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Abstract: For over a decade, New Approach Methodologies (NAMs) such as structure-activity/read-
across, -omics technologies, and Adverse Outcome Pathway (AOP), have been considered within
regulatory communities as alternative sources of chemical and biological information potentially
relevant to human health risk assessment. Integration of NAMs into applications such as chemical
mixtures risk assessment has been limited due to the lack of validation of qualitative and quanti-
tative application to adverse health outcomes in vivo, and acceptance by risk assessors. However,
leveraging existent hazard and dose–response information, including NAM-based data, for mixture
component chemicals across one or more levels of biological organization using novel approaches
such as AOP ‘footprinting’ proposed herein, may significantly advance mixtures risk assessment.
AOP footprinting entails the systematic stepwise profiling and comparison of all known or suspected
AOPs involved in a toxicological effect at the level of key event (KE). The goal is to identify key
event(s) most proximal to an adverse outcome within each AOP suspected of contributing to a given
health outcome at which similarity between mixture chemicals can be confidently determined. These
key events are identified as the ‘footprint’ for a given AOP. This work presents the general concept,
and a hypothetical example application, of AOP footprinting as a key methodology for the integration
of NAM data into mixtures risk assessment.

Keywords: New Approach Methodologies (NAMs); Adverse Outcome Pathway (AOP); key event;
chemical mixtures; human health risk assessment

1. Introduction

Human health risk assessment of environmental mixtures is inherently complex as
there is often a lack of hazard and dose–response information for whole mixtures of con-
cern, or for individual component chemicals. Further, while the scientific community
has posited considerations for advancing mixture risk assessment such as evaluation of
combined exposures and effects associated with ‘real-life’ chemical mixtures (e.g., singlet
organics/inorganics, metals, polymers, UVCBs, etc.) encountered in environmental expo-
sure sources, and integration of intermediate measures to account for mixture effects (e.g.,
mixture assessment factor), strategies and frameworks resulting in practical application are
limited to date [1]. Part of the challenge is recapitulating what constitutes a representative
or generalizable whole mixture exposure (A “whole mixture” entails the complete profile of
parent chemicals, precursors, degredation products, and/or metabolites at individual con-
stituent proportions consistent with that found in either environmental exposure sources,
or experimentally designed in a laboratory.); this is due primarily to the complicated milieu
of chemicals commonly present in environmental media (e.g., water, soil, air). Further, once
exposed, internalized chemicals may transit, distribute, undergo metabolism and bioac-
cumulate within tissues in ways that lead to yet different ‘biological mixtures’ at a target
site. Characterizing such environmental fate, toxicokinetic and toxicodynamic properties
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of mixtures of chemicals using traditional animal bioassay approaches is methodologically
difficult and resource and time intensive.

New Approach Methodology (NAM) platforms and data, such as cell-based bioac-
tivity assays/-omics (e.g., transcriptomics, proteomics, metabolomics) and read-across
have been proposed for expediting human health risk assessment for over a decade [2–6].
However, formal NAM-based human health risk assessment application in the U.S. EPA,
Health Canada, and European regulatory entities have relied primarily on read-across
applications to inform evaluation of data-poor chemicals (for example, see Appendix
A at: https://cfpub.epa.gov/ncea/pprtv/recordisplay.cfm?deid=339035, accessed on 15
December 2022; also see: https://www.canada.ca/en/health-canada/services/chemical-
substances/fact-sheets/analogues-read-across-risk-assessment.html, accessed on 15 De-
cember 2022; the European Chemicals Agency provides significant resources support-
ing use of read-across at: https://echa.europa.eu/support/registration/how-to-avoid-
unnecessary-testing-on-animals/grouping-of-substances-and-read-across; accessed on
16 December 2022). Compared to traditional long(er)-term bioassays of large numbers of
animals, NAMs present more opportunities to test chemicals in in vitro cell based, short(er)-
term in vivo, or ex vivo tissue-based assays more rapidly, across greater concentration
ranges, and in animal sparing laboratory environments. Even with these advantages,
NAM-derived data have not been integrated to a significant degree in regulatory or assess-
ment applications for the evaluation of environmental chemicals, especially mixtures. As
such, informing potential human health outcomes associated with exposure to chemical
mixtures continues to be primarily reliant on single chemical-by-chemical hazard and
dose–response information and component-based mixtures approaches [7,8].

An important consideration in the application of NAM-derived information in mix-
tures assessment is that with the exception of pharmaceuticals, hormone therapies, and
some pesticides, most environmental chemicals were not typically designed or intended
to specifically interact with biological targets in humans or ecological species. In general,
in contrast to many pharmacological agents with relatively specific molecular or cellular
targets or bioactivities, environmental chemicals commonly induce a complex profile of
biological perturbations. Exposure to an environmental chemical at a given dose level
may result in activation and/or inhibition of a diverse mix of receptor-dependent and
–independent pathways that lead to complex bioactivities and ultimately a broad landscape
of health outcomes. The myriad of kinetic and dynamic pathway perturbations that or-
chestrate an adverse tissue or organ response have traditionally been evaluated for human
health assessment under a number of related constructs in the U.S. EPA, such as mode
or mechanism of action [8–10]. However, the toxic mode/mechanism of action concept
has subsequently been integrated and expanded under the Adverse Outcome Pathway
(AOP) paradigm [11]. AOPs were first developed for the purpose of characterizing toxicity
pathways in ecological species [12] but have since been posited as the preferred modality for
structured qualitative and quantitative description of biological events spanning the entire
exposure to outcome continuum, from a molecular initiating event (MIE), through one or
more intermediate key events culminating in an adverse health outcome at the organismal
level, up to population level dynamics for humans and ecological species [13–16]. While
many environmental chemicals induce complex biological perturbations at a mechanis-
tically granular level of organization, AOPs are commonly represented as unbranched
(i.e., linear) ‘if this then that’ flow of key events [11–16]. More recently, the focus in AOP
research has shifted to AOP network mapping, where the interaction of two or more AOPs
are causally linked to the elicitation of an adverse health outcome, including interactions
between key events of contributing AOPs [17,18].

https://cfpub.epa.gov/ncea/pprtv/recordisplay.cfm?deid=339035
https://www.canada.ca/en/health-canada/services/chemical-substances/fact-sheets/analogues-read-across-risk-assessment.html
https://www.canada.ca/en/health-canada/services/chemical-substances/fact-sheets/analogues-read-across-risk-assessment.html
https://echa.europa.eu/support/registration/how-to-avoid-unnecessary-testing-on-animals/grouping-of-substances-and-read-across
https://echa.europa.eu/support/registration/how-to-avoid-unnecessary-testing-on-animals/grouping-of-substances-and-read-across
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One of the initial steps in any component-based mixtures assessment is grouping
chemicals based on their similarity of toxic action [8,9]. Chemicals exhibiting a toxicological
commonality have been described previously as sharing a common adverse outcome [19], a
common mode of action [8], and/or are characterized as a common mechanism group [10].
An important nuance in the various pathway-based constructs is whether toxicokinetics
are or are not considered part of an adverse outcome continuum or mode or mechanism
of toxic action. Indeed, Price et al. (2019) separated toxicokinetics and toxicodynamics
associated with key-event based chemical behavior into separate categories in an integrated
adverse exposure-outcome pathway (AEP-AOP) schema [20]. For the purposes of the
AOP footprinting approach, toxicokinetics are considered part of a source-to-outcome
continuum that can be leveraged in evaluation(s) of similarity across mixture component
chemicals.

Individual chemical pathway perturbation data from NAM platforms may facilitate
predictions or inferences of adverse health outcome(s) anticipated from a mixture expo-
sure in the virtual absence of traditional apical effect toxicity data. Once chemicals are
qualitatively grouped together, the greater challenge is determining whether and how the
NAM-based concentration-response data can be used to inform mixtures dose–response
assessment. For example, interpreting how a given level of perturbation in a non-apical
toxicokinetic process or toxicodynamic effect translates to incidence and/or magnitude
of a given adverse health outcome in an organism remains a challenge and a source of
uncertainty when using such data in risk assessment.

Chemicals co-occurring in mixtures may interact chemically and/or biologically to
produce effects that are greater than anticipated (e.g., synergy), less than expected (e.g.,
antagonism), or in an additive manner [8]. Additivity of chemicals in mixture may be
dose or response additive. In the U.S. EPA’s Supplementary Guidance for Conducting
Health Risk Assessment of Chemical Mixtures (2000), “chemicals can be considered as dose
additive if each chemical can be thought of as a concentration or dilution of every other
chemical in the mixture. The chemicals are assumed to behave similarly in terms of the
primary physiologic processes (uptake, metabolism, distribution, elimination) as well as
the toxicologic processes”. Conversely, response additivity is considered applicable when
a biological response to one mixture chemical is seemingly unaffected by the presence of
another; that is, they induce an adverse health outcome via pathways that are indepen-
dent [8]. Importantly, additivity of mixture chemicals has historically been evaluated at
the apical (phenotypic) end of an adverse outcome pathway (i.e., tissue/organ level effect).
However, with growing attention on use of NAM-based data to inform risk assessment
applications such as chemical mixture behavior, evaluation of additivity in biological sys-
tems has increasingly leveraged in vitro platforms (e.g., cell bioactivity; toxicogenomics). A
recent review by Martin et al. systematically reviewed over 1200 existent mixture studies,
spanning in vitro to in vivo study designs, available in the public domain, and found that
a default assumption of dose (or concentration) addition is supported across a diverse
landscape of chemical mixtures [21]. It should be cautioned however that evaluating hazard
and dose–response further upstream from the apical adverse outcome may lead to more fre-
quent interpretations of deviation from dose additivity (i.e., chemicals may not qualitatively
look biologically similar simply because of the inherent diversity of cellular/molecular
events at a mechanistic level of “hazard” understanding) [19]. Further, a given AOP may
include modules or nodes of key events that appear to deviate from dose additivity at
one or more point(s) along the pathway continuum yet exhibit dose additivity at other
points along the continuum. Thus, a key to qualitative ‘hazard’ grouping of chemicals is
the level of biological organization at which decisions regarding commonality are made.
Likewise, a critical consideration for an AOP-based quantitative evaluation of chemical
mixture additivity is where along the pathway, from MIE to adverse health outcome, are
such determinations made.
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While bioactivity pathways or networks are predominately diverse and complex at
and/or immediately downstream of a MIE (e.g., kinases/phosphatases; G-protein coupled
receptors [GPCRs]; oxidative stress/redox status), it has been empirically observed that
there are critical molecular/cellular pathway junctions that serve as a convergence point
for signaling and that these junctions are often a key event more proximally located to an
adverse outcome. A prime example was illustrated in the NAS’ 2008 report on “Phthalates
and Cumulative Risk Assessment: The Tasks Ahead” whereby several potential adverse
reproductive/developmental health outcomes in males (primarily experimental rats) were
proposed to occur via a number of different pathways (Figures 3 and 4 of the 2008 NAS
report, [19]). While the mechanisms proceeding from the various MIEs (e.g., androgen
receptor blockade or decreased androgen biosynthesis) entail unique bioactivities [22,23],
they ultimately impinge on the same downstream pathway junction or key event, for
example, decreased androgen signaling at the target tissue [19]. However, even with
comprehensive qualitative characterization of the source-to-outcome continuum in AOPs,
the greater challenge is how to quantify the biology across AOPs such that confident
predictions of health outcomes can be made. Thus, qualitatively identifying AOPs and
the critical intermediate key events and quantitatively characterizing the dose–response
relationships, across different levels of biological organization, for potentially diverse
landscapes of health outcomes associated with co-occurring environmental chemicals
will be paramount to advancing mixtures risk assessment in an evolving toxicity data
environment.

The AOP footprinting approach described below provides a novel framework for the
integration of diverse data types and sources with existent U.S. EPA component-based
mixtures risk assessment methodology (e.g., relative potency factor). Using qualitative
information across potentially different levels of biological organization, and quantitative
dose- or concentration-response data derived from NAM-based platforms, under an as-
sumption of dose additivity, AOP footprinting may facilitate a fundamental evolution in
chemical mixtures risk assessment.

2. Method: Adverse Outcome Pathway (AOP) Footprinting

The steps of the AOP footprinting approach involve multiple tasks or substeps and
are described below. The general steps are: (1) Survey, assembly, and evidence mapping
of existent toxicology data across mixture chemicals; (2) Assigning mixture chemicals
into adverse health outcome groupings; (3) Comparative evaluation of toxicokinetic (TK)
data between members of an adverse health outcome grouping (i.e., augmenting weight-
of-evidence for data-poor mixture chemicals through comparison of TK data to anchor
chemicals); (4) Identification and assembly of operant AOPs per health outcome; (5) AOP
footprinting; and (6) Component-based mixture risk assessment (e.g., development of
relative potency factors and associated AOP anchor chemical equivalent doses) within each
operant AOP; and calculation of a mixture risk estimate (Figure 1).
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Figure 1. AOP footprinting workflow. The general workflow starts with the assembly of all available
in vivo toxicity and in vitro NAM (e.g., cell-bioactivity; toxicogenomic) data and culminates in the
calculation of a mixture risk estimate via the development and application of relative potency factors
within each operant AOP identified for a given health outcome.

Step 1. Survey of existent toxicology data for mixture component chemicals

The types of data available for individual chemicals that comprise a mixture often
vary across a broad continuum, from those that have known adverse health outcomes
with comprehensive annotation of associated signal transduction pathways, to those where
virtually nothing is known beyond basic structure and limited physicochemical property
data. Thus, the initial step in the AOP footprinting approach is the comprehensive and
systematic collection and assemblage of all useful hazard and dose–response information
(at all levels of biological organization spanning mechanistic to adverse health outcome[s]),
toxicokinetic, and physicochemical property information, in this context are collectively
considered “toxicology” information. Many approaches and resources for systematic
collection, assembly and/or mapping of assessment relevant evidence are available in
the public domain. For example, the EPA’s CompTox Chemicals Dashboard (https://
comptox.epa.gov/dashboard/, accessed on 15 December 2022) provides diverse data, such
as empirical or predicted physicochemical properties, existent hazard effect and dose–
response (e.g., quantitative points-of-departure), and cell-based bioactivity (e.g., ToxCast)
on as many as 1.2 M structures that could serve as a critical starting point for data assembly
and evidence mapping across component chemicals identified in mixture.

Collection and collation of all available data in a standard reporting format that
facilitates subsequent comparative evaluation among chemicals of a given adverse health
outcome grouping, and, between chemicals of different adverse outcome groupings will

https://comptox.epa.gov/dashboard/
https://comptox.epa.gov/dashboard/
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provide the consistency and transparency needed for moving to the next steps below. More
importantly this initial literature survey and evidence mapping step may help identify data
gaps for chemicals and inform preliminary health outcome-based groupings.

Step 2. Adverse health outcome-based grouping of mixture component chemicals

The ab initio hazard/adverse health outcome data landscape of mixture chemicals
will be a key first determinant in a grouping strategy where pre-existent hazard data
will be the primary basis for initial assignment based on the weight-of-evidence (WOE).
It should be noted that both qualitative and quantitative component chemical data are
critical to the subsequent steps in the approach. Specifically, information that facilitates
qualitative grouping or binning of component chemicals is clearly an important objective for
subsequent AOP-based analysis. However, quantitative data that informs how chemicals
behave with one another and/or with biological targets (across potentially multiple levels
of biological organization) are paramount for key-event-based footprinting. For example,
additivity or deviations from additivity among mixture chemicals may be evaluated at
multiple points (i.e., Key Events [KEs] and [Key Event-Relationships [KERs]) along an
AOP; as such, characterization of what magnitude of change in say KE1 impacts KE2 in an
AOP is just as important as the qualitative observation that KE1 precedes KE2. Optimally,
an AOP construct and the corresponding quantitatively annotated AOP (i.e., qAOP) would
be identical however it has been observed that a qAOP model may not necessarily have the
same pathway structure as the AOP on which it is based [24].

Importantly, mixture chemicals with more replete databases are likely candidates to
serve as an ‘index chemical’ or ‘AOP anchor’ for a given AOP grouping (step 5 below); it
should also be noted that mixture chemicals with WOE supporting association with multi-
ple health outcomes warrant assignment to all relevant adverse health outcome groupings.
Although it would be optimal to make health outcome grouping decisions for mixture
component chemicals based on same/similar study designs and durations, indications
of same/similar phenotypic effects or non-apical biological perturbations in common cell
types, tissues, organs, and/or systems are key, irrespective of differences in in vivo and/or
in vitro repeat-exposure study design; single dose or concentration/acute duration studies
are of limited utility for grouping purposes as the toxicity of a mixture component chemi-
cal following long(er)-term repeated exposure is more informative for human health risk
assessment purposes. Clearly expert judgment will be involved in grouping decisions
based on study type and duration across component chemicals; transparent rationale is
essential to support grouping decisions. For most mixtures, there will be some component
chemicals that have sufficient apical effect data to support assignment to at least one ad-
verse health outcome grouping. However, invariably there will be mixture component
chemicals that lack repeat-exposure study data for proper grouping assignment at this
step. For component chemicals with in vitro NAM data only (e.g., cell-based bioactivity
assay data), decisions for health outcome group membership will likely be limited to those
cell types in which the chemical was evaluated (e.g., bioactivity in hepatocytes in culture
merits membership in a “liver” health outcome grouping). For those mixture component
chemicals that are essentially devoid of any useful hazard/dose–response data, across
any level of biological organization, it may be prudent to integrate other NAM platforms
such as structure-activity/read-across to identify suitable analog chemical(s) for which
hazard (i.e., adverse health effect domain) and dose–response data (e.g., point-of-departure;
effect doses) might be adopted as surrogate for the data-poor target chemical [25]. Alterna-
tively, algorithmic structure-activity tools and approaches such as Generalized Read-Across
(GenRA) might be leveraged to make direct predictions of these hazard and dose–response
parameters [26,27]. All mixture chemicals of concern, regardless of adverse health outcome
data status, move to step 3.

Step 3. Toxicokinetic profiling of mixture component chemicals

Environmental mixture chemicals may range from low to high rates of absorption into
systemic circulation, limited to broad tissue/organ distribution and bioavailability, and
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being virtually impervious to biotransformation in exposed human/mammalian popula-
tions up to generation of diverse arrays of primary, secondary, and tertiary metabolites.
Characterization of the landscape of absorption, distribution, metabolism, and elimination
(ADME) properties (i.e., toxicokinetics [TK]) of mixture chemicals can be highly informa-
tive for grouping purposes. For example, profiling the array of parent and metabolite
species resultant from biotransformation can inform comparative TK evaluation between
mixture chemicals. Chemicals with similar TK profiles, in particular similar metabolic
patterns/profiles, warrant consideration for grouping even in the virtual absence of adverse
health outcome data under step 2 above; or alternatively, TK data could be considered in
conjunction with validated NAM data to better inform or refine adverse health outcome
group membership for relatively data-poor mixture chemicals. Additionally, although it
will not be discussed at length here, it should be noted that abiotic degradation of chemi-
cals in environmental media is an important consideration that should not be ignored as
this fate pathway can profoundly impact mixture component chemical speciation and/or
proportion in potential exposure sources. Specifically, many environmental chemicals are
altered in various environments (e.g., high/low oxygen; heat; UV light; pH, etc.). As such,
it is prudent to ascertain, if possible, what mixture chemical species are represented in
exposure sources (e.g., surface/ground water; soil); this information could be critical in
subsequent characterization of toxicokinetics in human populations.

In this step, TK relevant information such as empirical or predicted absorption and
elimination coefficients, distribution parameters (e.g., volume of distribution; blood or
tissue half-life; etc.), plasma protein binding affinity, and in particular any information
regarding metabolite profile (from studies assembled in step 1) are compared between those
chemicals that were assigned to a hazard grouping in step 2 and those mixture chemicals
that could not be assigned due to lack of available adverse health outcome data (or NAM
data that inform potential health effects). The primary objective is to use the evaluation of
similarities and differences in TK properties among mixture chemicals to inform potential
assignment of ‘data-poor’ components to an adverse outcome grouping. That is, based
upon expert judgment, any ‘data-poor’ mixture chemical with a TK profile that is similar
to one or more candidate AOP anchor chemical(s) across assembled adverse outcome
groupings could be assigned to a given grouping and the qualitative and quantitative
toxicity data for the anchor chemical could be used to augment hazard WOE and/or dose–
response may be adopted as surrogate for use in the subsequent steps of the approach. Any
orphan mixture chemicals that remain unassigned to an adverse outcome grouping at the
conclusion of this step are flagged for data need(s) and removed from further consideration
in the AOP footprinting approach.

Step 4. Assembly of Adverse Outcome Pathway(s) for a mixture of chemicals

At this stage in the approach, there should be some general understanding of the
landscape of adverse health outcomes potentially associated with exposure to a given
mixture of chemicals. All mixture component chemicals with sufficient in vivo health
outcome, NAM, and/or toxicokinetic information should have been assigned to one or
more adverse outcome grouping(s) (in steps 2 or 3). In this step, mixture chemicals are
associated at the level of AOP. Specifically, all candidate AOPs associated with a given
adverse health outcome are reviewed and collected from extant sources such as the AOP
wiki (https://aopwiki.org/, accessed on 2 December 2022). While it would be optimal if
candidate AOPs are final or approved by an authoritative body such as the Organization
for Economic Cooperation and Development (OECD), it is recognized that information
underpinning pathway events may only occur in a draft or preliminarily proposed AOP
construct. In some cases, there may not even be an AOP available that formally organizes
biological data, identified for potential footprinting analysis in step 5. The user of the
AOP footprinting approach will need to make decisions about inclusion or exclusion of
‘AOP(s)’ on a case-by-case basis; transparent communication of the evidentiary basis for
AOP identification, and any associated uncertainties, will be key.

https://aopwiki.org/


Toxics 2023, 11, 37 8 of 20

It should be noted that there may be some variations in effect description or vernac-
ular in studies assembled (under step 1) versus the standard adverse outcome ontogeny
employed in the AOP wiki. In most cases, the proper adverse outcome linkages should
be apparent however expert judgment may be needed in edge cases (e.g., ‘hepatocellular
injury’ versus liver ‘apoptosis’ or ‘necrosis’). In such instances, transparency in decisions
regarding adverse outcome identification, as per AOP standard designation, would need
to be clearly communicated in application of this approach. In the AOP wiki, specific
health outcomes can be searched under the “view content” section and AOPs can be re-
viewed in tabular sequence and as part of proposed AOP network visuals. Each AOP
identified as having involvement in a specific adverse outcome grouping, is subjected to
AOP footprinting in step 5.

Step 5. AOP footprinting

Important considerations for any evaluation of human health pathway-based infor-
mation include being clear about: (1) the beginning and end (i.e., termini) of a signaling
pathway; and (2) directionality of the signal transduction. The scientific community does
not have an accepted standard approach for identifying what constitutes beginning and
end, upstream/downstream, “apical”, etc., as such, parameters need to be clearly communi-
cated for application context. For the purposes of AOP footprinting, the beginning/starting
point is considered that event that translates a dose or concentration into some subsequent
biological perturbation or action in a target tissue. In AOP parlance this is commonly
referred to as the molecular initiating event (MIE). An adverse outcome (AO) or effect is
considered the end or phenotypic terminus of an AOP at the organism level. The movement
of signal from an MIE through one or more KE(s) to an AO, in this approach, is considered
moving “downstream”. Therefore, movement along the source-to-outcome continuum of a
given AOP from MIE toward AO will be referred to as “forward” or “downstream” and
conversely, moving from any node or event in a retrograde fashion (e.g., AO toward an
immediately upstream KE) is considered to be moving “backward” or “upstream”. Under
those parameters, the overarching principal of AOP footprinting is the stepwise profiling
and comparison of AOPs between the group anchor chemical and all other candidate
members of the AOP grouping at the level of key events starting at the adverse health outcome
and moving backward from the most downstream key event to the molecular initiating event. The
general steps of this AOP footprint approach are: (5.1) comparatively evaluate all existent
AOPs suspected of involvement in a given adverse health outcome (identified in step 4
above) at the level of key events (Figure 2).
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Figure 2. General Adverse Outcome Pathway (AOP) footprint process. For each individual AOP
identified in step 4, in step 5, ‘footprinting’ entails the systematic retrograde evaluation of key events
between an AOP anchor chemical and other members of the specific AOP grouping. The most
downstream key event (i.e., most proximal to the adverse outcome [AO]) that is shared between the
AOP anchor chemical and group members and has available dose-/concentration-response data, is
identified as a candidate AOP ‘footprint’. It should be noted that although the hypothetical AOP
shown is tabular/linear in sequence, for simplicity of interpretation, in practice there will likely
be diversity in KEs the further upstream (i.e., toward earlier KEs and the MIEs) one moves up a
given AOP.
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Beginning at the most downstream key event(s) for each health outcome specific
AOP, systematically compare key events across to identify commonalities (i.e., biological
perturbations that might be a convergence point for two or more AOPs); continue “up”
(i.e., retrograde) each AOP toward the MIE(s) and identify each instance of common key
event across AOPs. If at the conclusion of this comparative step there are no evident
convergence points across AOPs (or within an AOP network), then each AOP will move
to the next step as individual pathways; (5.2) for each AOP, identify anchor chemicals
that have the most replete biological databases (ideally spanning from MIE to AO) where
and when feasible; these will likely be the same mixture chemicals identified as candidate
anchor chemicals based on robustness of adverse health outcome data in step 1; it should
be noted that an AOP anchor chemical may not necessarily be the most potent among
the group but rather the most well studied or characterized biologically as relevant for
the target health outcome; (5.3) based on data-driven decisions made in 5.1, identify the
most downstream key event(s) within a given AOP for an anchor chemical with weight-
of-evidence (WOE) supporting a causal relationship to a given adverse outcome (i.e., the
adverse health outcome either will not occur without said key event or at least the incidence
and/or magnitude of the outcome is significantly diminished without it); this key event is
the ‘footprint’ for a given AOP; (5.4) mixture chemicals within each adverse health outcome
grouping are then evaluated for qualitative evidence of key event footprint(s) and assigned
to the appropriate ‘footprint’ category based on similarity to the AOP anchor chemical; and
(5.5) the AOP footprint dose- or concentration-response relationship(s) for each mixture
chemical within a footprint category are then used to evaluate mixture dose additivity
for that AOP via a component-based mixture assessment approach (e.g., relative potency
factor; see step 6 below).

Step 6. Component-based Mixtures Assessment: Relative Potency Factors

The Relative Potency Factor (RPF) is one of several component-based mixtures assess-
ment approaches applied under an assumption of dose additivity [8]. A key criterion for
application of RPFs is that each mixture component chemical has dose–response data for the
same toxicological effect or mode of action available for comparison to an index chemical
(i.e., AOP group anchor). Additionally, application of the RPF method typically requires
that the shape and slope of the dose–response functions for each mixture component are
congruent. This is because scaling potency for an effect between two chemicals is treated
as if mixture chemicals are dilutions of one another, at least within the range of effect or
response of interest (i.e., doses at maximal effect or below No-Observed-Adverse-Effect-
Levels [NOAELs] would not be informative). An important nuance that bears consideration
is if a mixture or specific AOP grouping consists of partial receptor agonists. Specifically,
for chemical mixtures with components that demonstrate affinity for receptor binding (e.g.,
Peroxisome Proliferator Activated Receptor (PPAR), Pregnane X Receptor (PXR), Liver X
Receptor (LXR), Estrogen Receptor (ER), etc.), those mixture components with dose-effect
levels that exceed the maximal effect of the least potent member present in the mixture,
cannot be calculated. This is particularly challenging for mixtures containing partial recep-
tor agonists/antagonists where chemicals often have differing maximal effects for a given
receptor-based AOP. Scholze et al. [28] proposed a pragmatic solution that extrapolates the
toxic units of partial agonists to effect levels beyond their maximal efficacy. This adjust-
ment may be considered for mixtures that include components with data suggesting or
demonstrating partial receptor agonism/antagonism.

Recognizing that quantitative exposure-response information assembled for members
of a given AOP footprint grouping may derive from studies of different type (e.g., in vivo
or in vitro) and/or duration (e.g., short-term/subacute, subchronic, or chronic), the first
sub-step in step 6 of the approach is to harmonize the component chemical dose metric.
Optimally, for chemicals in an AOP footprint grouping, all doses are converted to a human
equivalent dose (HED). For example, the toxicity of some group members may have been
evaluated using feed or water exposures (e.g., ad libitum drinking water) in experimental
animals, commonly reported in ppm or mg/L, respectively. Study- or effect-based Lowest-



Toxics 2023, 11, 37 10 of 20

Observed-Adverse-Effect-Levels (LOAELs) or benchmark doses (BMDs) (Benchmark Dose
(BMD): A dose that produces a predetermined change in response rate of an effect (called the
benchmark response or BMR) compared to background [29].) from traditional experimental
animal assays would need to be converted to a corresponding HED using duration, species,
age/weight, and sex-specific dosimetric adjustment factors [30,31]. Further, the target-site
exposure may be different depending on what KE(s) are determined as critical in the
footprinting analyses. Multi-scale dosimetry may be necessary to better contextualize
the dose–response(s) across levels of biological organization. Clear communication of
assumptions, parameters, and corresponding target dose outputs are paramount.

For AOP footprint membership based on in vitro bioactivity (e.g., cell-based assays)
data, concentration-response information will need to be converted to corresponding esti-
mated human in vivo exposure doses using reverse dosimetry and in vitro-to-in vivo ex-
trapolation (IVIVE). IVIVE methods have been published broadly in the recent past [32–34];
also see https://ntp.niehs.nih.gov/whatwestudy/niceatm/comptox/ct-ivive/ivive.html,
accessed on 5 December 2022), as such a detailed description of the approach is not pro-
vided here. In general, IVIVE incorporates high(er)-throughput in vitro toxicokinetics
(e.g., protein binding; intrinsic hepatic clearance; unbound fraction in plasma), and in
some applications, human population level biological variability, into models to predict
in vivo external exposures [32]. The primary objective of reverse dosimetry applications
of IVIVE is to convert bioactive concentrations from in vitro assays into approximately
equivalent in vivo exposure doses (e.g., mg/kg-day). The initial dose conversion sub-steps
mentioned here are imperative for harmonization of AOP footprint dosimetry for mixture
component chemicals within a grouping for subsequent RPF calculations. For any mixture
component chemical that does not have information available to support an IVIVE/reverse
dosimetry conversion, a number of user-based options may be prudent such as using
surrogate data from another member of the AOP grouping, especially those that are similar
across structural, physicochemical, TK and/or biological similarity contexts. Alternatively,
short-term experimental assays (e.g., “short-term” refers to in vivo exposures of greater
than 24 h but less than 4 weeks in commonly used laboratory rodents; some literature refers
to this duration as “subacute”) could be performed to generate kinetic data necessary for
IVIVE/reverse dosimetry.

A related key consideration for RPF application in this approach is that comparison
to an AOP footprint anchor chemical may be informed not so much by a point estimate,
limited by experimental doses/concentrations tested (e.g., LO[A]EL for traditional study-
based footprint KE vs. LO[A]EL for an in vitro assay-based footprint KE), but rather by
a BMD. This is critical for RPF calculations as BMD modeling integrates the entirety of
a given dose- or concentration-response dataset and would necessitate the identification
of a dose associated with an AOP footprint event at an a priori determined benchmark
response (BMR), for example, BMR50 (e.g., dose at an AC50, EC50, or IC50) (AC50 or EC50
= concentration at which a chemical induced half-maximal effect compared to positive
control; IC50 is simply the converse; a concentration at which activity is reduced by 50%
compared to positive control.) or biologically based BMRX in the low(er)-dose region.
In practice, it would be optimal to calculate and present NAM-based RPFs (RPFNAM)
within an AOP footprint grouping based on two BMRs (i.e., RPFs based on BMDs at a
data-driven/expert-determined BMR for the footprint event, and RPFs at a BMD based on
a default such as BMR50 as a comparison) (Table 1).

https://ntp.niehs.nih.gov/whatwestudy/niceatm/comptox/ct-ivive/ivive.html
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Table 1. Suggested array of Benchmark Doses (BMDs) to calculate for chemical mixture members
within an AOP grouping. For a given AOP proposed to be involved in the elicitation of a specific
adverse outcome, the human equivalent dose apical effect BMD(s) and NAM-based human equivalent
dose BMDs should be calculated for all members of an AOP footprint grouping, where and when data
are available. It is recommended to calculate BMDs based on both data-driven/expert-determined
benchmark responses (BMR) appropriate for the type of data/effect, and a default such as a BMR50

as a comparison. ND = not determined.

AOP 1 Group
Member

Apical Effect
BMDX-HED

Data-Driven AOP
Footprint-Based
BMDX-NAM(HED)

Default AOP
Footprint-Based
BMDNAM50(HED)

A BMDX-HED BMDX-NAM(HED) BMDNAM50(HED)
B ND BMDX-NAM(HED) BMDNAM50(HED)
C ND BMDX-NAM(HED) BMDNAM50(HED)

Harmonizing the dose metric and utilizing BMDs optimizes comparison of the dosime-
try across chemicals in an AOP footprint grouping irrespective of the data type or source
(e.g., traditional assay- or NAM-based). In general, mixture components with dose–
response functions that are significantly different from an AOP group anchor should
not be included, as the interpretation of potency for effect/bioactivity will be inaccurate.
However, since environmental chemical bioactivity profiles are typically diverse, a com-
ponent chemical should then be considered within the context of other AOP footprint
groupings to ascertain if alternative footprint dose–response data are more suitable for
RPF application. Further, the approach does not preclude use of effect-based LOAELs, but
BMDs are preferred to ensure that same response point along dose-response functions are
used across AOP group members. It should also be noted that BMDs, that is, the central
tendency estimates, are suggested rather than a lower statistical bound of the BMD (i.e.,
BMDL) since confidence intervals associated with some effects across different levels of
biological organization can be quite large and may skew quantitative potency comparisons
between AOP footprint member chemicals.

Once the dose- or concentration-response data have been converted/harmonized to
human doses and BMD modeled for each member within an AOP footprint grouping (i.e.,
those group members with congruent dose–response shape/slope), RPFNAM(s) for each
component chemical of a given grouping are calculated as follows in Equation (1):

RPFNAM f or nth Mixture Chemical =
BMDx f or AOP f ootprint Anchor Chemical

BMDx f or nth Chemical in AOP f ootprint group
(1)

Since the units in the numerator and denominator of the ratio are the same (e.g.,
human equivalent BMDs), the resulting RPFNAM is a unitless numeric. In this approach,
the RPFNAM represents the potency of the nth member chemical for activity associated with
the AOP footprint relative to that of the AOP anchor chemical, for that AOP grouping.
An RPFNAM of 1 for example would indicate that a member chemical is equipotent to the
anchor chemical for an AOP footprint event. An RPFNAM of 0.5 would indicate that the nth

member chemical is half as potent as the AOP anchor for the footprint event; conversely,
an RPFNAM of 2 would indicate that the nth member chemical is twice as potent as the AOP
anchor.

The RPFNAM(s) for each AOP footprint group member are then used in conjunction
with empirical or modeled exposure information, for each corresponding mixture compo-
nent, in units consistent with the route (e.g., mg/kg-day for oral; mg/m3 for inhalation), to
calculate a NAM-based AOP anchor chemical equivalent dose (ACEDNAM) as presented in
Equation (2):

ACEDNAM = RPFNAM × AOP f ootprint member exposure (dose or concentration) (2)

The AOP-specific ACEDNAMs for each footprint member are calculated and then
summed within the grouping. This summed ∑ACEDNAM represents a total dose of the
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anchor chemical for a given AOP footprint. An AOP group-specific ∑ACEDNAM is then
multiplied by the ratio of the BMDX-HED for the apical health effect of the AOP anchor
chemical to the BMDNAM-HED (note: the user needs to be clear if a data-driven BMD or a
default BMD50 is used) for the footprint event of the AOP anchor chemical as presented in
Equation (3):

ACED = ∑ ACEDNAM × Apical e f f ect BMDX−HED f or AOP anchor chemical
BMDNAM−HED f or AOP f ootprint f or anchor chemical

(3)

The resulting ACED represents the estimated AOP-specific contribution of mixture
components to the overall risk of the specific health effect but represented as a dose scaled
for potency, relative to the AOP anchor chemical, across different levels of biological
organization (e.g., data-poor component chemical[s] in vitro to AOP anchor chemical
in vivo). This process is applied across all operational AOP groupings for a specified
health effect. The ACEDs across AOP footprint groupings are then summed to arrive at an
ACEDMIX for the specific health effect. At this juncture, the user has two options: (1) Use
the ACEDMIX in proper units for the purpose (e.g., mass/volume for a water concentration)
to compare directly to a Health-Based Benchmark (e.g., oral Reference Dose [RfD], Health
Advisory, or Maximum Contaminant Level Goal [MCLG]) for an AOP anchor chemical,
which presumably would be the most health protective value among anchor chemicals for
the specified apical health effect. That is, the ACEDMIX for a given health effect should be
the same effect (or at least similar; for example, a specified developmental effect that is part
of a constellation or syndrome of developmental effects) that underpins the derivation of
a corresponding health-based benchmark value. The approach may however be applied
across multiple health effect domains for comparison purposes where anchor chemical
health-based benchmark value(s) and AOP group data are available. An ACEDMIX that
exceeds a corresponding anchor-chemical specific health-based benchmark would suggest
potential for adverse health outcome(s) associated with exposure to the mixture;

ACEDMIX is <, =, or > an existent media- or site-specific Health-Based Benchmark (4)

or, (2) Rather than sum ACEDs to arrive at an ACEDMIX, use each AOP anchor chemical
ACED to map to the corresponding specific apical health effect dose–response curve
to estimate the response associated with the mixture chemicals in the specific footprint
grouping (Figure 3). Then, based on an assumption of independence (i.e., response addition)
across operational AOPs, individual AOP-specific responses are summed to arrive at an
estimated mixture-level response for a specified health effect.
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Figure 3. Hypothetical apical effect dose–response curves for AOP anchor chemicals A–C. Under
step 6 of the AOP footprinting approach, under an assumption of independence (i.e., response
addition), apical effect responses associated with each individual anchor chemical’s ACED across
operant AOPs may be summed to estimate the total response associated with exposure to the mixture.
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As with any chemical evaluation or assessment, discussion of uncertainties involved
in an AOP footprint analysis are requisite. For clarity, it is suggested that distinctions
are made between challenges associated with the qualitative aspects and quantitative
uncertainties that may impact interpretation in predicted joint toxicity of a mixture. Generic
examples of the former might include AOP membership, pathway-based WOE, absence of
an established AOP consistent with anticipated biology of the AO/health effect, lack of
AOP anchor chemical(s), etc. Examples of quantitative uncertainties might include lack of
data to inform multi-scale dosimetry, unanticipated dose–response influence of mixture
component-chemical KEs across a network of AOPs (e.g., presence of chemical in one AOP
impacts the kinetics of a chemical in another AOP), dose-dependent transitions in biology,
etc. Some standardized reporting format and pathway-based ontogeny would benefit clear
communication of the various uncertainties potentially included in an AOP footprinting
analysis.

3. Example Application of AOP Footprinting to a Hypothetical Chemical Mixture

To illustrate how AOP footprinting may significantly advance an approach for chemi-
cal mixtures risk assessment, consider a hypothetical mixture of six chemicals (A–F). Under
steps 1–2 of the AOP footprint process, chemicals A and D were identified to be active in
the liver based on available in vivo apical effect level weight-of-evidence (WOE) for sig-
nificantly increased incidence of hepatocellular injury/death across species and exposure
durations for the oral route. As such, chemicals A and D are identified as candidate AOP
group anchors (Figure 4). Chemicals B, C, E, and F were found to lack any traditional
in vivo assay-based information for adverse health outcomes in the liver. Steps 1–3 of
the approach however revealed NAM (e.g., cell-based bioactivity) data available for these
specific mixture chemicals that suggest the liver as a potential target of toxicity.
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Figure 4. AOP Network for hypothetical example mixture of components A–F. Under step 4 of
the AOP footprint process, based on traditional assay and/or NAM (e.g., evidence of bioactivity
consistent with key events) WOE across the mixture components, three operant liver AOPs (278, 273,
and 27) were identified for the specified health effect (e.g., increased liver injury). Data were also
used to confirm selection of AOP anchor chemicals (e.g., mixture components A and D for liver AOPs
278 or 273, respectively) and to support assignment of data-poor components (i.e., chemicals B, C,
E, and F) to the appropriate AOP grouping. Under step 5 of the process, an AOP footprint event
is identified; in this hypothetical mixture example the liver AOP footprint is ‘KE 55: hepatocellular
injury/death’ for both AOPs 278 and 273. Mixture component F is also a potential contributor to liver
injury associated with exposure to the mixture however due to lack of AO data and identification of
an AOP anchor chemical this component does not move on to step 6.
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Following evaluation of NAM data across all mixture chemicals in step 4, three
potential operant liver AOPs were identified (e.g., AOPs 273 [Mitochondrial complex
inhibition leading to liver injury], 278 [IKK complex inhibition leading to liver injury], and
27 [Cholestatic liver injury induced by inhibition of bile salt export pump]; see AOP Wiki
at https://aopwiki.org/, accessed on 5 December 2022) and subsequent AOP footprinting
in step 5 qualitatively supported the clustering of mixture components A, B, and C (Liver
AOP 278), and D and E (Liver AOP 273) as logical footprint groupings. Upon closer
examination of the available NAM data, chemical F appeared to be inducing an increase
in hepatocellular injury via an AOP (i.e., Liver AOP 27) that is distinctly different from
footprint group chemicals A–E (Figure 4). While chemical F may indeed be contributing to
an overall mixture risk of an adverse liver outcome, the AOP footprint approach may not
be suitable for chemical F since there were no apical health outcome data for this mixture
component, or an appropriate AOP anchor chemical. Chemical F would need to be flagged
for further data need(s). Short(er)-term repeat-dose animal studies may be optimal as they
are (relatively) animal sparing and expedient and may provide information that facilitates
identification of chemical F as a potential anchor chemical. In the event that sufficient
data were available for chemical F, contribution of AOP 27 to the overall interpretation of
mixture risk of liver injury might be accomplished by calculating the ACED associated with
chemical F and AO 357, and through an assumption of response addition (i.e., independent
action), integrating with the ACEDs for AOPs 278 and 273 in vitro.

For the Liver AOP 278 and AOP 273 footprint groupings, chemicals A and D are
confirmed as the anchor chemicals, respectively, based on robustness of WOE for AOP
events in step 5 (as well as elicitation of the specified adverse liver health outcome; identified
under steps 1–2). Systematic AOP footprinting for anchor chemical A and the proposed
group members B and C, for AOP 278, revealed a common AOP ‘footprint’; specifically, in
the hypothetical mixture, the liver injury footprint event for mixture chemicals A, B and C is
increased hepatocellular injury/death as it is the most downstream key event that is shared by
all three components and for which dose- or concentration-response data are available. For
liver AOP 273, although the molecular initiating event (MIE) and early KEs are distinctly
different from those of AOP 278 (see Figure 4), the footprint event for chemicals D and E
was also identified as increased hepatocellular injury/death.

Under step 6, relevant dose- and/or concentration-response data for AOP footprint
members of each grouping are converted to human equivalent doses. Obviously if human
epidemiological data had been available, the doses could have been used directly. How-
ever, since only traditional experimental animal assay data are available for AOP anchor
chemicals A and D, dosimetric adjustment to a human equivalent dose would proceed
based on current U.S. EPA risk assessment practice. For example, in the Recommended Use
of Body Weight3/4 as the Default Method in Derivation of the Oral Reference Dose [30], the
U.S. EPA endorses a hierarchy of approaches to derive human equivalent oral exposures
(i.e., human equivalent doses; HEDs) using data from laboratory animal species, with the
preferred approach being physiologically based toxicokinetic modeling. Other approaches
might include using chemical-specific information, without a complete physiologically
based toxicokinetic model. In the absence of chemical-specific models or data to inform
the derivation of human equivalent doses, the U.S. EPA endorses BW3/4 as a default to
extrapolate toxicologically equivalent doses of orally administered agents from laboratory
animals to humans.

For NAM data such as in vitro cell-based bioactivity, cell culture concentrations can be
converted to equivalent human external exposure doses using in vitro to in vivo extrapola-
tion (IVIVE) and reverse toxicokinetics (rTK). The resulting human administered equivalent
dose–responses (AEDs for NAM data; HEDs for experimental animal assay data) are sub-
sequently BMD modeled, where/when amenable to modeling, at a data-driven/expert
selected BMR (e.g., BMR10HED) for change from control for endpoints such as incidence in
liver injury, or BMD1SDAED for NAM data such as cell bioactivity, as well as BMR50AEDs for
NAM data (Table 2).

https://aopwiki.org/


Toxics 2023, 11, 37 15 of 20

Table 2. Component chemical BMDs for a hypothetical mixture of components A–E. Human
equivalent BMDs are modeled at a BMR appropriate for the apical effect type (e.g., BMR10 for inci-
dence of liver injury). BMDs are calculated for the AOP footprint event(s) based on the converted
administered equivalent dose (AED)-response (note: an AED is an estimated oral exposure dose
that results in an internal steady-state concentration in humans consistent with the in vitro con-
centration associated with a biological perturbation or activity). The preferred NAM-based BMR
is data-driven/expert-selected, in this example set at one standard deviation (1SD) change over
corresponding control; the BMR50 is also provided as a comparator however it is not required to
carry the default-based BMDs further unless desired by the user. The numerical values provided are
hypothetical and for illustrative purposes only.

AOP 278 Group
Member

Apical Effect
BMD10HED

Data-Driven AOP
Footprint-Based

BMD1SDAED

Default AOP
Footprint-Based

BMR50AED
A 0.3 mg/kg-day 0.08 mg/kg-day 0.4 mg/kg-day
B ND 0.01 mg/kg-day 0.08 mg/kg-day
C ND 0.7 mg/kg-day 1.5 mg/kg-day

AOP 273 Group
Member

Apical Effect
BMD10HED

Data-Driven AOP
Footprint-Based

BMD1SDAED

Default AOP
Footprint-Based

BMR50AED
D 0.02 mg/kg-day 0.03 mg/kg-day 0.08 mg/kg-day
E ND 0.009 mg/kg-day 0.05 mg/kg-day

RPFNAMs, based on the ratio between in vitro cell bioactivity data (e.g., hepatocellular
death; KE 55 in Figure 4) for the AOP footprint event for the AOP anchor chemical and
another member of the AOP grouping, are then calculated within each AOP footprint
grouping, as per Equation 1, using data-driven BMD1SDAEDs (Table 3). The RPFs are
then multiplied by the empirically determined or measured (or alternatively, predicted)
exposure for each AOP footprint member to obtain a corresponding ACEDNAM for Liver
AOP 278 and AOP 273 (Table 3). The footprint group ACED for Liver AOP 278 is then
derived by multiplying the sum of the ACEDNAMs by the ratio of the BMD10HED for
increased incidence of liver injury (i.e., AO 1549) associated with anchor chemical A to
the BMD1SDAED for increased hepatocellular death, also for anchor chemical A (Table 3).
The same calculation is performed for Liver AOP 273 however the BMDs used are based
on anchor chemical D. The anchor chemical equivalent dose for the mixture (ACEDMIX)
equals the sum of the ACEDs for Liver AOP 278 and AOP 273; in the hypothetical example
ACEDMIX = 0.56 + 0.4 = 0.96, rounded to one significant digit of 1.0 mg/kg-day.

Table 3. Calculation of RPFs, ACEDNAMs, and AOP footprint-specific ACEDs for a hypotheti-
cal mixture of components A–E. RPFNAM = Data-driven anchor chemical BMD1SDAED for AOP
footprint/data-driven BMD1SDAED for components in AOP footprint group; ACEDNAM = RPFNAM

× AOP footprint member exposure; ∑ACEDNAM = sum of group member ACEDNAMs; AOP foot-
print group ACED = ∑ACEDNAM × apical effect (e.g., liver injury) BMD10HED for the AOP anchor
chemical/data-driven anchor chemical BMD1SDAED for AOP footprint.

AOP 278 Group
Member RPFNAM

Exposure
(mg/kg-day)

ACEDNAM
(mg/kg-day)

AOP 278 Footprint
Group ACED
(mg/kg-day)

A 1 0.09 0.09
B 8 0.007 0.06
C 0.1 0.02 0.002

∑ACEDNAM = 0.15 0.56

AOP 273 Group
Member RPFNAM

Exposure
(mg/kg-day)

ACEDNAM
(mg/kg-day)

AOP 273 Footprint
Group ACED
(mg/kg-day)

D 1 0.4 0.4
E 3 0.05 0.2

∑ACEDNAM = 0.6 0.4



Toxics 2023, 11, 37 16 of 20

For illustrative purposes, mixture chemical A has an existent oral reference dose (RfD
in mg/kg-day) of 7.0 × 10−4 based on increased incidence of liver injury (observed in
subchronic duration studies in rats) derived from a point-of-departure (POD) of 0.2 mg/kg-
day and composite uncertainty factor (UF) of 300 (comprised of uncertainties associated
with human population variability [UFH of 10]; extrapolation of toxicity from animal-to-
human [UFA of 3]; and subchronic-to-chronic duration extrapolation [UFS of 10]). The RfD
represents a daily oral dose over a lifetime that is anticipated to result in no adverse effect
on the liver; doses above the RfD are anticipated to result in adverse effect(s), particularly in
the liver. The ACEDMIX of 1.0 mg/kg-day for increased liver injury can then be compared
to the RfD (7.0 × 10−4 mg/kg-day) for chemical A to ascertain if there is or is not concern
for liver injury due to exposure to the mixture of chemicals A–E. Clearly in the hypothetical
example, the total mixture ACEDMIX exceeds not only the RfD but even the POD for
liver injury, suggesting significant concern for liver effects associated with exposure to the
mixture. The potential alternative approach of mapping the ACEDs for components A
and D to their respective dose–response functions for liver injury, under and assumption
of pathway independence (i.e., response addition), would not be advisable as there is a
clear pathway convergence of AOPs 278 and 273 at the AOP footprint event (i.e., KE 55;
see Figure 4). Had AOP 27 been integrated into the analysis, there may have been an
opportunity to employ this alternative approach as this specific pathway does not share
KEs with AOPs 278 or 273 but likely contributes to the ultimate liver AO.

4. Discussion

Human biomonitoring studies for decades have indicated that we as individuals and
members of populations are exposed to mixtures of chemicals via the food or water we
ingest, the air we breathe, and/or human activity that puts us into contact with other
environmental matrixes or exposure sources (e.g., occupational/non-occupational dermal;
etc.) [35–37]. The CDC’s NHANES database has for years confirmed the presence of
mixtures of chemicals in human blood samples (please refer to https://www.cdc.gov/
nchs/nhanes/index.htm, accessed on 11 December 2022). Therefore, assessment of the
potential joint toxicity of chemicals co-occurring in humans is of paramount importance.
Additionally, other than well-characterized chemical classes such as dioxins/furans and
PCBs/PAHs, formal EPA assessment of mixtures of chemicals has been virtually non-
existent to date. The primary limiting factors are: (1) Lack of hazard and dose–response
data for whole mixtures of concern; and (2) The reliance of component-based mixtures
assessment methods on traditional human epidemiological or experimental animal apical
effect data. This highlights the necessity for leveraging NAMs in mixtures assessment
approaches.

To date, integration of NAMs into risk assessment has predominately been in the form
of qualitative data-gap filling or augmenting hazard-based WOE. More recently, research
studies have focused on quantitative applications of NAMs such as identification of cell-
based and short-term whole animal bioactivity or -omics based points-of-departure for
potential use in derivation of cancer or non-cancer toxicity values, or risk-based metrics
such as a bioactivity-exposure ratios [38,39]. This type of work demonstrates opportunities
to significantly advance the science of hazard and dose–response assessment, even in the
virtual absence of traditional data types. In a mixtures assessment context, the integration of
qualitative and quantitative data across different levels of biological organization, including
NAMs, under a structured pathway annotation construct such as Adverse Outcome Path-
way (AOP) may provide a foundation for fundamentally shifting the chemical mixtures
risk assessment paradigm [40].

The proposed advancement, suggested in general by this AOP footprinting approach,
in using different data streams/types in chemical mixtures risk assessment is three-fold;
for one, leveraging NAM data places less reliance on the availability of traditional long(er)-
term animal bioassay data which is more resource intensive and less timely. As such,
there are greater opportunities to incorporate more chemicals into a mixture evaluation

https://www.cdc.gov/nchs/nhanes/index.htm
https://www.cdc.gov/nchs/nhanes/index.htm
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by using NAM (e.g., in vitro and/or short-term in vivo bioactivity) data. Second, existent
component-based mixtures methodology consistent with U.S. EPA guidance and practice
is suited to evaluate joint toxicity of chemicals using new(er) data types; no new mixtures
dose–response approaches are needed. That is, approaches such as the relative potency
factor are ideal for evaluation of mixture component chemical dose–response no matter
where along an AOP continuum the potency comparisons are made, assuming some level
of congruency of dose–response shape and slope across chemicals. For those mixture
component chemicals with statistically different dose–response functions, an alternative
method may need to be considered based on assumptions of additivity. Lastly, in contrast
to current AOP theory which posits a stressor agnostic description of a pathway from the
MIE to AO, the footprinting approach presented in this work is optimized by identification
of well-characterized (hazard and dose–response) chemicals as the “anchor” for each causal
AOP. In essence, the AOP footprinting method integrates elements of AOP and “mode of
action” where identification or description of the source to health outcome continuum is
consistent with both constructs; it is only in the systematic identification of and dependence
on an AOP anchor chemical that is more MOA-like. However, this is necessary so that key
event data for members of a given AOP footprint grouping can be contextualized with
respect to the anchor chemical such that estimation of an apical health outcome for the
mixture as a whole is possible.

A critically important aspect of the AOP footprinting approach is the bottom-up
evaluation of an AOP. Specifically, whether it be for evaluation of individual chemicals or for
mixtures assessment, it is posited that a more logical approach to assessment application(s)
is to base qualitative hazard and quantitative dose–response interpretations on key events
that are more proximally located to the actual health outcome of concern, regardless of level
of biological organization from which data are sourced. While MIEs and earlier key events
are important to characterize, particularly if that is the only bioactivity data available for
a data-poor chemical, the qualitative diversity of key events earlier in an AOP may often
suggest biological profiles that are different from chemical to chemical. That is, for many
signal transduction pathways the “signal” (e.g., MIEs or early key events) may appear to be
dissimilar among chemicals postulated to impact the same health outcome, however nearer
to the terminus of the same signaling pathway(s) there is greater likelihood of observing
similarity or likeness across chemicals due to pathway convergence. These convergence
points are commonly more proximal to the effected phenotypic cell population, tissue,
and/or organ associated with a chemical insult. As such, particularly when evaluating
whether mixture chemicals belong to a similarity grouping (e.g., AOP footprint grouping),
starting at the AO, or most downstream key event for which data are available, and working
backwards “up” the AOP, for a given grouping of chemicals, should more often than not
lead to identification of one or more key events (e.g., convergence points) as candidate
AOP footprints on which joint toxicity of the mixture can be evaluated.

There will be challenges associated with practical application of the AOP footprinting
approach such as general availability of data for mixture component chemicals including
NAM-based data from validated methods, existence of approved AOPs to incorporate
into the evaluation or flexibility to propose de novo AOPs, dose–response complexities
(e.g., dose-dependent transitions in key event behavior; different shapes and/or slopes of
dose–response functions between key events in an AOP, or between key events and the
AO; etc.), amenability of dose–response data to benchmark dose modeling, and variable in-
terpretations of dose additivity, or deviations from additivity (e.g., synergism, antagonism),
along a given AOP. These issues are not unique to AOP footprinting or even the use of
NAMs in general; the challenges will likely be case-specific and simply require transparent
communication of assumptions and uncertainties in the analysis. Discovery of strengths
and limitations of the AOP footprinting approach will only be realized through practical
example applications, which will be the focus of work moving forward.

Funding: This research received no external funding.



Toxics 2023, 11, 37 18 of 20

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No data were derived de novo for this manuscript. All references to
data sources proposed for use in the methodology have been cited or linked in-text.

Acknowledgments: The author would like to thank and recognize Glenn Rice, Marian Olsen, John
C. Lipscomb (retired), Linda Teuschler (retired), Jane Ellen Simmons (deceased), and Jeff Swartout
(deceased) for inspiration over the years in chemical mixtures risk assessment.

Conflicts of Interest: The views and opinions expressed in this manuscript are those of the author
and may not necessarily represent the views or policies of the U.S. EPA. The author has no conflict(s)
of interest to declare in the work presented.

References
1. Drakvik, E.; Altenburger, R.; Aoki, Y.; Backhaus, T.; Bahadori, T.; Barouki, R.; Brack, W.; Cronin, M.T.D.; Demeneix, B.; Hougaard

Bennekou, S.; et al. Statement on advancing the assessment of chemical mixtures and their risks for human health and the
environment. Environ. Int. 2020, 134, 105267. [CrossRef] [PubMed]

2. Parish, S.T.; Aschner, M.; Casey, W.; Corvaro, M.; Embry, M.R.; Fitzpatrick, S.; Kidd, D.; Kleinstreuer, N.C.; Lima, B.S.; Settivari,
R.S.; et al. An evaluation framework for new approach methodologies (NAMs) for human health safety assessment. Regul. Toxicol.
Pharmacol. 2020, 112, 104592. [CrossRef] [PubMed]

3. Kavlock, R.J.; Bahadori, T.; Barton-Maclaren, T.S.; Gwinn, M.R.; Rasenberg, M.; Thomas, R.S. Accelerating the Pace of Chemical
Risk Assessment. Chem. Res. Toxicol. 2018, 31, 287–290. [CrossRef] [PubMed]

4. Cote, I.; Andersen, M.E.; Ankley, G.T.; Barone, S.; Birnbaum, L.S.; Boekelheide, K.; Bois, F.Y.; Burgoon, L.D.; Chiu, W.A.;
Crawford-Brown, D.; et al. The Next Generation of Risk Assessment Multi-Year Study-Highlights of Findings, Applications to
Risk Assessment, and Future Directions. Environ. Health Perspect. 2016, 124, 1671–1682. [CrossRef]

5. Kavlock, R.; Dix, D. Computational toxicology as implemented by the U.S. EPA: Providing high throughput decision support
tools for screening and assessing chemical exposure, hazard and risk. J. Toxicol. Environ. Health B Crit. Rev. 2010, 13, 197–217.
[CrossRef]

6. Collins, F.S.; Gray, G.M.; Bucher, J.R. Toxicology. Transforming environmental health protection. Science 2008, 319, 906–907.
[CrossRef]

7. Rider, C.V.; McHale, C.M.; Webster, T.F.; Lowe, L.; Goodson, W.H., 3rd; La Merrill, M.A.; Rice, G.; Zeise, L.; Zhang, L.; Smith, M.T.
Using the Key Characteristics of Carcinogens to Develop Research on Chemical Mixtures and Cancer. Environ. Health Perspect.
2021, 129, 35003. [CrossRef]

8. Environmental Protection Agency (EPA). Supplementary Guidance for Conducting Health Risk Assessment of Chemical Mixtures;
EPA/630/R-00/002; EPA, Risk Assessment Forum: Washington, DC, USA, 2000. Available online: https://cfpub.epa.gov/ncea/
risk/recordisplay.cfm?deid=20533 (accessed on 5 December 2022).

9. Environmental Protection Agency (EPA). Concepts, Methods and Data Sources for Cumulative Health Risk Assessment of Multiple
Chemicals, Exposures and Effects: A Resource Document; EPA/600/R-06/013F; EPA: Washington, DC, USA, 2007. Available online:
https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=190187 (accessed on 5 December 2022).

10. Environmental Protection Agency (EPA). Guidance on Cumulative Risk Assessment of Pesticide Chemicals That Have a Common
Mechanism Toxicity; EPA, Office of Pesticide Programs: Washington, DC, USA, 2002. Available online: https://www.epa.gov/
sites/default/files/2015-07/documents/guidance_on_common_mechanism.pdf (accessed on 5 December 2022).

11. Office for Economic Cooperation and Development (OECD). Revised Guidance Document on Developing and Assessing Adverse
Outcome Pathways. OECD Environment, Health and Safety Publications Series on Testing and Assessment No. 184. Joint Meeting
of the Chemicals Committee and the Working Party on Chemicals, Pesticides, and Biotechnology. ENV/JM/MONO(2013)6.
Paris, France. 2017. Available online: https://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/
mono(2013)6&doclanguage=en (accessed on 11 December 2022).

12. Ankley, G.T.; Bennett, R.S.; Erickson, R.J.; Hoff, D.J.; Hornung, M.W.; Johnson, R.D.; Mount, D.R.; Nichols, J.W.; Russom,
C.L.; Schmieder, P.K.; et al. Adverse outcome pathways: A conceptual framework to support ecotoxicology research and risk
assessment. Environ. Toxicol. Chem. 2010, 29, 730–741. [CrossRef]

13. Perkins, E.J.; Antczak, P.; Burgoon, L.; Falciani, F.; Garcia-Reyero, N.; Gutsell, S.; Hodges, G.; Kienzler, A.; Knapen, D.; McBride,
M.; et al. Adverse Outcome Pathways for Regulatory Applications: Examination of Four Case Studies With Different Degrees of
Completeness and Scientific Confidence. Toxicol. Sci. 2015, 148, 14–25. [CrossRef]

14. Villeneuve, D.L.; Crump, D.; Garcia-Reyero, N.; Hecker, M.; Hutchinson, T.H.; LaLone, C.A.; Landesmann, B.; Lettieri, T.; Munn,
S.; Nepelska, M.; et al. Adverse outcome pathway (AOP) development I: Strategies and principles. Toxicol. Sci. 2014, 142, 312–320.
[CrossRef]

15. Villeneuve, D.L.; Crump, D.; Garcia-Reyero, N.; Hecker, M.; Hutchinson, T.H.; LaLone, C.A.; Landesmann, B.; Lettieri, T.; Munn,
S.; Nepelska, M.; et al. Adverse outcome pathway development II: Best practices. Toxicol. Sci. 2014, 142, 321–330. [CrossRef]
[PubMed]

http://doi.org/10.1016/j.envint.2019.105267
http://www.ncbi.nlm.nih.gov/pubmed/31704565
http://doi.org/10.1016/j.yrtph.2020.104592
http://www.ncbi.nlm.nih.gov/pubmed/32017962
http://doi.org/10.1021/acs.chemrestox.7b00339
http://www.ncbi.nlm.nih.gov/pubmed/29600706
http://doi.org/10.1289/EHP233
http://doi.org/10.1080/10937404.2010.483935
http://doi.org/10.1126/science.1154619
http://doi.org/10.1289/EHP8525
https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=20533
https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=20533
https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=190187
https://www.epa.gov/sites/default/files/2015-07/documents/guidance_on_common_mechanism.pdf
https://www.epa.gov/sites/default/files/2015-07/documents/guidance_on_common_mechanism.pdf
https://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2013)6&doclanguage=en
https://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2013)6&doclanguage=en
http://doi.org/10.1002/etc.34
http://doi.org/10.1093/toxsci/kfv181
http://doi.org/10.1093/toxsci/kfu199
http://doi.org/10.1093/toxsci/kfu200
http://www.ncbi.nlm.nih.gov/pubmed/25466379


Toxics 2023, 11, 37 19 of 20

16. Edwards, S.W.; Tan, Y.M.; Villeneuve, D.L.; Meek, M.E.; McQueen, C.A. Adverse Outcome Pathways-Organizing Toxicological
Information to Improve Decision Making. J. Pharmacol. Exp. Ther. 2016, 356, 170–181. [CrossRef] [PubMed]

17. Knapen, D.; Angrish, M.M.; Fortin, M.C.; Katsiadaki, I.; Leonard, M.; Margiotta-Casaluci, L.; Munn, S.; O’Brien, J.M.; Pollesch,
N.; Smith, L.C.; et al. Adverse outcome pathway networks I: Development and applications. Environ. Toxicol. Chem. 2018, 37,
1723–1733. [CrossRef] [PubMed]

18. Villeneuve, D.L.; Angrish, M.M.; Fortin, M.C.; Katsiadaki, I.; Leonard, M.; Margiotta-Casaluci, L.; Munn, S.; O’Brien, J.M.;
Pollesch, N.L.; Smith, L.C.; et al. Adverse outcome pathway networks II: Network analytics. Environ. Toxicol. Chem. 2018, 37,
1734–1748. [CrossRef]

19. National Academy of Science (NAS). Phthalates and Cumulative Risk Assessment: The Task Ahead; NAS, National Research Council,
Committee on the Health Risks of Phthalates, National Academies Press: Washington, DC, USA, 2008.

20. Price, P.; Leonard, J. A proposal for creating a taxonomy of chemical interactions using concepts from the aggregate exposure and
adverse outcome pathways. Curr. Opin. Toxicol. 2019, 16, 58–66. [CrossRef]

21. Martin, O.; Scholze, M.; Ermler, S.; McPhie, J.; Bopp, S.K.; Kienzler, A.; Parissis, N.; Kortenkamp, A. Ten years of research on
synergisms and antagonisms in chemical mixtures: A systematic review and quantitative reappraisal of mixture studies. Environ.
Int. 2021, 146, 106206. [CrossRef]

22. Lodish, H.; Berk, A.; Kaiser, C.A.; Krieger, M.; Scott, M.P.; Bretscher, A.; Ploegh, H. Cell Signaling I: Signal Transduction and
Short-Term Cellular Processes. In Molecular Cell Biology, 6th ed.; W.H. Freeman and Company: New York, NY, USA, 2007; pp.
623–664.

23. Thompson, C.J.; Ross, S.M.; Hensley, J.; Liu, K.; Heinze, S.C.; Young, S.S.; Gaido, K.W. Differential steroidogenic gene expression
in the fetal adrenal gland versus the testis and rapid and dynamic response of the fetal testis to di(n-butyl) phthalate. Biol. Reprod.
2005, 73, 908–917. [CrossRef]

24. Perkins, E.J.; Ashauer, R.; Burgoon, L.; Conolly, R.; Landesmann, B.; Mackay, C.; Murphy, C.A.; Pollesch, N.; Wheeler, J.R.;
Zupanic, A.; et al. Building and Applying Quantitative Adverse Outcome Pathway Models for Chemical Hazard and Risk
Assessment. Environ. Toxicol. Chem. 2019, 38, 1850–1865. [CrossRef]

25. Wang, N.C.; Jay Zhao, Q.; Wesselkamper, S.C.; Lambert, J.C.; Petersen, D.; Hess-Wilson, J.K. Application of computational
toxicological approaches in human health risk assessment. I. A tiered surrogate approach. Regul. Toxicol. Pharmacol. 2012, 63,
10–19. [CrossRef]

26. Helman, G.; Shah, I.; Williams, A.J.; Edwards, J.; Dunne, J.; Patlewicz, G. Generalized Read-Across (GenRA): A workflow
implemented into the EPA CompTox Chemicals Dashboard. ALTEX 2019, 36, 462–465. [CrossRef]

27. Helman, G.; Patlewicz, G.; Shah, I. Quantitative prediction of repeat dose toxicity values using GenRA. Regul. Toxicol. Pharmacol.
2019, 109, 104480. [CrossRef] [PubMed]

28. Scholze, M.; Silva, E.; Kortenkamp, A. Extending the applicability of the dose addition model to the assessment of chemical
mixtures of partial agonists by using a novel toxic unit extrapolation method. PLoS ONE 2014, 9, e88808. [CrossRef] [PubMed]

29. Environmental Protection Agency (EPA). Benchmark Dose Technical Guidance; EPA/100/R-12/001; EPA, Risk Assessment Forum:
Washington, DC, USA, 2012. Available online: https://www.epa.gov/risk/benchmark-dose-technical-guidance (accessed on 30
November 2022).

30. Environmental Protection Agency (EPA). Recommended Use of Body Weight3/4 as the Default Method in Derivation of the Oral Reference
Dose; EPA/100/R11/0001; EPA, Risk Assessment Forum: Washington, DC, USA, 2011. Available online: https://www.epa.gov/
risk/recommended-usebody-weight-34-default-method-derivation-oral-reference-dose (accessed on 2 December 2022).

31. Reagan-Shaw, S.; Nihal, M.; Ahmad, N. Dose translation from animal to human studies revisited. FASEB J. 2018, 22, 659–661.
[CrossRef]

32. Chang, X.; Tan, Y.-M.; Allen, D.G.; Bell, S.; Brown, P.C.; Browning, L.; Ceger, P.; Gearhart, J.; Hakkinen, P.J.; Kabadi, S.V.; et al.
IVIVE: Facilitating the Use of In Vitro Toxicity Data in Risk Assessment and Decision Making. Toxics 2022, 10, 232. [CrossRef]
[PubMed]

33. Thomas, R.S.; Philbert, M.A.; Auerbach, S.S.; Wetmore, B.A.; Devito, M.J.; Cote, I.; Rowlands, J.C.; Whelan, M.P.; Hays, S.M.;
Andersen, M.E.; et al. Incorporating new technologies into toxicity testing and risk assessment: Moving from 21st century vision
to a data-driven framework. Toxicol. Sci. 2013, 136, 4–18. [CrossRef] [PubMed]

34. Wambaugh, J.F.; Hughes, M.F.; Ring, C.L.; MacMillan, D.K.; Ford, J.; Fennell, T.R.; Black, S.R.; Snyder, R.W.; Sipes, N.S.; Wetmore,
B.A.; et al. Evaluating In Vitro-In Vivo Extrapolation of Toxicokinetics. Toxicol. Sci. 2018, 163, 152–169. [CrossRef] [PubMed]

35. Bocato, M.Z.; Bianchi Ximenez, J.P.; Hoffmann, C.; Barbosa, F. An overview of the current progress, challenges, and prospects of
human biomonitoring and exposome studies. J. Toxicol. Environ. Health B Crit. Rev. 2019, 22, 131–156. [CrossRef]

36. Steckling, N.; Gotti, A.; Bose-O’Reilly, S.; Chapizanis, D.; Costopoulou, D.; De Vocht, F.; Garí, M.; Grimalt, J.O.; Heath, E.; Hiscock,
R.; et al. Biomarkers of exposure in environment-wide association studies—Opportunities to decode the exposome using human
biomonitoring data. Environ. Res. 2018, 164, 597–624. [CrossRef]

37. Zare Jeddi, M.; Hopf, N.B.; Viegas, S.; Price, A.B.; Paini, A.; van Thriel, C.; Benfenati, E.; Ndaw, S.; Bessems, J.; Behnisch, P.A.; et al.
Towards a systematic use of effect biomarkers in population and occupational biomonitoring. Environ. Int. 2021, 146, 106257.
[CrossRef]

http://doi.org/10.1124/jpet.115.228239
http://www.ncbi.nlm.nih.gov/pubmed/26537250
http://doi.org/10.1002/etc.4125
http://www.ncbi.nlm.nih.gov/pubmed/29488651
http://doi.org/10.1002/etc.4124
http://doi.org/10.1016/j.cotox.2019.05.007
http://doi.org/10.1016/j.envint.2020.106206
http://doi.org/10.1095/biolreprod.105.042382
http://doi.org/10.1002/etc.4505
http://doi.org/10.1016/j.yrtph.2012.02.006
http://doi.org/10.14573/altex.1811292
http://doi.org/10.1016/j.yrtph.2019.104480
http://www.ncbi.nlm.nih.gov/pubmed/31550520
http://doi.org/10.1371/journal.pone.0088808
http://www.ncbi.nlm.nih.gov/pubmed/24533151
https://www.epa.gov/risk/benchmark-dose-technical-guidance
https://www.epa.gov/risk/recommended-usebody-weight-34-default-method-derivation-oral-reference-dose
https://www.epa.gov/risk/recommended-usebody-weight-34-default-method-derivation-oral-reference-dose
http://doi.org/10.1096/fj.07-9574LSF
http://doi.org/10.3390/toxics10050232
http://www.ncbi.nlm.nih.gov/pubmed/35622645
http://doi.org/10.1093/toxsci/kft178
http://www.ncbi.nlm.nih.gov/pubmed/23958734
http://doi.org/10.1093/toxsci/kfy020
http://www.ncbi.nlm.nih.gov/pubmed/29385628
http://doi.org/10.1080/10937404.2019.1661588
http://doi.org/10.1016/j.envres.2018.02.041
http://doi.org/10.1016/j.envint.2020.106257


Toxics 2023, 11, 37 20 of 20

38. Paul Friedman, K.; Gagne, M.; Loo, L.H.; Karamertzanis, P.; Netzeva, T.; Sobanski, T.; Franzosa, J.A.; Richard, A.M.; Lougee,
R.R.; Gissi, A.; et al. Utility of In vitro Bioactivity as a Lower Bound Estimate of In vivo Adverse Effect Levels and in Risk-Based
Prioritization. Toxicol. Sci. 2020, 173, 202–225. [CrossRef]

39. Farmahin, R.; Williams, A.; Kuo, B.; Chepelev, N.L.; Thomas, R.S.; Barton-Maclaren, T.S.; Curran, I.H.; Nong, A.; Wade, M.G.;
Yauk, C.L. Recommended approaches in the application of toxicogenomics to derive points of departure for chemical risk
assessment. Arch. Toxicol. 2017, 91, 2045–2065. [CrossRef] [PubMed]

40. Nelms, M.D.; Simmons, J.E.; Edwards, S. Adverse Outcome Pathways to Support the Assessment of Chemical Mixtures. In
Chemical Mixtures and Combined Chemical and Nonchemical Stressors: Exposure, Toxicity, Analysis, and Risk; Rider, C., Simmons, J.,
Eds.; Springer: Cham, Germany, 2018; pp. 177–201.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1093/toxsci/kfz201
http://doi.org/10.1007/s00204-016-1886-5
http://www.ncbi.nlm.nih.gov/pubmed/27928627

	Introduction 
	Method: Adverse Outcome Pathway (AOP) Footprinting 
	Example Application of AOP Footprinting to a Hypothetical Chemical Mixture 
	Discussion 
	References

