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Abstract: Hand, foot, and mouth disease (HFMD) is a highly contagious disease in children caused
by a group of enteroviruses. HFMD currently presents a major threat to infants and young children
because of a lack of antiviral drugs in clinical practice. Drug repositioning is an attractive drug
discovery strategy aimed at identifying and developing new drugs for diseases. Notably, reposi-
tioning of well-characterized therapeutics, including either approved or investigational drugs, is
becoming a potential strategy to identify new treatments for virus infections. Various types of drugs,
including antibacterial, cardiovascular, and anticancer agents, have been studied in relation to their
therapeutic potential to treat HFMD. In this review, we summarize the major outbreaks of HFMD
and the progress in drug repositioning to treat this disease. We also discuss the structural features
and mode of action of these repositioned drugs and highlight the opportunities and challenges of
drug repositioning for HFMD.
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1. Introduction

Hand, foot, and mouth disease (HFMD) is caused by a group of enteroviruses (EVs)
and was first described in 1948 [1]. It mostly occurs in children under 5 years of age
and usually manifests as herpes-like lesions on the palms of the hands and soles of the
feet, as well as in the mouth. However, a small number of infected children suffer from
myocarditis, pulmonary edema, sterile meningoencephalitis [2], and severe neurologic
and cardiorespiratory problems, potentially resulting in death, which have all also been
associated with HFMD.

Pathogenic EVs belong to a family of small RNA viruses, including poliovirus, cox-
sackievirus (CV), and enteric cytopathic human orphan virus (echovirus). EVs isolated
after the 67 types of the above-mentioned 3 groups of EVs were named according to the
number of enteroviruses with a system of consecutive numbers, that is, EVs 68, 69, 70, 71,
72, etc. There are more than 20 EVs that can cause HFMD, with Group A types responsible
for >90% of cases. The main EVs responsible for HFMD include CV (Group A types 4, 5,
6, 7, 9, 10, and 16 and Group B types 1, 2, 3, and 5), EV-A71 (EV71), and some serotypes
of echovirus. Although CVA16 and EV71 are the most common causes of HFMD, CVA6
and CVA10 have partially replaced these as the main pathogens associated with HFMD in
recent years in some places [3].

There is currently no specific drug for the treatment of HFMD, and drugs are usually
only used to treat the symptoms rather than eradicate the cause. Three capsid inhibitors
have been researched in clinical trials, including pleconaril, vapendavir (BTA798), and
pocapavir (V073), but none of them has been approved by FDA. Pleconaril was developed
to work against viruses in the picornaviridae family, including enterovirus and rhinovirus.
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However, due to the fact that it has been found to induce CYP3A enzyme activity, pleconaril
has not gained approval by the FDA. V-073, a more recently developed capsid inhibitor,
has also been demonstrated to have potent activity against polio virus and nonpolio
enterovirues. BTA-798 is a pirodavir-analog with significant activity against the A and
B groups of human rhinoviruses as well as enterovirues. It is currently being developed
for rhinovirus infections in high risk hosts and asthmatic subjects. Interferon (IFN) α

spray and intravenous infusion of ribavirin have demonstrated some efficacy in the early
stage of HFMD, but their adverse reactions and side effects may be problematic [4]. IFN-
α has broad-spectrum anti-viral, anti-tumor, and immunoregulatory functions. After
binding to cell surface receptors, it induces cells to produce a variety of anti-viral proteins,
thereby inhibiting virus replication in the cell, inhibiting the virus, and promoting recovery.
Ribavirin also has a wide range of antiviral effects. It is phosphorylated after entering the
cell, competitively inhibiting the synthesis of viral guanosine triphosphate and inhibiting
viral mRNA synthesis. However, the effects of ribavirin on host–cell nucleic acid synthesis
mean that it exhibits low selectivity, and it has also been associated with side effects such
as anemia and reproductive toxicity [5]. There is thus an urgent need for safe and effective
antiviral drugs to treat HFMD.

The Nobel laureate James Black said that “the most fruitful basis of the discovery of a
new drug is to start with an old drug”, and, accordingly, drug repurposing/repositioning
represents an attractive drug discovery strategy. Drug repositioning reduces the research
and development time, as in the case of remdesivir, which was approved for the treatment
of SARS-CoV-2 about 1 year after the outbreak of the pandemic [6]. Drug repositioning also
reduces research and development costs, which may help pharmaceutical companies turn
losses into profit and let a previously failed drug regain a new market, such as sildenafil [7].
Here, we summarize the major outbreaks of HFMD and the progress of drug repositioning
for the treatment of HFMD. We also discuss the structural features and modes of action of
repositioned drugs and highlight the opportunities and challenges of drug repositioning
for HFMD.

2. Major Outbreaks of HFMD

The prevalence of HFMD shows no obvious regionality. Meteorological factors
such as high temperature and humidity have been associated with HFMD susceptibility,
and although onset can occur throughout the year, it is more common in summer and
autumn and less common in winter. More than 90% of cases have been diagnosed in
children <5 years of age, indicating age-related susceptibility to and severity of HFMD [8].
Collective infections may occur in kindergartens, nurseries, and family clusters during
an epidemic. Highly contagious EVs are associated with a large proportion of hidden
infections, complex transmission routes, and rapid transmission. They can cause large-
scale epidemics in a short period of time, which are difficult to control.

An epidemic disease in children characterized by skin rashes and ulcers on the hands,
feet, and mouth was first reported in Toronto, Canada in 1957. CVA16 was subsequently
isolated from feces and throat swabs of patients with HFMD in 1958, and an outbreak of
HFMD occurred in Birmingham, England in 1959. Flewett christened this new disease
“hand, foot, and mouth disease”. EV71 was first isolated from children in California in
1969 and identified in 1974. EV71 infection has been responsible for HFMD epidemics since
1997, with fatal cases being especially frequent in the Asia–Pacific region. EV71 infection
was first discovered in Marseille, France in 2009, and genetic sequencing showed that the
responsible virus strain had 97% homology to the EV71 virus strain isolated in Singapore
in 2008. However, EV71 epidemics in the Asia–Pacific region differ from those in Europe,
with cases in Asia being widespread and often serious, compared with no major outbreaks
in Europe. EV71 and CVA16 are the two main pathogens responsible for HFMD; however,
the symptoms caused by CVA16 are generally mild, while EV71 may be fatal. Moreover,
CVA16 and EV71 produce alternate epidemics. For example, there was an outbreak of
HFMD in China in 2008, centered around Guangzhou, in which EV71 was the dominant
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virus, while CVA16 caused most cases in 2009, and EV71 re-dominated the epidemic by
2010. The causative pathogens of HFMD were subsequently identified as CVA16 and
EV71, as well as other enteroviruses, such as echovirus, CV A groups 4–7, 9, and 10 and
B groups 1–3, and 5. The global sequence of CVB3 shows a clustering trend specific to
geographic regions. For example, the CVB3 epidemic in Hong Kong in 2008 led to a large
number of patients with aseptic meningitis, and CVB3, isolated in Hong Kong, was found
to interact with isolates from Fuyang, China. CVA6 was first discovered in Finland in 2008,
and HFMD caused by CVA6 infection was subsequently discovered in Europe; however,
HFMD infections in Europe prior to 2008 were rarely caused by CVA6. Other less-common
causes of HFMD, including CVA4, CVB1, CVB5, and CVA10, are nonetheless worthy of
attention, especially CVA10. HFMD caused by CVA10 can be more serious than that caused
by EV71. The time periods and numbers of infections of major HFMD outbreaks caused by
different enterovirus subtypes in Asian and non-Asian regions are shown in Table 1.

Table 1. Major outbreaks of HFMD and their causes.

Virus Asia Others

EV71

Area Year Number
Infected Area Year Number

Infected

Malaysia 1997 41 [9] California 1974 UNKNOWN [10]

China 2008–2012 >7 million [11] Bulgarian 1975 700 [12]

Singapore 2008 29686 [13] Hungary 2000 UNKNOWN [14]

Taiwan 1998 1.5 million [15] Austria 2002 12 [16]

Japan 2010 2900 [17] Holland 2007 58 [18]

Vietnam 2005 173 [19] Denmark 2007 29 [20]

Russia 2013 UNKNOWN [21] Marseille, France 2009 3 [22]

CVB3

Hong Kong 2008 <100 [23] Poland 1999–2014 <55 [24]

India 2009–2010 15 [25]

Hebei, China 2010–2012 26 [26]

Shandong, China 2016 42 [27]

CVA16

Shanghai, China 2014–2016 144 [28] Toronto 1957 <100 [29]

Birmingham 1959 24 [30]

USA 1959 UNKNOWN [31]

Germany 2006 <500 [32]

CVA6

India 2009–2010 <89 [33] Finland 2008 <50 [34]

GZ, China 2010–2012 720 [35] France 2010 25 [36]

BJ, China 2015 <56 [37] Spain 2010–2012 <30 [38]

Thailand 2012 <600 [39]

CVA10

Japan 1981–1982 18 [40] USA 1950/2016 UNKNOWN [40]

Tajikistan 2004 UNKNOWN [40] Germany 2003 UNKNOWN [40]

China 2004–2008 >1000 [40] France 2010 <100 [40]

Russia 2004–2013 UNKNOWN [40] Chad 2006 UNKNOWN [40]

Singapore 2008 <100 [40] Austria 2007 UNKNOWN [40]

Spain 2008 UNKNOWN [40]

Central African Republic 2008 UNKNOWN [40]

CVB1

India 2007 UNKNOWN [41] USA 2006–2008 235 [42]

Korea 2008 >104 [43] Spain 2008 <100 [44]

Taiwan 2008–2010 >22 [41]
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Table 1. Cont.

Virus Asia Others

Area Year Number
Infected Area Year Number

Infected

CVB2 Jiangsu, China 2009 <111 [45] São Paulo State, Brazil 2004 <10 [46]

Cambodia 2012 <50 [47]

Thailand 2016 <20 [48]

CVA4

Taiwan 2004–2006 UNKNOWN [49] USA 1950 UNKNOWN [49]

BJ, China 2011 21 [50]

Hangzhou, China 2016 3 [51]

CVB5
Shandong, China 2005 >54 [52] Thuringia, Germany 2010 <7 [53]

Zhejiang, China 2013 <92 [54] Chiba Prefecture, Japan 2016 3 [55]

CVA9
Gansu, China 2005 <85 [56] Alberta, Canada 2010 174 [57]

Mossel Bay,
South Africa Dec 2015–Jan 2016 >26 [58]

3. Drug Repositioning for HFMD

EV71 is highly infectious to the central nervous system, resulting in a series of charac-
teristic clinical symptoms including encephalitis, aseptic meningitis, acute flaccid paralysis,
herpangina, acute hemorrhagic conjunctivitis, myoclonic jerks, headache, fever, and vomiting,
among which HFMD and herpangina are the most common. Most EV infections are generally
asymptomatic (approximately 50–80%) or produce mild, cold-like symptoms, and affected
patients recover naturally and produce antibodies. However, severely ill patients infected
with EVs are at high risk of dying from cardiopulmonary failure and extensive brain stem
injury. EV71 mostly affects the nervous system in children <5 years old, with the highest
incidence in children aged 1–2 years. Oral ingestion of the shed virus from the gastrointestinal
or upper respiratory tract of infected hosts or via vesicle fluid or oral secretions are the major
means by which the virus spreads. After ingestion, the virus replicates in the lymphoid tissue
of the lower intestine and the pharynx and spreads to the regional lymph nodes and then
multiple organs, including the central nervous system. EV71 mainly causes neurological
effects by inducing inflammation in the CNS, but not in other organs. Viral protease 3C
has been shown to inhibit innate immune involvement in multiple pathological processes of
EV71 by suppressing type I interferon responses. Several clinical observations provide clues
that some inflammatory mediators, including cytokines and chemokines, play an important
role in the pathogenesis of EV71-induced encephalitis and other complications. Despite the
potentially serious effects of EV71 infection, there are currently no specific antiviral drugs, and
there is thus an urgent need to identify suitable drugs. Drug repositioning provides a potential
means of achieving this goal. Various drugs have been investigated for their repurposing use
for HFMD, most of which are currently at the preclinical stages (Table 2).

Table 2. Approved drugs repurposed for HFMD.

Classification. Drug Company
(Action Date) Previous Use(s) Repurposed Use(s) Clinical Phases

Anti-fungal

Itraconazole (1) SANDOZ
(05/28/2004) deep fungi infection a broad-spectrum

enterovirus inhibitor Preclinical

Micafungin (2) FRESENIUS KABI USA
(05/17/2019) candida infection may target any step in the

early viral infection Preclinical

Amphotericin B (3) XGEN PHARMS
(04/29/1992) cryptococcus infection inhibit the production

of EV71 Preclinical

Anti-bacterial

Azithromycin (4) OAK PHARMS INC
(04/27/2007)

respiratory tract
infection

reduce the RNA and protein
levels of EV-71 Preclinical

Spiramycin (5) Odan Laboratories Ltd.
(12/31/1957) Respiratory infection inhibit virus RNA

replication Preclinical

Minocycline (6) FOAMIX
(10/18/2019)

broad-spectrum
antibiotic

suppress cytokine
productions and viral
protein expressions

Preclinical
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Table 2. Cont.

Classification. Drug Company
(Action Date) Previous Use(s) Repurposed Use(s) Clinical Phases

Cardiovascular System

Lovastatin (7) COVIS PHARMA BV
(06/26/2002) hypercholesterolemia reduce CAR mRNA

and protein Preclinical

Bosentan (8) PAR PHARM INC
(04/26/2019)

pulmonary
hypertension (PAH) reduce CAR mRNA Preclinical

Valsartan (9) LUPIN
(03/30/2015) anti-hypertension reduce CAR mRNA Preclinical

Amiloride (10) PAR PHARM
(01/22/1986)

liver cirrhosis, edema,
primary aldosteronism affect RNA elongation Preclinical

Carvedilol (11) TEVA
(09/05/2007)

heart failure and
essential hypertension

alleviate the dysfunction
caused by HFMD Preclinical

Formoterol (12) NOVARTIS
(09/25/2001) chronic asthma

a panentervirus inhibitor;
inhibit CVB3-induced

Myocarditis
Preclinical

Nicotine (13) DR REDDYS LABS SA
(11/27/1991) improve inflammation improve myocarditis caused

by CVB3 Preclinical

Ivabradine (14) AMGEN INC
(04/15/2015) heart failure reduce myocardial damage Preclinical

Olmesartan (15) DAIICHI SANKYO
(04/25/2002) antihypertensive inhibit the synthesis of NO

to treat viral myocarditis Preclinical

Atorvastatin (16) SANDOZ INC
(05/29/2012) a lipid-lowering drug reduce myocardial necrosis

and treate viral myocarditis Preclinical

Losartan (17) MERCK SHARP
DOHME (04/14/1995) antihypertensive

used as immunomodulators
to treat viral

myocarditis (VMC)
Preclinical

Captopril (18) MYLAN
(02/13/1996)

hypertension and heart
failure

reduce myocardial
calcification and fibrosis Preclinical

Milrinone (19) WEST-WARD PHARMS
INT (05/28/2002)

chronic congestive heart
failure

Enterovirus 71 Brain Stem
Encephalitis Preclinical

Nervous System

Fluoxetine (20) APNAR PHARMA LP
(08/02/2001) antidepressant inhibit CVB3 proliferation Preclinical

Valproic Acid (21) WOCKHARDT BIO AG
(07/01/1986) epilepsy improve myocarditis Preclinical

Anti-cancer

Gemcitabine (22) HOSPIRA
(07/25/2011)

a pyrimidine
anti-tumor drug binds to viral RNA Preclinical

Idarubicin (23) FRESENIUS KABI USA
(08/04/2009)

non-specific
anticancer drug

prevent the synthesis of
EV71 virus protein and RNA Preclinical

Imatinib Mesylate (24) NOVARTIS
(04/18/2003)

chronic myeloid
leukemia reduces cardiac fibrosis Preclinical

Antidiabetic and
Anti-obesity

Acarbose (25) WATSON LABS
(05/07/2008)

(non)insulin-dependent
diabetes

reduce EV71
intestinal infection Preclinical

Orlistat (26) CHEPLAPHARM
(04/23/1999)

an obesity
treatment drug

decrease the replication of
different viral pathogens Preclinical

Others

Chloroquine (27) SANDOZ
(11/30/1995) malaria

block the uncoating of EV71
and reduce viral
RNA synthesis

Preclinical

Methylene blue (28) PROVEPHARM SAS
(04/08/2016)

chemical indicator, dye,
and drug

destroy EV71’s viral proteins
and genome Preclinical

Arsenic Trioxide (29) ZYDUS PHARMS
(11/13/2018)

one of the
oldest poisons

reduce the viral load of
CVB3 RNA in the pancreas Preclinical

Cyclosporin (30) SUN PHARMA
GLOBAL (08/14/2018)

anti-rejection reaction of
liver, kidney, and heart

transplantation

reduce the degree of
myocardial calcification Preclinical

Cholic Acid (31) RTRX
(03/17/2015) peroxisomal disorders reduce the production of the

viral capsid protein VP1 Preclinical

Suramin (32) BAYER
treat sleeping sickness

caused by
trypanosomes

Inhibit the proliferation of
EV71 and CVA16 Phase 1

3.1. Repositioning of Antifungal Drugs

Gao et al., Xu et al., and Chonsaeng et al. recently considered the repositioning of
antifungal drugs and showed that itraconazole (ITZ) (1), micafungin (2), and amphotericin
B (3) had potential pharmacological activities against EV71 infection (Figure 1). ITZ was



Viruses 2023, 15, 75 6 of 19

detected by high-throughput screening assay [59] of 1280 clinical compounds in the FDA-
approved drug library to detect potentially effective drugs, among which ITZ demonstrated
good pharmacokinetics and safety [59]. ITZ is a new-generation triazole and is a highly-
efficient, broad-spectrum antifungal drug mainly used to treat systemic infections caused
by deep fungi. It can be combined with the fungal cytochrome P450 isozyme to inhibit the
synthesis of ergosterol. ITZ has also been reported to act as a broad-spectrum enterovirus
inhibitor, with an IC50 of 1.15 µM. Mutation of the 3A protein can cause ITZ resistance in
EV71, which strongly inhibits viral RNA replication or polyprotein processing [59].
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In addition, Chonsaeng et al. identified micafungin among 968 FDA-approved drugs.
Micafungin is an echinocandin antifungal drug from Coleophoma empetri obtained by
chemical synthesis, which shows good inhibitory activity against Candida spp., including
Candida albicans, as well as in vitro inhibitory activity against Aspergillus. The researchers
speculated that micafungin might target any step in early viral infection, with an EC50
of 2–10 µM. Although the mechanism of action of micafungin against EV71 infection
remains unclear, it does not appear to involve internal ribosome entry site (IRES)-dependent
translation or polyprotein processing involving 3Cpro, 2C, and 3A proteins [60].

Amphotericin B was found to be a potentially useful drug by Xu et al. on the basis of
combination therapy used to treat co-infection by fungi and viruses [61]. Amphotericin B
is a polyene antifungal drug used for systemic infections or infections of internal organs
caused by Cryptococcus and Aspergillus. Amphotericin B can effectively inhibit the
production of EV71, with an EC50 of 1.75 µM in Rhabdomyosarcoma (RD) cells and 0.32 µM
in HEK293 cells. Amphotericin B was shown to impair the binding and internalization of
EV71 virus to host cells, using western blotting, quantitative real-time polymerase chain
reaction, and virus-binding assay [61].

3.2. Repositioning of Antibacterial Drugs

CVA16 belongs to the enterovirus genus of the Picornaviridae family and is one of the
main pathogens of HFMD. CVA16 has recently been shown to cause secondary infections
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of the brain, lung, and heart and may even lead to fatal complications such as pneumonia,
myocarditis, and refractory shock.

Zeng et al. discovered that the clinically marketed antibiotic azithromycin (4) could
be used to treat EV71 and CVA16 infections (Figure 2). Azithromycin is mainly used
to treat respiratory tract, skin soft tissue, and urogenital system infections but has also
demonstrated antiviral activity against EV71. Azithromycin significantly reduced EV71
RNA and protein levels and probably acted by interfering with viral RNA replication [62].
Notably, azithromycin has been clinically proven to be safe in pregnant women, newborns,
and young children and may thus be particularly useful, given that HFMD mostly occurs in
children under 5 years of age. Notably, the combination of azithromycin with the macrolide
antibiotic spiramycin (SPM) (5) inhibited the replication of EV71 and CVA16 (Figure 2),
thereby exerting antiviral effects [62]. Their antiviral mechanisms appear to be similar, and
EV71 mutant strains resistant to SPM show similar resistance to azithromycin. Although
the specific mechanisms of these drugs are unknown, they are likely to produce antiviral
effects by inhibiting virus RNA replication.
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Liao et al. found that the antibiotic minocycline (6) had anti-inflammatory and im-
munomodulatory properties in infectious and inflammatory neurological disease models
(Figure 2). They, therefore, carried out a series of in vitro and in vivo experiments to
explore its effect on EV71 infection. Minocycline is a broad-spectrum antibacterial tetra-
cycline antibiotic that can be combined with tRNA to achieve bacteriostatic effects and
has the strongest antibacterial effect among tetracycline antibiotics. Unlike milrinone
(drug 19), which is mainly used to treat complications of EV71 infection with no obvious
anti-viral effect [63], minocycline reduced virus replication, specifically VP0 and VP2, while
double-dose treatment suppressed cytokine production and viral protein expression in
EV71-infected THP-1 cells [64].
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3.3. Repositioning of Cardiovascular Drugs

CVB3 is one of the most important causative factors of viral myocarditis, accounting
for 50% of cases. CVBs viruses can directly damage host cells, leading to an inflammatory
host response to viral infection, resulting in target organ tissue damage and dysfunction.
CVBs can harness different host cell processes including kinases, host cell-killing and cell-
eating machineries, matrix metalloproteinases, and miRNAs to promote disease. Although
recent improvements in treatment methods have significantly improved disease outcomes,
some patients still have poor treatment responses and relapse. The incidence and mortality
of CVB3-related viral myocarditis are increasing year by year. The clinical symptoms of
the disease vary in severity, ranging from no obvious symptoms to shortness of breath,
fatigue, chest tightness, cardiomyopathy, and even congestive heart failure and cardiogenic
shock. Unfortunately, there is still no effective treatment for this disease. However, some
FDA-approved drugs have been repurposed for viral myocarditis caused by CVB3 infection.
These drugs have different mechanisms of action and different therapeutic effects against
viral myocarditis. Since these drugs have already passed time-consuming and laborious
clinical trials and have been shown to be safe, the potential repurposing of these drugs for
CVB3 infection or viral myocarditis may save unnecessary costs and accelerate the research
and development time.

Lovastatin (7), bosentan (8), and valsartan (9) inhibit the replication of CVB3 by down-
regulating the expression of coxsackie-adenovirus receptor (CAR) mRNA and protein
(Figure 3). CVB3 requires the human CAR to infect the myocardium. Lovastatin is a
lipid-lowering drug, mainly used for the treatment of hypercholesterolemia, especially
in patients with elevated low-density lipoprotein (type II). Bosentan is a specific and
competitive low-molecular weight dual endothelin receptor blocker, mainly used for the
treatment of pulmonary hypertension. Valsartan is an angiotensin II receptor antagonist that
selectively blocks the binding of angiotensin II and angiotensin II type 1 receptor receptors,
thereby inhibiting vasoconstriction and aldosterone release, resulting in a hypotensive
effect. These three drugs, with completely different pharmacological effects, play important
roles in inhibiting the replication of CVB3 through a similar mechanism. Werner et al.
found that lovastatin decreased CAR mRNA and protein expression levels by up to 80%
and 19% (p < 0.01), respectively [65], in a concentration-dependent manner. In contrast,
bosentan drastically decreased CAR mRNA levels in HeLa cells and human umbilical vein
endothelial cells (HUVECs) by 80.2% (±4.6%) and by 66.3% (±12.6%), respectively [66],
while valsartan also reduced CAR mRNA in HUVECs and HeLa cells by up to 68.1%
(±8.7%) and 51.4% (±8.8%), respectively [66].

Assuming that CVB3 enters the host cell through the CAR, Gazina et al. discovered
that amiloride inhibited the enzymatic activity of CVB3 3Dpol in vitro [67], affecting RNA
elongation. Amiloride (10) is mainly used to treat liver cirrhosis, edema, and primary aldos-
teronism (Figure 3). It has strong sodium-excretion and potassium-sparing diuretic effects
and is mainly used to treat mild to moderate hypertension. Amiloride can block various
ion channels, including the Na+/H+ exchanger, acid-sensitive ion channels, Na+/Ca2+

exchanger, voltage-gated Na+ channels, and Ca2+ channels. Moreover, Amiloride can act
as a competitive inhibitor, competing with incoming nucleoside triphosphates and Mg2+,
resulting in inhibition of CVB3 RNA replication [67].

β-adrenoreceptor agonists can activate the p38 mitogen-activated protein kinase
(MAPK) pathway, leading to the expression of proinflammatory cytokines, further trig-
gering inflammation and apoptosis. Carvedilol (11) is a β-adrenoreceptor antagonist that
blocks β1- and β2-adrenoreceptors, inhibits activation of the p38 MAPK pathway [68],
and then down-regulates the expression of proinflammatory cytokines such as interleukin
(IL)-1β and IL-8 (Figure 3). Wang et al. also compared the roles of carvedilol and metopro-
lol for the treatment of viral myocarditis [68] and found that carvedilol improved cardiac
contractility and diastolic function, while metoprolol only improved contractile function,
indicating that carvedilol protects heart function by mechanisms other than inhibiting
β-adrenergic receptors. It may exert a variety of pharmacological effects, such as anti-
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oxidative stress and myocardial remodeling, but further studies are needed to confirm
these effects.
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Apart from drug screening, evidence-based medicine and retrospective analysis of
cases may also help researchers to identify approved drugs that can be repurposed for
EV71 infection, such as carvedilol, which blocks calcium channels and is suitable for the
treatment of symptomatic heart failure and essential hypertension. Gong et al. found that
carvedilol reduced norepinephrine and epinephrine levels, diastolic and systolic pressure,
blood glucose level, heart rate, body temperature, and leukocyte count in children with
EV71 HFMD [69], suggesting that carvedilol may alleviate the effects of HFMD.

In contrast to carvedilol, formoterol (12) is a β2 receptor agonist that can activate the
p38 MAPK pathway and which also inhibited CVB3-induced myocarditis [70] (Figure 4).
Rachel et al. found that high concentrations of β2 receptor agonists and inhibitors had
no antiviral effects against CVB3 infection, indicating that formoterol did not exert its
anti-CVB3 effect by stimulating the β2 receptor. Although the antiviral mechanism of
formoterol remains unclear, it acts as a pan-enterovirus inhibitor.

In addition to drugs that act on β-receptors, nicotine (13) may also improve inflam-
mation (Figure 4). Nicotine is an alkaloid found in Solanaceae plants (Solanum) and an
α7-nicotinic acetylcholine receptor antagonist, which mainly acts on α-cholinergic receptors.
Zhao et al. used nicotine in a mouse model of CVB3 infection and found that the survival
rate of BALB/C mice in the nicotine group after 14 days was 80%, compared with only 45%
in the drug-free group [71]. Nicotine also significantly reduced myocardial damage and cell
infiltration and down-regulated proinflammatory cytokines such as IL-6 and IL-17A. These
findings suggest that nicotine can effectively improve myocarditis caused by CVB3 [71].
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There are many types of proinflammatory cytokines, and the generation of nitric
oxide (NO) is likely to cause myocardial necrosis and contractile dysfunction, suggesting
that suppression of NO may reduce the severity of myocarditis. Ivabradine (14) and
olmesartan (15) inhibited NO synthesis by inhibiting inducible NO synthase, thereby
treating viral myocarditis (Figure 4). Ivabradine (trade name: Corlanor), a selective
atrionector-specific If current blocker that slows sinus rhythm, was approved by the
FDA in 2015 for the treatment of patients with heart failure through a priority review
process. Ivabradine also reduces myocardial damage and down-regulates the expression
of proinflammatory cytokines [72]. Olmesartan is an angiotensin II receptor antagonist
that can be used as an antihypertensive drug.

The FDA-approved drugs atorvastatin (16) and losartan (17) can also be used as
immunomodulators to treat viral myocarditis (Figure 4). Atorvastatin reduced the abnormal
expression of tumor necrosis factor-a and IFN-c and restored the expression of connexins
such as Cx43 and Cx45 [73], thereby reducing the rate of myocardial necrosis and effectively
treating viral myocarditis. Atorvastatin (trade name: Lipitor) is a lipid-lowering drug
developed by Pfizer, which is mainly used to treat hypercholesterolemia and coronary heart
disease. Losartan can down-regulate the expression of Th17 cells and stimulate Th1 cells
to secrete relevant cytokines. Losartan significantly reduced mortality in cytomegalovirus
(CMV)-infected mice from 40.0% to 12.5% [74]. Losartan (trade name: Cozaar), as the first
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angiotensin II receptor antagonist class antihypertensive drug, blocks the key sex hormone
angiotensin II to regulate blood pressure.

Captopril (18) is an angiotensin-converting enzyme inhibitor used to treat hyperten-
sion and certain types of congestive heart failure (Figure 4). It can reduce myocardial
calcification and fibrosis by an unknown mechanism, possibly related to resistance to
mitochondrial damage [75]. Milrinone (19) has been used to treat pulmonary edema, as a
potentially fatal complication of EV71 infection (Figure 4). Milrinone is an FDA-approved
drug that enhances myocardial contractility and directly expands blood vessels. It is used
clinically for the treatment of chronic congestive heart failure and intractable heart failure.
Although it cannot directly inhibit the production or replication of EV71, milrinone exerts
immunomodulatory and anti-inflammatory effects in the management of systemic inflam-
matory response to severe EV71 infection and has demonstrated good clinical therapeutic
efficacy against EV71-related brainstem encephalitis [63].

3.4. Repositioning of Nervous System Drugs

Bauer et al. discovered that fluoxetine (20) inhibited CVB3 proliferation by inhibit-
ing the non-structural viral protein 2C and reducing the synthesis of CVB3 RNA negative
strands [76] (Figure 5). Fluoxetine is a widely used selective serotonin/5-hydroxytryptamine
serotonin (5-HT) reuptake inhibitor (SSRI) that selectively inhibits the 5-HT transporter,
blocks presynaptic membrane reuptake of 5-HT, and increases the action time of 5-HT,
thus producing an antidepressant effect. Ulfert et al. previously identified fluoxetine in
independent screens as an inhibitor of EV-B and EV-D members and showed that it acted on
viral protein 2C [76]. Bauer et al. demonstrated that the antiviral activity of fluoxetine was
stereoselective: it has a chiral center and only the S-enantiomer has antiviral activity, and
anti-viral treatment with (S)-fluoxetine alone can thus reduce any potential SSRI-related
side effects [76]. This highlights the potential of identifying more specific drug structures
for the target disease through structural biology or molecular dynamics simulations, thus
reducing some pharmacological effects while improving others during drug repositioning.
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Valproic acid (21) is used to treat epilepsy and mania and can act as an immunomodu-
lator by regulating the related functions of immune cells, thereby reducing the severity and
mortality of myocarditis (Figure 5). Jin et al. found that valproic acid directly inhibited Th17
cells and upregulated the expression of Treg cells [77]. It also reduced the secretion of IL-17A
and IL-10 in CMV-infected mice, which show increased serum and myocardial levels of these
cytokines, thereby reducing the severity of myocarditis and increasing survival.

3.5. Repositioning of Anticancer Drugs

Gemcitabine (22) is a broad-spectrum viral inhibitor with significant antiviral activity,
especially against EV71 and CVB3, and low cytotoxicity [78] (Figure 6). Gemcitabine binds
to CVB3 RNA, thus preventing its proliferation and inhibiting replication of the virus.
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Gemcitabine is a pyrimidine anti-tumor drug. Its main metabolite is incorporated into
DNA in the cell and mainly acts on the G1/S phase of the cell cycle, which may explain
why gemcitabine binds to viral RNA.
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Idarubicin (23) is an anthracycline, cell cycle non-specific anticancer drug. Hou et al.
demonstrated that idarubicin also acted as an EV71 inhibitor by preventing the synthesis
of EV71 virus protein and RNA, while inhibiting the translation process mediated by its
IRES [79] (Figure 6).

Imatinib mesylate (24) is a tyrosine kinase inhibitor that can block one or more protein
kinases and which is used clinically to treat chronic myeloid leukemia and malignant
gastrointestinal stromal tumors (Figure 6). It reduces cardiac fibrosis by inhibiting activation
of platelet-derived growth factor (PDGF) receptors [80]. PDGFα receptors are tyrosine
kinase receptors, the activation of which is closely related to the occurrence of CVB3-related
myocarditis. PDGF can also activate multiple signaling pathways, including MAPK-
regulated signaling pathways, and activation of the p38 MAPK signaling pathway is an
important factor promoting the secretion of proinflammatory cytokines.

3.6. Repositioning of Antidiabetic and Anti-Obesity Drugs

Acarbose (25) is an α-glucosidase inhibitor that can be used in combination with other
oral hypoglycemic drugs or insulin to treat insulin-dependent or non-insulin-dependent di-
abetes (Figure 7). Experimental research showed that acarbose may prevent EV71 infection
by reducing intestinal infection, by blocking the EV71 virus surface receptor binding site,
or by inhibiting multiple sugar receptors on the cell surface [81]. Acarbose also showed a
good preventive effect at the cellular level.
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Orlistat (26) decreases the replication of various viral pathogens by reducing the
activity of fatty acid synthase [82] and has demonstrated anti-viral properties, not only
against the plus-strand RNA virus CVB3, but also against varicella-zoster virus, indicating
that the replication of completely unrelated viruses may depend on the functionality of
fatty acid metabolism. Orlistat is an anti-obesity drug that does not act on the central
nervous system (Figure 7).

3.7. Repositioning of Other Drugs

Zeng et al. also found that the ability of azithromycin (4) to inhibit EV71 infection was
comparable to that of chloroquine (27). Chloroquine has been used clinically since 1944,
initially to treat malaria, but its use has gradually expanded, and chloroquine was used to
treat rheumatoid arthritis in 1951. Shang et al. reported that 1.2 µM of chloroquine resulted
in a 104-fold reduction in EV71 RNA synthesis [83], while Shih et al. [84] showed that it
blocked the uncoating of EV71 and reduced viral RNA synthesis by >90%. These findings
suggest that chloroquine may be an effective EV71 virus inhibitor (Figure 8).
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Methylene blue (28) is an aromatic heterocyclic compound that is used as a chemical
indicator, dye, biological stain, and drug. It has been shown to destroy EV71 viral proteins
and genome in a photodynamically inactive and dose-dependent manner [85] (Figure 8).

Arsenic trioxide (29) was shown by Ylva et al. to reduce the viral load of CVB3 RNA
in the pancreas through an unknown mechanism [86] (Figure 8). Arsenic trioxide is an
odorless and tasteless creamy white powder and one of the oldest known poisons. It is
highly toxic, and close attention should thus be paid to the dosage to prevent unnecessary
side effects.

Cyclosporin A (30) is mainly used to prevent rejection of liver, kidney, and heart
grafts (Figure 8). It inhibits the opening of mitochondrial permeability transition pores by
inhibiting cyclophilin D [87]. ABCC6 mutation is associated with myocardial calcification
by increasing the susceptibility of the mitochondria to calcium, etc., resulting in calcifica-
tion. Cyclosporin A can thus reduce the degree of myocardial calcification by inhibiting
mitochondrial permeability transition pores.

In addition, cholic acid (31) 10 µg/mL was shown to reduce production of the viral
capsid protein VP1 and inhibit cleavage of the translation initiation factor eIF4G1 [88]
(Figure 8). Cholic acid (trade name: Cholbam) is present in bile in cattle, sheep, and pigs
and has been approved by the FDA for the treatment of bile acid synthesis disorders and
peroxisomal disorders. Moreover, cholic acid inhibited extracellular signal-regulated kinase
(ERK) signaling in CVB3-infected HeLa cells [88]. CVB3 infection can cause persistent
activation of the host ERK pathway, and inhibition of this pathway using ERK pathway-
specific inhibitors, such as PD098059, can significantly reduce the production of related
progeny viruses. Cholic acid plays a similar role to PD098059.

Ren et al. selected suramin (32) from 1102 approved drugs. Suramin is used to treat
sleeping sickness caused by trypanosomes and has also demonstrated good inhibitory
effects against EV71 and CVA16 [89] (Figure 8). Suramin showed no cytotoxicity at con-
centrations >1 mM, and its original role as a pediatric drug prioritized the possibility of it
being repositioned as a treatment for HFMD. Further studies found that structural analogs
of suramin, including sulfonated and sulfated compounds, also inhibited the proliferation
of EV71, suggesting promising potential and indicating that in addition to the repositioned
drug, its structural analogs should also be investigated to identify more effective drug
structures. Wang et al. [90] further studied the possible anti-EV71 mechanism of suramin
and showed that it inhibited the proliferation of EV71 in both early and late stages of its
life cycle and prevented EV71 from attaching to host cells, thereby affecting its entry.

4. Conclusions and Perspectives

There are currently no specific antiviral drugs marketed for HFMD, and there is thus
an urgent need to develop suitable drugs. Here, we summarized the major outbreaks
of HFMD and their causes to outline the etiological and epidemiological features of the
disease (Table 1). We also reviewed the progress of drug repositioning for HFMD and
summarized the statuses of 32 FDA-approved drugs that have been repositioned for HFMD,
including antifungal, antibacterial, cardiovascular, nervous system, anticancer, and other
drugs (Table 2).

Among antibacterial drugs, azithromycin (4), which can be used in combination
with SPM (5), can inhibit the replication of EV71 and CVA16, thereby exerting significant
antiviral effects. It has also been clinically proven to be safe in pregnant women, newborns,
and young children. Regarding cardiovascular drugs, lovastatin (7), bosentan (8), and
valsartan (9) can inhibit the replication of CVB3 by down-regulating the expression of CAR
mRNA and protein. In addition, regarding the roles of carvedilol (11) and metoprolol
in the treatment of viral myocarditis, carvedilol can improve cardiac contractility and
diastolic function, while metoprolol only improves contractile function, indicating that the
cardioprotective action of carvedilol involves other mechanisms in addition to inhibiting
β-adrenergic receptors. Formoterol (12) can also inhibit CVB3-induced myocarditis, which
seems to indicate an opposite mechanism to carvedilol. Nicotine (13) can effectively
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improve myocarditis caused by CVB3, reduce myocardial damage and cell infiltration,
and down-regulate proinflammatory cytokines. Milrinone (19) has been used to treat the
fatal complication of pulmonary edema caused by EV71 infection. Regarding nervous
system drugs, valproic acid (21) can act as an immunomodulator by regulating the related
functions of immune cells, thereby reducing the severity and mortality of myocarditis.
Among anticancer drugs, the main metabolite of gemcitabine (22) is incorporated into
DNA in the cell and mainly acts on the G1/S phase. Idarubicin (23) can prevent the
synthesis of EV71 virus protein and RNA, while inhibiting the translation process mediated
by its IRES. Although most of these drugs are currently in the preclinical research stage,
they have shown good antiviral effects at the cellular level, and some have been shown
to treat complications in case studies. The drug repositioning strategy allows the drug
development time of anti-HFMD drugs to be shortened, and these drug classes and their
similar drug structures should thus be prioritized when performing high-throughput
screening or chemical structure synthesis.

Currently, almost all available data used in this article to show the potential of repur-
posed use of known drugs for the treatment of HFMD are from in vitro antiviral activity
assays or animal model experiments, except Suramin (32), which is from the Phase I clinical
trial. It is expected to provide research clues for drug repositioning for the treatment of
HFMD. Due to a lack of clinical trial evidence at this stage, it is not easy to outline a priority
list of the drugs discussed. We can, however, roughly classify the drugs discussed basing
on their action of mechanisms. According to the past experience in the development of
antiviral drugs in the world, we think that drugs that directly target the virus, such as
affecting viral RNA synthesis and the binding of viral capsid proteins, have the greatest
potential to be repositioned for the treatment of HFMD, including Itraconazole (ITZ) (1),
Amphotericin B (3), Azithromycin (4), Minocycline (6), Amiloride (10), Fluoxetine (20),
Gemcitabine (22), Idarubicin (23), Acarbose (25), Orlistat (26), Chloroquine (27), Methylene
blue (28), Cholic acid (31), and Suramin (32).

Compared with monotherapy, combination drug therapy is also a promising strategy
for treating virus infection. The combination uses of pleconaril and ribavirin have been
reported against picornavirus, including type 1 diabetes-associated type B coxsackieviruses
and foot and mouth disease [91,92]. Efavirenz, a non-nucleoside reverse transcriptase
inhibitor, is widely used against HIV. Although the picornavirus does not utilize reverse
transcriptase for replication, the combination of pleconaril and efavirenz was found to be
superior as compared to pleconaril alone [93]. Amantadine, originally developed as an
antiviral drug against influenza infection, also has an antiviral effect on picornaviruses,
including hepatitis A virus [94]. Although, currently, there is not so much direct evidence
to show that the combination of them could be used to treat HFMD, combination drug
therapy is a potential alternative for treating HFMD-related virus infection.

However, although drug repositioning is an effective strategy, it also has some limita-
tions, including the need to be aware of the intellectual property rights of the approved
drugs and to consider their original pharmacological effects and limitations. For example,
HFMD mainly affects children, while many of the drugs have been approved for adult use,
and their feasibility for HFMD thus needs to be carefully assessed. In addition, regarding
target selectivity, it is generally difficult for a drug to treat two different diseases simul-
taneously, and full consideration should thus be given to the affinity of its targets when
studying multi-target drugs.

In summary, the drug repositioning strategy has more advantages than disadvantages.
It can reduce the drug development process by four to six years, and most approved drugs
have adequate post-marketing evaluation reports. However, drug safety is a high priority
for the treatment of HFMD, because children are more susceptible to the side effects of
drugs than adults. This review summarizes the current status of the drug repositioning
strategy for HFMD, with the aim of stimulating further research and improving the hit rate
and speed of drug development of antiviral drugs for HFMD.
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