to produce food have expanded,
resulting indirectly in the destruction and contamination of water resources. Indeed, the
postharvest coating of vegetables and fruit with nonhealthy materials to extend the shelf
life and appearance quality, the entry of pesticides and heavy metals into agricultural water
and soil, the destruction of underground water resources, and the use of high doses of
agricultural pesticides due to nontargeted application have created a significant gap in
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sustainable agriculture. Thus, specialists, researchers, and scientists in agriculture should
look for solutions to reduce the damages caused by these factors.

The application of alternative materials with multifunctional capacities is important
to minimize this gap. Cellulose is the most prevalent biopolymer, as it is present in
abundance in the cell walls of plants, algae, and the cell walls of oomycetes. CMC is a
cellulose derivative with vast potential for applications in agriculture. As a natural-origin
polymer, CMC can participate in delivery systems in various agricultural applications
such as chemical fertilizers and lead to the controlled release of chemical fertilizers. In
addition, the property of biocompatibility of this material has become a medium that
communicates between the plant, the purpose used (irrigation agent, chemical fertilizer,
pesticide, fungicide, etc.), and the environment.

CMC is an excellent material for preparing SAHs based on cellulose due to its high
water absorbency and swelling ratio in distilled water and salt solutions. Applying this
substance to dry soils can be a promising solution for conserving water and increasing
irrigation efficiency. However, more study is needed on the swelling kinetics of CMC-based
SAHs in various media and on the mechanism by which these hydrogels work. This
polymer, with its capability to remove heavy metals, can act as a filter to clean agricultural
water and prevent the entry of pollutants into the food chain. Applying this biopolymer to
encapsulate BCAs and bioactive metabolites is a novel way to access new formulations of
BCAs. In the future, the targeted delivery of biological and chemical pesticides in targeted
delivery systems based on edible biopolymers, such as CMC, will reduce the cost of
controlling plant phytopathogens. Coating fresh vegetables and fruits with layers enriched
with antimicrobial, antibrowning, and antisoftening materials can provide healthy and
high-quality products. However, the coating strategies must be meticulously assessed to
determine proper techniques for product preservation. Given these optimistic predictions,
many opportunities are emerging in each of these fields, supporting the further broadening
of the applications of CMC in the future.

Author Contributions: Conceptualization, R.S.R. and Y.A.S.; writing—original draft preparation,
M.H. and M.G.V.; writing—review and editing, R.S.R., M.G.V., M.H. and Y.A.S. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Desa, U. World Population Prospects: The 2008 Revision; United Nations Department of Economic and Social Affairs/Population

Division. 2009. Available online: http://esa.un.org/unpp (accessed on 19 May 2017).
2. Vega-Vásquez, P.; Mosier, N.S.; Irudayaraj, J. Nanoscale drug delivery systems: From medicine to agriculture. Front. Bioeng.

Biotechnol. 2020, 8, 79. [CrossRef]
3. Gowthaman, N.; Lim, H.; Sreeraj, T.; Amalraj, A.; Gopi, S. Advantages of biopolymers over synthetic polymers: Social, economic,

and environmental aspects. In Biopolymers and Their Industrial Applications; Elsevier: Amsterdam, The Netherlands, 2021; pp.
351–372.

4. Saberi Riseh, R.; Skorik, Y.A.; Thakur, V.K.; Moradi Pour, M.; Tamanadar, E.; Noghabi, S.S. Encapsulation of plant biocontrol
bacteria with alginate as a main polymer material. Int. J. Mol. Sci. 2021, 22, 11165. [CrossRef]

5. Saberi-Riseh, R.; Moradi-Pour, M.; Mohammadinejad, R.; Thakur, V.K. Biopolymers for biological control of plant pathogens:
Advances in microencapsulation of beneficial microorganisms. Polymers 2021, 13, 1938. [CrossRef]

6. Akter, M.; Bhattacharjee, M.; Dhar, A.K.; Rahman, F.B.A.; Haque, S.; Rashid, T.U.; Kabir, S.F. Cellulose-based hydrogels for
wastewater treatment: A concise review. Gels 2021, 7, 30. [CrossRef]

7. Mohammad, Z.H.; Ahmad, F.; Ibrahim, S.A.; Zaidi, S. Application of nanotechnology in different aspects of the food industry.
Discov. Food 2022, 2, 12. [CrossRef]

8. Singh, T.; Shukla, S.; Kumar, P.; Wahla, V.; Bajpai, V.K.; Rather, I. Application of nanotechnology in food science: Perception and
overview. Front. Microbiol. 2017, 8, 1501. [CrossRef] [PubMed]

http://esa.un.org/unpp
http://doi.org/10.3389/fbioe.2020.00079
http://doi.org/10.3390/ijms222011165
http://doi.org/10.3390/polym13121938
http://doi.org/10.3390/gels7010030
http://doi.org/10.1007/s44187-022-00013-9
http://doi.org/10.3389/fmicb.2017.01501
http://www.ncbi.nlm.nih.gov/pubmed/28824605


Polymers 2023, 15, 440 25 of 31

9. Yadav, S.K.; Lal, S.; Yadav, S.; Laxman, J.; Verma, B.; Sushma, M.; Choudhary, R.; Singh, P.; Singh, S.; Sharma, V. Use of
nanotechnology in agri-food sectors and apprehensions: An overview. Seed Res. 2019, 47, 99–149.

10. Sargazi, S.; Laraib, U.; Er, S.; Rahdar, A.; Hassanisaadi, M.; Zafar, M.N.; Díez-Pascual, A.M.; Bilal, M. Application of green gold
nanoparticles in cancer therapy and diagnosis. Nanomaterials 2022, 12, 1102. [CrossRef]

11. Hassanisaadi, M.; Bonjar, G.; Rahdar, A.; Pandey, S.; Hosseinipour, A.; Abdolshahi, R. Environmentally safe biosynthesis of gold
nanoparticles using plant water extracts. Nanomaterials 2021, 11, 2033. [CrossRef]

12. Okey-Onyesolu, C.F.; Hassanisaadi, M.; Bilal, M.; Barani, M.; Rahdar, A.; Iqbal, J.; Kyzas, G.Z. Nanomaterials as nanofertilizers
and nanopesticides: An overview. ChemistrySelect 2021, 6, 8645–8663. [CrossRef]

13. Islam, M.T.; Alam, M.M.; Patrucco, A.; Montarsolo, A.; Zoccola, M. Preparation of nanocellulose: A review. AATCC J. Res. 2014, 1,
17–23. [CrossRef]

14. Zhao, X.; Cui, H.; Wang, Y.; Sun, C.; Cui, B.; Zeng, Z. Development strategies and prospects of nano-based smart pesticide
formulation. J. Agric. Food Chem. 2017, 66, 6504–6512. [CrossRef]

15. Brondi, M.; Florencio, C.; Mattoso, L.; Ribeiro, C.; Farinas, C. Encapsulation of trichoderma harzianum with nanocellu-
lose/carboxymethyl cellulose nanocomposite. Carbohydr. Polym. 2022, 295, 119876. [CrossRef]

16. Cokmus, C.; Elcin, Y.M. Stability and controlled release properties of carboxymethylcellulose-encapsulated bacillus thuringiensis
var. Israelensis. Pestic. Sci. 1995, 45, 351–355. [CrossRef]

17. Fathi, F.; Saberi-Riseh, R.; Khodaygan, P. Survivability and controlled release of alginate-microencapsulated pseudomonas
fluorescens vupf506 and their effects on biocontrol of rhizoctonia solani on potato. Int. J. Biol. Macromol. 2021, 183, 627–634.
[CrossRef]

18. Saberi Riseh, R.; Hassanisaadi, M.; Vatankhah, M.; Soroush, F.; Varma, R.S. Nano/microencapsulation of plant biocontrol agents
by chitosan, alginate, and other important biopolymers as a novel strategy for alleviating plant biotic stresses. Int. J. Biol.
Macromol. 2022, 222, 1589–1604. [CrossRef]

19. Kumar, S.; Nehra, M.; Dilbaghi, N.; Marrazza, G.; Hassan, A.A.; Kim, K.-H. Nano-based smart pesticide formulations: Emerging
opportunities for agriculture. J. Control. Release 2019, 294, 131–153. [CrossRef]

20. Hao, L.; Lin, G.; Lian, J.; Chen, L.; Zhou, H.; Chen, H.; Xu, H.; Zhou, X. Carboxymethyl cellulose capsulated zein as pesticide
nano-delivery system for improving adhesion and anti-uv properties. Carbohydr. Polym. 2020, 231, 115725. [CrossRef] [PubMed]

21. Li, J.; Jiang, M.; Wu, H.; Li, Y. Addition of modified bentonites in polymer gel formulation of 2, 4-d for its controlled release in
water and soil. J. Agric. Food Chem. 2009, 57, 2868–2874. [CrossRef]

22. Laftah, W.A.; Hashim, S. Preparation and Possible Agricultural Applications of Polymer Hydrogel Composite as Soil Conditioner.
Adv. Mater. Res. 2013, 626, 6–10. [CrossRef]

23. Wang, J.; Wang, D.; Zhang, G.; Wang, Y.; Wang, C.; Teng, Y.; Christie, F. Nitrogen and phosphorus leaching losses from intensively
managed paddy fields with straw retention. Agric. Water Manag. 2014, 141, 66–73. [CrossRef]

24. Kabir, S.; Sikdar, P.P.; Haque, B.; Bhuiyan, M.; Ali, A.; Islam, M. Cellulose-based hydrogel materials: Chemistry, properties and
their prospective applications. Prog. Biomater. 2018, 7, 153–174. [CrossRef]

25. Devasia, L.; John, N. Carboxymethyl cellulose-starch-gelatin based hydrogel membranes for heavy metal removal. Int. J. Innov.
Sci. D Res. Technol. 2021, 6, 66–72.

26. Dolatabadi, M.; Naidu, H.; Ahmadzadeh, S. Adsorption characteristics in the removal of chlorpyrifos from groundwater using
magnetic graphene oxide and carboxy methyl cellulose composite. Sep. Purif. Technol. 2022, 300, 121919. [CrossRef]

27. Olad, A.; Zebhi, H.; Salari, D.; Mirmohseni, A.; Tabar, A.R. Slow-release npk fertilizer encapsulated by carboxymethyl cellulose-
based nanocomposite with the function of water retention in soil. Mater. Sci. Eng. C 2018, 90, 333–340. [CrossRef]

28. Omer, A.M.; Tamer, T.M.; Hassan, M.E.; Khalifa, R.E.; El-Monaem, A.; Eman, M.; Eltaweil, A.S.; Mohy Eldin, M.S. Fabrication of
grafted carboxymethyl cellulose superabsorbent hydrogel for water retention and sustained release of ethephon in sandy soil.
Arab. J. Sci. Eng. 2022, 48, 561–572. [CrossRef]

29. Bauli, C.R.; Lima, G.F.; de Souza, A.G.; Ferreira, R.R.; Rosa, D.S. Eco-friendly carboxymethyl cellulose hydrogels filled with
nanocellulose or nanoclays for agriculture applications as soil conditioning and nutrient carrier and their impact on cucumber
growing. Colloids Surf. A Physicochem. Eng. Asp. 2021, 623, 126771. [CrossRef]

30. Davidson, D.W.; Verma, M.S.; Gu, F.X. Controlled root targeted delivery of fertilizer using an ionically crosslinked carboxymethyl
cellulose hydrogel matrix. SpringerPlus 2013, 2, 318. [CrossRef] [PubMed]

31. Hou, X.; Li, Y.; Pan, Y.; Jin, Y.; Xiao, H. Controlled release of agrochemicals and heavy metal ion capture dual-functional
redox-responsive hydrogel for soil remediation. Chem. Commun. 2018, 54, 13714–13717. [CrossRef]

32. Nwabor, O.F.; Singh, S.; Marlina, D.; Voravuthikunchai, S.P. Chemical characterization, release, and bioactivity of eucalyptus
camaldulensis polyphenols from freeze-dried sodium alginate and sodium carboxymethyl cellulose matrix. Food Qual. Saf. 2020,
4, 203–212. [CrossRef]

33. Sarkar, D.J.; Singh, A. Base triggered release of insecticide from bentonite reinforced citric acid crosslinked carboxymethyl
cellulose hydrogel composites. Carbohydr. Polym. 2017, 156, 303–311. [CrossRef]

34. Sharif, S.N.M.; Hashim, N.; Isa, I.M.; Bakar, S.A.; Saidin, M.I.; Ahmad, M.S.; Mamat, M.; Hussein, M.Z.; Zainul, R.; Kamari, A.
The effect of swellable carboxymethyl cellulose coating on the physicochemical stability and release profile of a zinc hydroxide
nitrate–sodium dodecylsulphate–imidacloprid. Chem. Phys. Impact 2021, 2, 100017. [CrossRef]

http://doi.org/10.3390/nano12071102
http://doi.org/10.3390/nano11082033
http://doi.org/10.1002/slct.202102379
http://doi.org/10.14504/ajr.1.5.3
http://doi.org/10.1021/acs.jafc.7b02004
http://doi.org/10.1016/j.carbpol.2022.119876
http://doi.org/10.1002/ps.2780450409
http://doi.org/10.1016/j.ijbiomac.2021.04.159
http://doi.org/10.1016/j.ijbiomac.2022.09.278
http://doi.org/10.1016/j.jconrel.2018.12.012
http://doi.org/10.1016/j.carbpol.2019.115725
http://www.ncbi.nlm.nih.gov/pubmed/31888813
http://doi.org/10.1021/jf803744w
http://doi.org/10.4028/www.scientific.net/AMR.626.6
http://doi.org/10.1016/j.agwat.2014.04.008
http://doi.org/10.1007/s40204-018-0095-0
http://doi.org/10.1016/j.seppur.2022.121919
http://doi.org/10.1016/j.msec.2018.04.083
http://doi.org/10.1007/s13369-022-07352-w
http://doi.org/10.1016/j.colsurfa.2021.126771
http://doi.org/10.1186/2193-1801-2-318
http://www.ncbi.nlm.nih.gov/pubmed/23961392
http://doi.org/10.1039/C8CC07872F
http://doi.org/10.1093/fqsafe/fyaa016
http://doi.org/10.1016/j.carbpol.2016.09.045
http://doi.org/10.1016/j.chphi.2021.100017


Polymers 2023, 15, 440 26 of 31

35. Das, S.K.; Vishakha, K.; Das, S.; Chakraborty, D.; Ganguli, A. Carboxymethyl cellulose and cardamom oil in a nanoemulsion
edible coating inhibit the growth of foodborne pathogens and extend the shelf life of tomatoes. Biocatal. Agric. Biotechnol. 2022, 42,
102369. [CrossRef]

36. Vargas-Torrico, M.F.; von Borries-Medrano, E.; Valle-Guadarrama, S.; Aguilar-Méndez, M.A. Development of gelatin-
carboxymethylcellulose coatings incorporated with avocado epicarp and coconut endocarp extracts to control fungal growth in
strawberries for shelf-life extension. CyTA-J. Food 2022, 20, 27–38. [CrossRef]

37. Rachtanapun, P.; Luangkamin, S.; Tanprasert, K.; Suriyatem, R. Carboxymethyl cellulose film from durian rind. LWT Food Sci.
Technol. 2012, 48, 52–58. [CrossRef]

38. Seddiqi, H.; Oliaei, E.; Honarkar, H.; Jin, J.; Geonzon, L.C.; Bacabac, R.G.; Klein-Nulend, J.J.C. Cellulose and its derivatives:
Towards biomedical applications. Cellulose 2021, 28, 1893–1931. [CrossRef]

39. Zuppolini, S.; Salama, A.; Cruz-Maya, I.; Guarino, V.; Borriello, A. Cellulose amphiphilic materials: Chemistry, process and
applications. Pharmaceutics 2022, 14, 386. [CrossRef]

40. Bochek, A. Effect of hydrogen bonding on cellulose solubility in aqueous and nonaqueous solvents. Russ. J. Appl. Chem. 2003, 76,
1711–1719. [CrossRef]

41. Lavanya, D.; Kulkarni, P.; Dixit, M.; Raavi, P.K.; Krishna, L. Sources of cellulose and their applications—A review. Int. J. Drug
Formul. Res. 2011, 2, 19–38.

42. Altunina, L.; Tikhonova, L.; Yarmukhametova, E. Method for deriving carboxymethyl cellulose. Eurasian Chem. J. 2001, 3, 49–53.
[CrossRef]

43. Yang, X.H.; Zhu, W.L. Viscosity properties of sodium carboxymethylcellulose solutions. Cellulose 2007, 14, 409–417. [CrossRef]
44. Ibikunle, A.; Ogunneye, A.; Soga, I.; Sanyaolu, N.; Yussuf, S.; Sonde, O.; Badejo, O. Food grade carboxymethyl cellulose

preparation from african star apple seed (chrysophyllum albidum) shells: Optimization and characterization. Ife J. Sci. 2019, 21,
245–255. [CrossRef]

45. Dumitriu, C.; Voicu, S.I.; Muhulet, A.; Nechifor, G.; Popescu, S.; Ungureanu, C.; Carja, A.; Miculescu, F.; Trusca, R.; Pirvu, C.
Production and characterization of cellulose acetate–titanium dioxide nanotubes membrane fraxiparinized through polydopamine
for clinical applications. Carbohydr. Polym. 2018, 181, 215–223. [CrossRef]

46. Tilki, T.; Yavuz, M.; Karabacak, Ç.; Çabuk, M.; Ulutürk, M. Investigation of electrorheological properties of biodegradable
modified cellulose/corn oil suspensions. Carbohydr. Res. 2010, 345, 672–679. [CrossRef]

47. Vilela, A.; Cosme, F.; Pinto, T. Emulsions, foams, and suspensions: The microscience of the beverage industry. Beverages 2018, 4,
25. [CrossRef]

48. Ergun, R.; Guo, J.; Huebner-Keese, B. Cellulose. In Encyclopedia of Food and Health; Academic Press: Oxford, UK, 2016.
49. Almasei, H.; Ganbarzadeh, B.; Najafabadi, P. Improvement of physical properties of starch and biodegradable films of starch and

carboxymethyl cellulose. J. Food Sci. Technol. 2011, 6, 1–11.
50. Dashipour, A.; Khaksar, R.; Hosseini, H.; Shojaee-Aliabadi, S.; Ghanati, K. Physical, antioxidant and antimicrobial characteristics

of carboxymethyl cellulose edible film cooperated with clove essential oil. Zahedan J. Res. Med. Sci. 2014, 16, 34–42.
51. Kadry, G. Comparison between gelatin/carboxymethyl cellulose and gelatin/carboxymethyl nanocellulose in tramadol drug

loaded capsule. Heliyon 2019, 5, e02404. [CrossRef]
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