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Abstract: A series of finite element analyses were conducted to clarify the effect of contact and
interfacial resistance between constituents on effective thermal conductivities of dispersed composites.
Equally dispersed fillers in FCC (face-centered cubic) and BCC (body-centered cubic) material systems
were extracted from cyclic microstructures as unit cell models. In addition to spherical fillers, a
polyhedron called the Wigner–Seitz cell that can realize a fully packed microstructure was chosen
as the shape of the filler to investigate the effect of contact between the high volumetric fraction of
fillers. The effective thermal conductivities of the resulting composites were calculated based on
the FEA results and compared to the theoretical results for various volume fractions of the fillers
including the maximum packing fraction. The following conclusions were obtained from the present
study: 1. The effect of the contact depending on the shape and configuration of the fillers has more
of a significant influence on the effective thermal conductivity than the influence of the increase in
the volume fraction of the fillers. 2. When the contact occurred, the effective thermal conductivity
became more than double that without contact. 3. Interfacial thermal resistance must be less than the
order of 10−4 m2 K/W to obtain improvement in the effective thermal conductivity by compounding
the fillers.

Keywords: composites; interfacial thermal resistance; thermal conductivity

1. Introduction

Dispersed composites which enable high thermal conductivity have been attracting
attention from a variety of industries such as the electronics industry where heat dissipation
is crucial for the better performance of their products. Polymer compounds have suitability
for conventional use as thermal conductive adhesives and electric cables [1,2] and also have
the potential to replace metallic materials with applications such as electronic packaging ma-
terials [3]. Metallic matrix composites are chosen when their other superiorities such as low
coefficient of thermal expansion are needed [4]. Variety forms of fillers including particles,
fibers and lattices of nanomaterials such as graphene are adopted [5]. The characteristics of
the composites are known to be influenced by a lot of factors such as shape and fraction
of fillers and conditions of interface between constituents. Therefore, a lot of experiments
are required to achieve the desired quality of the composites. In this context, methods
contributing to a reduction in such experiments have been sought. Burger et al., (2016)
provided a comprehensive review of the mechanisms of heat conduction in composites [6].

Theories for the prediction of effective thermal conductivity of dispersed compos-
ites have been proposed in earlier studies [7–9]. Maxwell (1904) derived the following
equation by solving the differential equation of thermal conduction in an infinite medium
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with a spherical filler in the center based on the assumption that temperature is constant
at infinity [7].

Kc =
K f + 2− 2v f

(
1− K f

)
K f + 2 + v f

(
1− K f

) (1)

where Kc and Kf express the ratio of thermal conductivity of the resulting composites to
that of the matrix material, and the ratio of thermal conductivity of fillers to that of the
matrix, respectively. vf is the volume fraction of fillers. When the volume fraction is high,
the effective thermal conductivity derived from this equation is significantly different to
that which is experimentally obtained because the thermal interaction between neighboring
fillers is not taken into account in this theory. Bruggeman (1935) approximately introduced
the thermal interaction between fillers by recursively adding an inclusion to composites
solved by the way of Maxwell’s theory and obtained using the following equation [8].

1− v f =
Kc − K f

Kc1/3
(

1− K f

) (2)

Equations (1) and (2) are widely accepted because they form the upper and lower bound-
aries of most of the experimental data with spherical fillers, as reported by Meredith [9].

Since Bruggeman’s equation tends to overestimate the thermal interaction between
fillers, Meredith (1959) expanded the theory by considering the interaction between pairs
of the closest fillers and obtained the following equation which can be applied to cases with
a relatively high volumetric fraction of fillers [9].

Kc =

2 + v f

(
wK f − 1

)
2 + v f (w− 1)

2
(

1− v f

)
+ v f wK f

2
(

1− v f

)
+ v f w

 (3)

This equation is applicable to various shapes of inclusions by using the shape parame-
ter w. In the case of spherical fillers, the shape parameter w is expressed as

w = 3/
(

K f + 2
)

. (4)

Theories with consideration for more complex phenomena such as thermal contact
have been proposed recently, for example, by Bahrami (2006) [10].

Although good agreement between the theoretical predictions and experiments has
been made possible by the above-mentioned theories, adjustment of parameters based
on a lot of experiments to compensate for the approximation error is still required for
good prediction. Therefore, more rigorous treatment of the thermal interaction has been
studied using numerical analyses. Kortschot and Woodhams (1988) successfully predicted
the effective thermal conductivity of composites with randomly oriented fillers using a
statistical computer simulation [11]. The finite element method is a superior method for
detailed investigation of the physical phenomena such as heat transfer in the composite
material because it directly incorporates the constitutive equation of the constituent ma-
terials of the composites into the analyses. Ramani and Vaidyanathan (1995) were two of
the first scientists who adopted the finite element method to analyze heat transfer in the
microstructures of the composites [12]. However, local thermal interaction such as contact
and thermal interfacial resistance were not yet considered in their analyses. Buonano
and Carotenuto (2000) considered contact between fillers in their finite element analy-
ses [13], and Matt and Cruz (2007) proposed finite element formulation that accounted for
interfacial thermal resistance [14]. Haddadi et al., (2013) applied the method for analysis
of the idealized microstructures with hollow particles with consideration of interfacial
thermal resistance [15]. A comprehensive review of theoretical and numerical methods
to predict the effective thermal conductivity of composites was provided by Pietrak et al.,
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(2015) [16]. In these studies, microstructures of the composites were assumed to have cyclic
symmetricity. One of the cyclic microstructures was extracted as a model called a unit cell
model, as shown in Figure 1, and was analyzed using boundary conditions according to the
cyclic symmetricity [14]. This numerical method that links macroscopic and microscopic
phenomena of the composite materials is called homogenization and applies to a wide
range of materials [17–20].
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A lot of studies reported that interfacial thermal resistance is one of the most important
factors required to understand heat transfer between two materials [21–25]. The first exper-
iment to evaluate interfacial thermal resistance was conducted for an interface between
liquid helium and a solid by Kapitza (1941) [26] and later expanded to solid–solid interfaces
by scientists such as Weis (1972) [27]. Khalatnikov (1959) proposed the first theory to predict
interfacial thermal resistance called the acoustic mismatch model [28]. The acoustic mis-
match model is based on the physics of phonon transport governed by continuum acoustics.
It can be interpreted as the acoustic analog of Snell’s law for electromagnetic waves which
describes the relationship between the angle of incidence and refraction. Although the
prediction by the acoustic mismatch model well agreed with measurements of temperature
lower than about 1 K, it was found that there was a slight difference between them when
temperature was higher. In the acoustic mismatch model, no scattering is assumed to occur
at the interface in spite of the fact that the effect of the scattering is not negligible in that
temperature range. A model with consideration for the scattering called the phonon diffuse
mismatch model was then proposed by Swartz and Pohl (1989) [29] and has widely been
used recently, for example, in a report by Wang et al., (2007) [30].

These experimental and numerical works found that the effective thermal conductivity
increases with fraction of fillers, and when the fraction exceeds a threshold called critical
fraction, significant improvement in the thermal conductivity occurs. This phenomenon
was called percolation, whose empirical law was proposed by Landauer (1978) [31]. How-
ever, its application to thermal conductivity still needs parameter fittings due to a lack
of thorough understanding about the role of the local interaction such as contact and
interfacial resistance.

In the present study, a series of finite element analyses were conducted with the aim
of clarifying the influence of the above-mentioned local interaction on the improvement in
effective thermal conductivity of composites as well as providing a guideline to fabricate
better composite materials in the industry. First, finite element models of microstructures
of composites with dispersed fillers with different shapes under consideration of contact
and interfacial thermal resistance were developed. Then, the effect of the contact condi-
tion was investigated from detailed observation of the heat flux field obtained from the
FEAs with various volume fractions of fillers including maximum packing fraction. More-
over, how interfacial thermal resistance operates within a practical range in the industry
was investigated.
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2. Numerical Analyses
2.1. Constitutive Equations

In the present study, thermal conduction on a macroscopic scale is assumed to be
governed by Fourier’s law which can be written as

q = −κ·∇T (5)

where heat flux vector q is expressed in the following matrix form [32].

q =
[
qx qy qz

]T (6)

Matrix form of the gradient operator ∇ is

∇ =
[

d
dx

d
dy

d
dz

]T
. (7)

Thermal conductivity κ is a second-order tensor and is expressed in a matrix form as

κ =

 κ11 κ12 κ31
κ22 κ23

sym. κ33

. (8)

The thermal conductivity tensor κ obeys the following law of transformation.

κ’ = LκLT (9)

where L is direction cosine expressed as [32].

L =

l1 m1 n1
l2 m2 n2
l3 m3 n3

. (10)

2.2. Microstructure of Materials

This study focuses on cases where inclusions are equally dispersed in matrices to
eliminate the effect of randomness on the macroscopic characteristics of the materials. In
these cases, FCC (face-centered cubic) and BCC (body-centered cubic) can be considered as
candidates of microstructures. Spherical fillers with a diameter of 50 µm in FCC and BCC
configurations were analyzed in this study as shown in Figure 2a,b. In addition, inclusion
with a polyhedral shape which can realize 100% of packing, known as the Wigner–Seitz
cell [33], was introduced as shown in Figure 2c. Inclusions come to contact when their
volumetric fractions are at the maximum for each configuration of the inclusions. The
maximum volumetric fraction for the FCC model is 74% because the unit cell of the FCC
model includes eight portions of one eighth and six portions of half a spheric inclusion,
and the ratio of their volume to the total volume of the unit cell is 74%. In the same way, the
maximum volume fraction for the BCC model is calculated to be 68%. In the Wigner–Seitz
cell model, inclusions come to contact only when their volumetric fraction is 100%. With
the Wigner–Seitz cell, a very high volumetric fraction can be achieved without contact by
placing the inclusions with some small clearances.

Cartesian coordinate systems shown in Figure 2a–c in which each axis corresponds to
the directions of segments connecting inclusions at the corner of the unit cell are used in
the analyses. With this basis, an arbitrary coordinate system can be configured via transfor-
mation with angles θ, ϕ defined in Figure 3. When θ = 45◦ in the FCC model, the closest
pair of inclusions is aligned to the x’ axis as shown by the blue dashed line in Figure 2a.
This configuration named transformed FCC was also analyzed to investigate anisotropy.
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2.3. Finite Element Models

Finite element models with different vf are shown in Figures 4–7. Regions with a dark
blue color show inclusions and the one with a light green color shows the matrix. A half
model according to plane symmetricity in the z axis in addition to the cyclic symmetricity
in the x and y axes was created with low-order hexahedral elements.
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Marc 2017 and Mentat 2017 (MSC Software Inc., Newport Beach, CA, USA) were
used as solver and pre–post-processors, respectively. The Ryzen 7 5700G 8-core Processor
(AMD Inc., Santa Clara, CA, USA) was used with CentOS 7 as a platform.

As already mentioned, the boundary conditions considering cyclic symmetricity were
defined as follows [14]: The average temperature gradient in the x direction was assumed
to be constant, and no temperature gradients in the y and z axis were assumed. The
average temperature gradient in the x axis was defined as shown in Figure 8a. MPC (multi-
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point constraint) capability of the finite element solver was used to define the following
relationship [32].

Tx1 − Tx0 = Tf ixed (11)

where Tx0 is the nodal temperature at the symmetric plane on the left side and Tx1 is
the corresponding one on the right side. Tfixed is the difference in temperature between
the two symmetric planes. A representative node which connects the nodes on both
symmetric surfaces was defined for the MPCs and the temperature of the representative
node Tfixed was set to 1 K in the present analyses. There were a lot of pairs of nodes at
corresponding locations at the symmetric planes. Therefore, the relationship in Equation
(11) was defined for each pair of these nodes using a common representative node. This
condition defines the difference in temperature between two whole symmetric planes using
the single representative node. In a similar manner to that shown in Figure 8b, MPCs for
cyclic symmetricity in the y axis were defined using the following equation.

Ty1 = Ty0 (12)

where Ty0 and Ty1 are nodal temperatures at the bottom and top surfaces, respectively. The
condition of plane symmetry in the z axis was automatically satisfied with no constraint of
nodes on the plane of symmetry.
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Thermal conduction at the interfaces between inclusion and the matrix was analyzed
with the following equation using a capability of contact analysis in the finite element
solver [32].

q = H(Tinclusion − Tmatrix) (13)

where H is interfacial thermal conductivity which is reciprocal of interfacial thermal resis-
tance λ. Tinclusion and Tmatrix are temperatures at nodes on an interface of inclusions and the
matrix, respectively.

Steady-state heat transfer analysis was conducted without consideration for the de-
pendencies of material properties on other physical values such as time and temperature.
Therefore, the solution did not show non-linearity, and the state of the thermal equilibrium
under the applied boundary conditions was obtained without iteration.

Finite element mesh was generated in the following way so that the boundary condi-
tions mentioned above were properly defined. First, all of the outer surfaces of bodies were
meshed with quadrilateral elements. Mesh patterns on two planes of symmetry facing each
other must be the same to define the MPCs, so the elements on one of the symmetry planes
were duplicated on another side of the symmetry plane. This procedure was repeated for
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the x and y directions. Then, three-dimensional regions wrapped by quadrilateral elements
on the surface were meshed with hexahedral elements.

The material properties used in the analyses are shown in Table 1. Polymer matrix
composites with graphite fillers with a grain size of 50 µm were assumed in the present
study. Synthetic graphite powder with a grain size from 1.0 to more than 100 µm is
commercially available [1]. The thermal conductivity of graphite is more than 200 W/(m·K)
depending on its carbon content [2]. Various types of polymers are adopted for the matrix
of thermally conductive composites such as epoxy [1] and polyethylene [2,3]. The range
of thermal conductivity of these polymers is from about 0.2 to 0.4 W/(m·K) [1,2]. In the
present study, thermal conductivities for fillers and matrix were chosen to be 250 and
0.2 W/(m·K), respectively. The ratio of the thermal conductivity of the fillers to that of the
matrix Kf was 1250.

Table 1. Material properties used for FEA.

Properties Fillers Matrix

Thermal conductivity [W/(m·K)] 250 0.2
Diameter [µm] 50 -

Volume fraction [%]
BCC: 10, 40, 60, 68 1

FCC: 10, 40, 60, 68, 74 1

W-S Cell: 68, 74, 85
1 Maximum packing fraction of each configuration.

2.4. Evaluation of Effective Thermal Conductivities

Effective thermal conductivities of the composites on a macroscopic scale were evalu-
ated from the results of the finite element analyses in the following way: the total amount
of heat conduction Qreact in the x axis can be obtained at the representative node of the
MPCs defined by Equation (11). When the sizes of the unit cell models in x, y and z are
Lx, Ly and Lz, respectively, as shown in Figure 8b, the average heat flux in the x axis qx is
given by

qx =
Qreact

LyLz
. (14)

As the difference in temperature between two symmetric surfaces in the x axis is Tfixed,
the average temperature gradient in the x axis is expressed as

dT
dx

=
Tf ixed

Lx
. (15)

By substituting Equations (14) and (15) into Equation (5), the effective thermal conduc-
tivity of the composites is obtained as follows.

κ11 =
Qreact

LyLz

Lx

Tf ixed
. (16)

By solving the systems of Equations (5)–(9) with the results of FEA with different
coordinate systems such as FCC and transformed FCC models with the consideration of
symmetricity, a full matrix of thermal conductivity κ can be obtained.

3. Results and Discussions
3.1. Effect of Contact between Fillers

Table 2 shows the effective thermal conductivities calculated from the results of the
FEA without consideration for thermal resistance based on Equation (16). The values from
the FCC models and transformed FCC models are almost coincident in all cases of vf, which
indicates that the materials are isotropic. Although the numerical calculation was conducted
with real numbers that have 15 digits, the results were shown in 4 significant digits.
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Table 2. Thermal conductivities of composites obtained from the FEA.

Volume
Fraction [%]

Effective Thermal Conductivities [w/(m·K)]
FCC Transformed FCC BCC Wigner–Seitz Cell

10 1.331 1.330 1.328 -
40 3.009 2.999 2.996 -
60 5.915 5.876 6.245 -
68 - - 14.38 1 5.032
74 20.31 1 20.67 1 - 6.501
85 - - - 12.24

1 Results with maximum packing fraction.

A comparison between results obtained from the finite element analyses and theoret-
ical equations is shown in Figure 9. The horizontal axis indicates the volume fraction of
fillers vf and the vertical axis indicates the ratio of thermal conductivities of composites to
that of the matrix Kc. The value on the vertical axis can be interpreted as how much the
effective thermal conductivities are improved by compounding the fillers. For example,
the value on the horizontal axis becomes 2 when the effective thermal conductivity of the
composite is double that of the polymer without fillers. Results from the FCC and BCC
models agreed with Maxwell’s equation when vf = 10 and 40%. These results with low vf are
rational according to the fact that Maxwell’s formulation does not take interaction between
fillers into account. When vf = 60%, they have a value between Maxwell’s theory and
Meredith’s theory. Bruggeman’s theory, which tends to overestimate the local interaction,
has a higher value. When vf = 68%, which is the maximum packing fraction for the BCC
model, the effective conductivity is almost double that of the FCC model with the same
volume fraction. With this same volume fraction, contact occurs in the BCC model but does
not occur in the FCC model. Similarly, the value of the FCC model with the maximum
packing fraction of vf = 74% is more than double the value of the Wigner–Seitz cell model
in which contact occurs only when vf = 100%. In this case, the most significant difference is
the existence of contact, too. These results indicate that contact has a significant effect on an
improvement in thermal conductivity of the composites.

It should be noted that the thermal conductivities with a high volumetric fraction of
fillers are not necessarily higher than those with a lower volumetric fraction. All Wigner–
Seitz cell models show lower conductivity than that of other models with higher volumetric
fraction, i.e., the Wigner–Seitz cell model with 85% of volume fraction shows about half
of the thermal conductivity of the FCC model with 74% of volumetric fraction. Moreover,
the effective thermal conductivities of Wigner–Seitz cell models are the smallest in all of
the cases with the same vf. Because the shape of Wigner–Seitz cells is determined so that
neighboring cells completely fill the empty space, by placing the cells with some clearances,
the highest volume fraction without contact can be realized. Therefore, distance between
the fillers in the models with a Wigner–Seitz cell is supposed to be larger than that with
any other shapes of fillers when the volume fractions are the same. Thus, the effective
thermal conductivities of Wigner–Seitz cell models can be considered to be lower bound
for composites with equally dispersed fillers.

Figures 10–13 show a distribution of temperature in FCC, transformed FCC, BCC
and Wigner–Seitz cell models with different vf. In the results of FEA with vf as low
as 10%, temperature is gradually changed in the matrix whose thermal conductivity is
low, and temperature in the fillers with high thermal conductivity is almost constant. In
Maxwell’s theory, it is assumed that a single filler is located at the center of the unit cell and
that temperature at the location of the filler gradually converges to a constant at infinity.
The temperature distribution of the FEA agrees with this assumption. This explains the
coincidence of the effective thermal conductivities obtained from the FEA and Maxwell’s
theory when vf is low. In the cases with a maximum packed fraction such as the BCC model
with vf = 68% and FCC model with vf = 68%, the fillers came to contact, and the temperature
at the point of contact looked almost discontinuous due to an intense temperature change.
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This means that there is an abrupt temperature gradient at the point of contact. This
behavior explains the difference between the results from FEA and theories. There is a
gradual temperature gradient in the matrix even when contact occurs. This indicates that
the matrix transfers moderate heat flux according to Fourier’s law and does not have a role
as a main thermal path. In the Wigner–Seitz cell model, a gradual temperature gradient
is observed even with vf as high as 68% and 74% because there is no contact point to
directly transfer heat flux between fillers. This explains the low thermal conductivity of
these models.
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Figure 10. Temperature distribution of FCC models.
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The distribution of the heat flux is discussed next. Figures 14 and 15 show vector fields
of the heat flux in the FCC and transformed FCC models. Distributions at the plane of
symmetry in the z axis are shown. In the case where vf = 10%, the flux radially emanates
from a filler and reaches neighboring fillers passing through the matrix. In the cases where
vf = 68%, on the other hand, the flux from a filler directly transfers to the neighboring filler
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and little flux transfers through the matrix. It is observed that, under the same average
temperature gradient for the two models, the amount of heat flux significantly increases
due to a thermal path being formed by the contact.
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Figure 14. Heat flux field of FCC models.
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Vector fields of the heat flux in BCC and Wigner–Seitz cell models are shown in
Figures 16 and 17. Direct heat conduction from one filler to another at the point of contact
is dominant in the model of BCC, which is similar to the FCC model when its volume
fraction is maximum. On the other hand, the Wigner–Seitz cell model with the same volume
fraction exhibits moderate heat flux between fillers due to the non-existence of contact
points. These results show that the contact is the dominant factor for an improvement in
effective thermal conductivity. The formation of the thermal path, i.e., percolation, does not
necessarily occur with a high volume fraction of fillers because the occurrence of contact
between fillers depends not only on the fraction but also the shape and configuration of
the fillers.
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Figure 16. Heat flux field of BCC models.
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3.2. Effect of Interfacial Thermal Resistance

Figure 18 shows the relationships between an improvement in effective thermal con-
ductivity and interfacial thermal resistance. The horizontal axis indicates interfacial thermal
resistance on the logarithmic scale and the vertical axis indicates the ratio of thermal con-
ductivities of composites to that of matrix Kc.
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Figure 18. Effective thermal conductivities with different interfacial thermal resistances.

The theoretical value of interfacial thermal resistance λ is considered as the value when
the perfect interface between two materials is obtained. The theoretical value based on the
phonon diffuse mismatch model is high when two materials that compose the interface are
dissimilar. For instance, the interface between lead and diamond has interfacial thermal
resistance in the order of 10−7 m2 K/W. On the other hand, the interface composed of
two diamonds has an order of 10−10 [30]. In Figure 18, the difference in the effective thermal
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conductivities between FCC models with λ = 10−8 and λ = 10−7 m2 K/W is about 10%.
This means that the thermal resistance of the interface composed of dissimilar materials
has considerable influence on the effective thermal conductivity even when the surface
treatment of the interface is perfectly conducted. The interface between graphite and
polymers that the present analyses adopted is one of the examples of this kind.

It is reported that interfacial thermal resistance becomes as high as the order of
10−4 m2 K/W in practice when surface roughness of the interface is large [24]. In Figure 18,
effective thermal conductivities significantly change in a range of interfacial thermal resis-
tance λ from 10−7 to 10−4 m2 K/W in all cases. This indicates that, even when sufficient
thermal paths exist due to the contact between fillers as shown in Section 3.1, heat transfer
at the interface is greatly hindered by interfacial thermal resistance. Therefore, a good
treatment on the interface between the matrix and fillers is quite important to obtain high
thermal conductivity of composites. The interfacial thermal resistance being as high as
10−4 m2 K/W is due to the rough interface mentioned above which almost eliminated an
improvement in the effective conductivity by the compounding of fillers.

4. Study Limitations

In the analyses in the present study with the assumption that the fillers were equally
dispersed, the fillers came to contact only when the fraction of the fillers was the maximum
for their configurations. Further study is going to be conducted on the interaction between
fillers with consideration for randomness in the configuration of fillers.

5. Conclusions

Mechanisms for an improvement in effective thermal conductivity of composites were
studied using a series of finite element analyses. Analyses of various microstructures with
equally dispersed fillers with spherical and polyhedral shapes in configurations including
FCC and BCC were conducted with consideration for local interaction such as contact
between fillers and interfacial thermal resistance. The results were compared to theories
in which the thermal local interactions were approximately considered. The influence of
the local interaction on an improvement in effective thermal conductivity of composites
was clarified using detailed analyses of temperature and heat flux field. The following
conclusions were obtained from the analyses:

• Contact between fillers depending on the shape and configuration of the fillers had a
more significant influence on the improvement in the effective thermal conductivity
than the influence of an increase in volumetric fraction. The contact demonstrated the
improvement that made the effective thermal conductivity more than double.

• The effective thermal conductivity decreased by approximately 10% due to interfacial
thermal resistance in the order of 10−7 m2 K/W which was a realistic value for the
interface between dissimilar materials even when a surface treatment of the interface
was perfect.

• Interfacial thermal resistance that was higher than 10−7 m2 K/W had a significant
influence on effective thermal conductivity. Interfacial thermal resistance must be
lower than 10−4 m2 K/W to gain an improvement in the effective conductivity due to
the compounding of fillers.

The present results showed an achievable range of effective thermal conductivity of dis-
persed composites and requirements of practical fabrication in the industries, not only about
volume fraction of fillers but also about the treatment of interfaces between constituents.

Author Contributions: Conceptualization, A.K. and Y.I.; methodology, A.K.; writing—original draft
preparation, A.K.; writing—review and editing, H.M. and Y.I.; All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.



Materials 2023, 16, 517 15 of 16

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank Mizuhisa Nihei from the Japan Research Center of HUAWEI
Technology for discussions based on a practical perspective from the industry.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Kc Ratio of thermal conductivity of the composites to that of the matrix material
Kf Ratio of thermal conductivity of fillers to that of the matrix material
vf Volume fraction of fillers
w Shape parameter for meredith’s model
q Vector form of heat flux
κ Matrix form of thermal conductivity
T Temperature
L Size of unit cell model
θ, ϕ Angles in base Cartesian coordinate system
λ Interfacial thermal resistance
H Interfacial thermal conductivity
Subscripts
x0, x1 Reference values on x axis
y0, y1 Reference values on y axis
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