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Abstract: Soil remediation agents (SRAs) such as biochar and hydroxyapatite (HAP) have shown
a promising prospect in in situ soil remediation programs and safe crop production. However,
the effects of SRAs on soil microbial communities still remain unclear, particularly under field
conditions. Here, a field case study was conducted to compare the effects of biochar and HAP
on soil bacterial communities in a slightly Cd-contaminated farmland grown with sweet sorghum
of different planting densities. We found that both biochar and HAP decreased the diversity and
richness of soil bacteria, but they differently altered bacterial community structure. Biochar decreased
Chao1 (−7.3%), Observed_species (−8.6%), and Shannon indexes (−1.3%), and HAP caused Shannon
(−2.0%) and Simpson indexes (−0.1%) to decline. The relative abundance (RA) of some specific taxa
and marker species was differently changed by biochar and HAP. Overall, sweet sorghum cultivation
did not significantly alter soil bacterial diversity and richness but caused changes in the RA of some
taxa. Some significant correlations were observed between soil properties and bacterial abundance. In
conclusion, soil remediation with biochar and HAP caused alterations in soil bacterial communities.
Our findings help to understand the ecological impacts of SRAs in soil remediation programs.

Keywords: soil amendments; cadmium; soil remediation; soil microbial diversity; marker species

1. Introduction

Soil contamination with toxic metals such as cadmium (Cd) poses a serious risk to
food safety [1,2] and human health [3]. The use of soil remediation agents (SRAs) for in
situ stabilization provides a feasible solution to soil Cd pollution. Biochar [4,5] and hy-
droxyapatite (HAP) [6–8] are two common SRAs for in situ stabilization, which can reduce
the transfer of toxic metals to food chains by different mechanisms [9]. Biochar is a solid
material obtained from the thermochemical conversion of biomass in an oxygen-limited
environment. Porous structure and abundant oxygen-containing functional groups in the
biochar can stabilize heavy metals in the soil through physical sorption, precipitation, com-
plexation, ion exchange, and electrostatic interaction [5,10,11]. Similarly, HAP can stabilize
heavy metals via ion exchange, surface complexation, and the formation of phosphate
precipitates [12–15]. By employing these immobilization mechanisms, biochar and HAP
can reduce the availability of heavy metals in the soil and the uptake of heavy metals by
plants, in particular crops, thus decreasing the entry of the metals into food chains.

The application of SRAs in soil remediation may change soil microbial communities
directly and indirectly. First, some SRAs can provide carbon sources and nutrients for
microbes. One case is biochar, as a carbon source, which can provide an amount of labile car-
bon for microorganisms [16]. Previous studies have found that the labile carbon carried by
biochar acts as a carbon source for specific soil bacteria [17], such as Gemmatimonas [18–21]
and Bacillus [22]. Second, SRAs such as biochar and HAP can change soil physicochemical
properties, such as pH and dissolved organic carbon, thus indirectly affecting microbial
community structure and diversity [8,16,23]. For example, biochar may improve the habitat
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of Gemmatimonadetes by reducing soil water fluctuations, because Gemmatimonadetes are
unable to resist moisture fluctuations induced by wet/dry cycling [24]. HAP can increase
soil pH and soluble phosphate [7,25], which can affect soil microbial communities, such as
Gammaproteobacteria and Xanthomonadales [8]. Furthermore, SRAs generally decrease
the bioavailability of toxic pollutants in soil [8,26], which may alleviate their negative
effects on microbial communities. Considering their important ecological functions, the
changes in soil microbial communities by SRAs during soil remediation processes should
be evaluated.

However, microbial community structure usually varies with habitats and pollu-
tants [27]. Although previous studies have explored the effects of SRAs on microbial
communities in soil remediation processes [28–31], few studies compare the effects of differ-
ent SRAs, particularly in field conditions. Plant density is recognized as one of the critical
factors determining the efficiency of phytoremediation programs [32,33]. With these ideas
in mind, we investigated the effects of biochar and HAP on soil bacterial communities in a
slightly Cd-contaminated farmland soil with different planting densities. Sweet sorghum
was selected as the test plant, because it can be used as either a forage or bioenergy crop
to remediate polluted soil [34]. Seedlings meeting the quality standard can be used to
feed livestock, while those with excess contaminants can be used to produce ethanol [35].
Here, we hypothesize that SRAs and planting densities can jointly affect soil properties
and soil microbial communities. Thus, our aims are to elucidate: (1) whether SRAs (biochar
and HAP) affect soil properties and Cd bioavailability in the soil with different planting
densities, and (2) how soil bacterial communities respond to biochar and HAP.

2. Materials and Methods
2.1. Soil, Plants and Amendments

The field experiment was conducted on farmland slightly contaminated with Cd,
located in Baoluo Village, Pingdu, Shandong Province, China (119◦41′37.94” E, 36◦50′4.07”
N), which is situated near mine tailings from local gold and graphite mines. This area has a
temperate monsoon climate, with an annual average temperature of 11.9 ◦C and annual
average precipitation of 788.4 mm. During June to October, the monthly precipitation
is 44~165 mm and the average maximum and minimum temperature is 20–28 and 13–
23 ◦C, respectively. The soil texture is classified as sandy loam according to the USDA
classification. Some soil properties are shown in Table 1.

Table 1. Physicochemical properties of the soil in the field.

pH NH4
+-N NO3−-N SOC Available K Available P Total Cd Total Zn

mg kg−1 mg kg−1 g kg−1 mg kg−1 mg kg−1 mg kg−1 mg kg−1

5.04 ± 0.02 0.43 ± 0.19 3.84 ± 0.20 16.15 ± 0.63 130.83 ± 6.08 48.32 ± 15.28 0.47 ± 0.06 32.34 ± 7.34

Note: SOC, soil organic carbon.

The sweet sorghum cultivar was Hunnigreen. Two common agents were applied,
including HAP and biochar. HAP was purchased from Sichuan Mianyang Xingheyi New
Material Technology Co., Ltd. (Mianyang, Sichuan, China). HAP was an ultra-fine powder
with pH of 7.5, Ca10(PO4)6OH2 content≥ 99.6%, total Cd content 0.5 mg kg−1, and average
particle size of 505 µm. SEM images are shown in Figure S1. Biochar was purchased
from Lvzhiyuan Activated Carbon Co., Ltd. (Pingdingshan, China). It was generated by
heating the straws of wheat and corn, wood chips, and fruit shells under a 500–600 ◦C
limited-oxygen environment, with the following properties: pH 7.3, average specific surface
area 863 m2 g−1, ash content 9%, moisture content 8.5%, methylene blue adsorption 6 mL
(0.1 g)−1, iodine value 835 mg g−1, and average particle size ≤ 74 µm, As 1.4 mg kg−1, and
Hg 0.4 mg kg−1. Pb, Cd, and Cr were not detected in the biochar.
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2.2. Experimental Design and Sample Collection

The experiment included three SRA treatments (i.e., biochar treatment (B), HAP
treatment (P), no SRAs (C)), each with three planting densities of sweet sorghum, i.e., high
density (H), low density (L), and no planting (N). Each treatment was replicated in three
plots (6 × 3 m). SRAs were manually applied in the plots at a rate of 2.78 t ha−1 and
thoroughly mixed into the surface soil of 0–20 cm depth. Five kilograms of biochar or HAP
was added to each plot. Plots were separated by 20 cm-high ridges to prevent soil and
water exchange. Then, uniform seeds were selected and surface-sterilized, and then sown
on 20 June 2021. After two weeks, the seedlings were thinned to a density of 35 × 20 cm in
high-density treatment (marked as H) and a density of 60 × 30 cm in low-density treatment
(marked as L). A treatment without planting was set as the control treatment (marked
as N).

The seedlings were managed according to local agricultural practices. No fertilizers
and pesticides were applied, but weeds were uprooted artificially and irrigation was
performed when required during the growth stage. Manure plants were harvested on
26 October 2021. Ten plants were randomly selected from each plot, and leaves, stems, and
roots were separated and taken back to measure the fresh and dry weights and Cd content.
Ten soil samples were randomly collected at a depth of 0–20 cm from each plot and mixed
thoroughly into one sample. Approximately 200 g soil samples were placed into sterile
plastic bags in a frozen box and sent back immediately to the laboratory. About 5 g soil
was placed into 5 mL cryopreservation tubes and frozen in −196 ◦C liquid nitrogen for soil
bacteria analysis. The remaining samples were air-dried, ground, and used to analyze soil
physicochemical properties and Cd.

2.3. Analysis of Soil and Plant Samples

Soil pH was measured at a water-to-soil ratio of 2.5:1 (w/v) using a pH meter (HJ
962-2018, China). Available phosphorus (AP) was determined by the molybdenum anti-
mony anti-spectrophotometric method after extraction with a NH4F–HCl solution (NY/T
1121.7-2014, China). Available potassium (AK) was determined by Atomic Absorption Spec-
troscopy (AAS) (AA-7000, Shimadzu, Kyoto, Japan) after extraction with 1 M CH3COONH4
solution (NY/T 889-2004, China). NH4

+-N and NO3
−-N were determined by indophenol

blue colorimetry and ultraviolet spectrophotometry after extraction with 2 M KCl [36].
Soil samples were digested using acid digestion (HCl-HNO3-HF-HClO4) to determine the
concentrations of total metals (GB/T 17141-1997, China). Plant samples were digested in a
HNO3–HClO4 (4:1, v/v) mixture in a Graphite Digestion Instrument (SH220N, Shandong
Hanon Instruments Co., Ltd., Jinan, China). Soil available Cd, Cu, and Zn were extracted
using DTPA solution (HJ 804-2016, China). Cd availability was also evaluated using the
TCLP method [37]. The metal concentrations in the digested solution and extraction were
determined using AAS. For analytical quality control, the blank and parallel samples were
analyzed to verify the extraction process and reproducibility of analytical results. The
recovery percentage ranges from 85% to 115%. The coefficient of variation of parallel
samples is <20%. The quantification limit of AAS is 0.005 mg L−1.

2.4. Analysis of Soil Bacterial Communities

To analyze soil bacterial communities, soil samples were sent to Shanghai Person-
albio Technology Co. Ltd. (Shanghai, China) to perform 16S rRNA sequencing. Briefly,
DNA was extracted, and specific primers (F: ACTCCTACGGGAGGCAGCA R: CGGAC-
TACHVGGGTWTCTAAT) were used to amplify the V3–V4 hypervariable region of bacte-
rial 16S rRNA genes. Then, the DADA2 method [38] in the QIIME2 platform was used to
carry out the steps of priming removal, mass filtering, denoise, stitching, and de-embedding,
and the resulting sequences were named Amplicon Sequence Variants (ASVs). Finally, the
representative sequence of each ASV was assigned to a taxonomic lineage based on the Silva
database (Release132, http://www.arb-silva.de) [39], thereby taxonomic lineages compo-
sition data (bacterial relative abundance data) were generated. Phylogenetic trees were

http://www.arb-silva.de
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constructed by using FastTree in the maximum likelihood method. Ninety-five percent of
the minimum sample sequence size was designed to sequencing depth for further analysis.

2.5. Data Analysis

Data were analyzed using SPSS 26.0 (IBM SPSS) to obtain the significance and variance.
Duncan test and one-way ANOVA were employed to test the significance of the differences
in edaphic factors and plant Cd content. Because this was a field experiment with many
sources of uncontrolled variance, the minimum level of significance for assessing the results
as worthy of note was 0.10, which means that there is a 10% probability that we will make a
mistake when rejecting the hypothesis. Two-way ANOVA was used to compare the effects
of interactions between amendments and sweet sorghum density.

Using the Personalbio platform (https://www.genescloud.cn/cloudClassroom), Pear-
son correlation (p < 0.05) was conducted to examine relationships between soil properties
and soil bacterial communities. Diversity indexes were used to extract and calculate ASVs
data, including the Chao1, Faith_pd, Pielou_e, Goods_coverage, Observed_species, Shan-
non, and Simpson diversity indices (http://scikit-bio.org/docs/latest/generated/skbio.
diversity.alpha.html#module-skbio.diversity.alpha). Based on UPGMA and inter-group
differences, the species heatmaps showed the differences in species composition. The
differences in taxonomic lineages between groups were tested by the K–W test, and the
clustering algorithm UPGMA was performed according to the Pearson correlation coeffi-
cient matrix of taxonomic lineages composition data (bacterial relative abundance data).
MetagenomeSeq analysis was conducted using the fitFeatureModel function to fit the distri-
bution of each ASV/OTU using the zero-vehicle log-normal model. Then, the up-regulation
group and control group were selected to generate a Manhattan map. In addition, LEfSe
analysis could remove the influence of other factors to find the most robust marker species
in different soil treatment types. K–W and Wilcoxon rank sum tests were used to determine
the differential species, and LDA analysis was performed to estimate the effect size of the
abundance of each differential component (differential species) on the difference between
groups. The differential species passing the threshold that was set up in LDA analysis could
be considered biomarkers. According to the above results, the cladogram of LEfSe analysis
and LDA histogram could be generated. PCoA was performed to determine the effect of
SRAs on the microbial phylogenetic communities. The Bray–Curtis algorithm was used to
calculate the distance between samples, and the ordination of all samples was obtained
through multidimensional scaling. Then, regression fitting analysis between environmental
factors and ordination was performed using regression function envfit, and significance (p
value) was calculated using Permutation.

3. Results
3.1. Soil Properties and Cd Content in Plants

Two-way ANOVA results (Table S1) showed that SRA type significantly influenced
soil pH (p < 0.1), AK (p < 0.01), DTPA-Cd (p < 0.01), and -Cu (p < 0.05), and planting density
changed AK (p < 0.01), DTPA-Zn (p < 0.1), and NO3-N (p < 0.1). No significant interactive
effects were observed between sweet sorghum density and SRA type (Table S1). The soil
without planting and SRAs had the highest pH, AK, and DTPA-Zn (Table S2). Biochar and
planting treatments had lower soil pH than the control and HAP treatments.

Overall, SRAs and planting density did not significantly change Cd concentration in
plant roots and stems (Table S1). Compared to the control, biochar had no significant effects
on DTPA-Cd concentration, but HAP treatments showed an increasing trend (Table S2). Cd
was only detected in the leaves from the treatments of low planting density and no SRAs.

Pearson correlation analysis (Table S3) showed that DTPA-Cd was positively correlated
with DTPA-Zn and -Cu (p < 0.05). Cd concentrations in roots and stems were positively
correlated with soil DTPA-Cd (p < 0.001). Soil pH was positively correlated with AK
(p < 0.05) and DTPA-Zn (p < 0.1).

https://www.genescloud.cn/cloudClassroom
http://scikit-bio.org/docs/latest/generated/skbio.diversity.alpha.html#module-skbio.diversity.alpha
http://scikit-bio.org/docs/latest/generated/skbio.diversity.alpha.html#module-skbio.diversity.alpha
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3.2. Soil Bacterial Communities Structure and Diversity

After quality filtration, a total of 1,135,637 effective sequences (average sequence
length 415 bp) were obtained from 27 soil samples (range 31,081–57,565 sequences per
sample) (Table S5 and Figure S2). The ASVs per sample, ranging from 3383 to 4281, were
identified by DADA2, and more than 60% of ASVs can be classified into genera (Figure S3).

Two-way ANOVA results showed that, in most cases, the α diversity of soil bacterial
communities was not influenced by planting density (except Faith_pd index), but signifi-
cantly changed by SARs (except Simpson index). As shown in Figure 1, biochar decreased
the values of Chao1, Observed_species, and Shannon indexes, and HAP decreased Shannon
and Simpson indexes. Low planting density caused a lower Simpson index.
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Figure 1. The α diversity of soil bacterial communities in the plots with different planting densities (A)
and SRAs (B). p-values (* p < 0.1, ** p < 0.05, *** p < 0.01) were obtained from K–W tests. P, C, and B
represent hydroxyapatite addition, no amendments, and biochar addition, respectively. L, N, and H
represent low planting density, no planting, and high planting density, respectively.

Interactive effects on bacterial α diversity were observed between SARs and planting
density (Table S1). For example, high planting density decreased Chao1 index singly
or co-existing with biochar, but showed an increasing trend when co-existing with HAP
(Figure S4). The treatment with biochar and high planting density had the lowest Chao1 index.

Pearson correlation analysis revealed the relationship between soil physicochemical
properties and α-diversity index (Table S4). DTPA-Cd was negatively correlated with
Shannon and Simpson, while AK, AP, and pH were positively correlated with Chao1 and
Observed_species.

In Figure 2, the first and second ordination axes explained 21% and 10.5% of the total
variation, respectively. On the first ordination axis, the clusters of BH, BL, and BN in B
treatments were similar, while the clusters of C treatments and P treatments were similar.
On the second axis, the clustering of B treatments and C treatments was similar, but there
was a clustering crossover between C and P treatments. Therefore, we conclude that there
were substantial differences between the bacterial taxa present in the treatments P, C, and B,
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and the change of soil bacterial communities caused by biochar was higher than that caused
by HAP, while the density of sweet sorghum had little effect.
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3.3. Effects of SRAs and Plant Cultivation on Bacterial Community Composition

Histograms of relative abundances (RA) (Figure S5A) showed that Actinobacteria
(36.42–50.17%) was the most abundant bacterial phylum in all samples, followed by Pro-
teobacteria (26.51–31.63%), Acidobacteria (6.74–11.23%), Chloroflexi (6.22–9.81%), Gem-
matimonadetes (2.78–5.45%), Bacteroidetes (1.62–2.10%), Patescibacteria (0.84–3.06%), Fir-
micutes (1.14–2.33%), Cyanobacteria (0.36–2.66%), and Nitrospirae (0.37–0.86%). These
top ten phyla accounted for 98.11% of the total soil bacteria (Table S7). In order to further
analyze the influence of different treatments on the RA of dominant phyla, the K–W test
was conducted to test the difference in bacterial abundance. The results showed that
there were significant differences in Actinobacteria (p = 0.009), Acidobacteria (p = 0.007),
Gemmatimonadetes (p = 0.014), Patescibacteria (p = 0.016), and Nitrospirae (p = 0.037).

The RA of the top ten orders was calculated (Figure S6). The most abundant order
was Rhizobiales (6.13–9.29%), followed by Gaiellales (5.02–7.11%), Betaproteobacteriales
(4.33–8.76%), Micromonosporales (4.36–6.80%), Frankiales (4.13–6.81%), Micrococcales
(3.86–6.16%), Myxococcales (3.12–4.94%), Gemmatimonadales (2.74–5.42%), Propionibacte-
riales (2.53–4.87%), Acidobacteriale (2.18–5.27%) (Table S8). There were significant differ-
ences in Rhizobiales (p = 0.018), Betaproteobacteriales (p = 0.028), Micrococcales (p = 0.017),
Myxococcales (p = 0.048), Gemmatimonadales (p = 0.016), and Acidobacteriales (p = 0.022).

The RA of the top 15 genera was presented in Table S9. The most abundant genus
was Sphingomonas (1.58–3.57%), followed by Gemmatimonas (1.67–2.83%), Nocardioides
(1.27–2.53%), Actinoplanes (1.61–2.39%), Streptomyces (1.45–2.27%), Mycobacterium (1.32–2.70%),
Subgroup_6 (0.89–3.36%), KD4-96 (1.37–2.40%), Saccharimonadales (0.71–2.55%), Amycolatop-
sis (0.34–3.42%), Bradyrhizobium (1.13–1.84%), 67-14 (0.83–2.11%), Haliangium (0.49–1.69%),
Bacillus (0.75–1.42%), and Burkholderia–Caballeronia–Paraburkholderia (0.56–3.34%). There
were significant differences in Gemmatimonas (p = 0.011), Nocardioides (p = 0.047), Mycobac-
terium (p = 0.005), Subgroup_6 (p = 0.042), Saccharimonadales (p = 0.012), Amycolatopsis
(p = 0.008), Bradyrhizobium (p = 0.036), and Haliangium (p = 0.040).

At the phylum level, compared with N treatment, L and H treatment increased the RA
of Actinobacteria, whereas they decreased the RA of Acidobacteria. In addition, B treatment
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increased the RA of Patescibacterias, but decreased the RA of Nitrospirae (Figure S5 and
Table S7).

At the order level, cultivation of sweet sorghum increased the RA of Micrococcales,
but decreased the RA of Acidobacteriales. In addition, B treatment increased the RA of
Rhizobiales and Acidobacteriales and decreased the RA of Betaproteobacteria, while P
treatment showed no significant effect on the dominant bacterial orders (Figure S6 and
Table S8).

As shown in Figure 3, the composition of bacterial genera was similar between P
and C treatments, while B treatment showed more significant differences. The RA of
Geodermatophilus, Acidothermus, JG30-KF-AS9, Streptomyces, Actinomadura, BIrii41, Devosia,
Gemmatimonas, Pseudolabrys, and Bradyrhizobium in B treatments (BL, BH, and BN) were
higher than in P treatments (PL, PH, and PN) and C treatments (CL, CH, and CN). The
RA of Saccharimonadales, Bryobacter, Candidatus_Solibacter, Pajaroellobacter, and Actinoplanes
was increased by HAP in the soil without plant cultivation (PN), and the RA of Umezawaea,
Kribbella, Pseudarthrobacter, and Amycolatopsis was increased by HAP in the soil with high-
density cultivation (PH).
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Figure 3. The heatmap showing the abundance of the top 50 genera. Color codes were based
on standardization (row) of species abundance (see scale on the top right). P, C, and B represent
hydroxyapatite addition, no amendments, and biochar addition, respectively. L, N, and H represent
low planting density, no planting, and high planting density, respectively.

Sorghum planting density also affected the RA of some genera, enriching Halomonas,
Pseudonocardia, and Ramlibacter in the soil without SRAs, but diminishing Reyranella,
Acidibacter, MNDI, RB41, Subgroup_6, and Nitrospira.
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3.4. MetagenomeSeq Analysis

As shown in Figure S7, we tried to identify the ASVs by differences among the sample
groups and then determined whether these differences tended to be enriched at different
classification levels. The differences were mainly found in the Acidobacteria, Actinobacteria,
Chloroflexi, Gemmatimonadetes, Proteobacteria, Bacteroidetes, and Patescibacteria.

In the treatments with plant cultivation, the addition of biochar increased the ASVs
of Acidobacteria, Actinobacteria, Chloroflexi, Gemmatimonadetes, and Proteobacteria.
However, HAP enriched more ASVs in the soil without plant cultivation. Compared with
C treatment (CH and CL), the number of ASVs upregulated by BH and BL was significantly
higher than that by PH and PL, respectively, but the opposite tendency was observed in
the N treatment (BN, PN, and CN) (Figure S7A).

The increase of planting density caused the enrichment of ASVs in B and C treatments,
but was not significant in P treatment. In both C and B treatments, the number of ASVs
upregulated by CL and BL was lower than that of CH and BH compared with CN and
BN, respectively. However, the number of ASVs upregulated by PL and PH was not
significantly different compared with PN (Figure S7B).

3.5. LEfSe Analysis

To identify the biomarkers of soil microbiota in different groups, we performed LEfSe
analysis among P, C, and B treatments (Figure 4). LDA results showed 48 discriminative
features in B treatment (LDA > 3.08, p < 0.05), and Ktedonobacterales, Saccharimona-
dia, Rhizobiales, Frankiales, and Corynebacteriales were the main taxa. P treatment
showed 26 dominant taxa (LDA > 3.08, p < 0.05), and the major bacteria were Pseudonocar-
diales, Gammaproteobacterial, Betaproteobacteriales, Myxococcales, and Micrococcaceae.
C treatment showed 22 dominant bacteria (LDA > 3.08, p < 0.05), and the major taxa
were Deltaproteobacteria, Pyrinomonadales, and Solirubrobacterale (Figure S8). Then, an
evolutionary clustering analysis diagram was delivered to identify major microflora by
taxonomy (Figure 4). In the cladogram, Rhizobiales, Gemmatimonadetes, Saccharimonadia,
Ktedonobacteria, Corynebacteriales, and Frankiales were in green parts, and Pyrinomon-
adales, Azospirillales, Kineosporiales, MB_A2_108, Rubrobacterales, and Solirubrobac-
terales were in the red area, Pseudonocardiales, Gammaproteobacteria, Haliangiaceae,
Betaproteobacteriales were in blue area, which represented B, C, and P treatments, respec-
tively. Overall, these results indicated that the marker species of soil bacteria were altered
by HAP or biochar.

We performed LEfSe analysis among L, H, and N treatments. LDA results showed five
discriminative features in L treatment (LDA > 3, p < 0.05), and Nocardioides, Subdoligranulum,
Cellulosimicrobium, Shinella, and Aquabacterium were the main taxa. H treatment showed
12 dominant bacteria (LDA > 3, p < 0.05), and the major taxa were Clostridia, Clostridiales,
Sulfuriferula, Sulfuricellaceae, Flavonifractor, Bradyrhizobium, Mycobacteriaceae, Mycobac-
terium, Nocardioidaceae, Micrococcales, Actinobacteria, and Actinobacteria. N treatment
showed seven dominant bacteria (LDA > 3, p < 0.05), and the major taxa were MND1,
Micavibrionales, Gemmatimonadetes, Gemmatimonadetes, Gemmatimonadales, Gemmati-
monadaceae, and Acidobacteria (Figure S10). More details of the major taxa by taxonomy
could be found in an evolutionary clustering analysis diagram (Figure S9).
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3.6. Correlations between Soil Properties and Bacterial Abundance

Soil physicochemical properties and bacterial abundance data were used to generate
correlation heatmaps (Figure 5A). At the order level, DTPA-Cd, -Zn, -Cu, and pH were
negatively correlated with marker species (Rhizobiales, Frankiales, and Corynebacteriales)
and positively correlated with S085, MB-A2-108, Azospirillales, and Pyrinomonadales.
AK was positively correlated with Betaproteobacteriales, Myxococcales, and MB-A2-108,
while negatively correlated with Corynebacteriales and Micropepsales. NH4

+-N was
positively correlated with Nitrospirales and MB-A2-108 and negatively correlated with
Sphingobacteriales. NO3

−-N was negatively correlated with Myxococcales.
Soil bacteria at the genus level showed similar correlations with soil properties

(Figure 5B). Gemmatimonas, Geodermatophilus, JG30-KF-AS9, Saccharimonadales, Methylobac-
terium, Pseudolabrys, and Bradyrhizobium were negatively correlated with pH and DTPA-Cd,
-Cu, and -Zn. NH4

+-N was positively correlated with Nitrospira and negatively correlated
with Methylobacterium. NO3

−-N was negatively correlated with Haliangium.
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4. Discussion
4.1. Effects of Biochar and HAP on Bacterial Communities by Altering Soil Properties

Previous studies have shown that the SRAs biochar and HAP can act both directly on
soil microorganisms (e.g., provide nutrients and habitats) and indirectly via changing soil
physicochemical properties (particularly charosphere) and plant growth [8,30,31,40–42].
Soil bacterial communities vary with soil properties [43], especially pH [44,45]. For example,
many studies supposed that Gemmatimonas [46], Saccharimonadales [47], and Bradyrhizo-
bium [48] were negatively correlated with soil pH. Additionally, the fixation of heavy metals
by SRAs could affect soil bacterial communities by alleviating the toxicity of heavy metals
and improving soil quality [49]. Contrary to previous studies that have found increased
diversity and richness of soil bacterial communities by biochar [17,50,51] and HAP [8], our
present study found negative effects of biochar and HAP on soil community diversity and
richness. HAP increased soil DTPA-Cd, which was negatively correlated with soil bacterial
community diversity. Previous studies have shown that the immobilization of soil Cd by
HAP is dependent on the dose of HAP [34,52]. Here, we confirm that the dose of 0.1% is too
low to immobilize Cd under field conditions. Additionally, HAP can increase soil pH and
available P [7], but we did not observe similar results. Particularly, HAP contains 0.5 mg
kg−1 Cd, which may release into the soil during plant growth. Although biochar generally
increases the pH of acidic soil, the effects vary with the type and dose of biochar [53]. Our
results found that, in some cases, biochar showed decreasing effects on soil pH and AK.
The adsorption of biochar may be the reason for the decrease of soil available K. Biochar
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may contain toxic substances such as PAHs and toxic metals [54–57], which may damage
soil microorganisms.

Biochar and HAP may change the abundance of specific bacteria. We found that
soil properties were associated with the abundance of certain bacteria enriched in the soil
with SRAs. For example, the RA of Gemmatimonas, Geodermatophilus, Saccharimonadales,
Methylobacterium, Pseudolabrys, and Bradyrhizobium, JG30_KF_AS9, which were marker
species in the soils amended with biochar, was negatively correlated with available metals
(DTPA-Cd, -Zn, and -Cu) and pH in the soil. Similarly, the RA of SC_I_84, Amycolatopsis,
and Ellin6067, which were marker species in the soil amended with HAP, was positively
correlated with pH and soil available metals (DTPA-Cd, -Zn, and -Cu). Moreover, PCoA-
envfit analysis also showed DTPA-Cd, -Cu, and -Zn and AK had great influences on the
separation of B, P, and C treatments. Therefore, we conclude that biochar and HAP can
drive the selection of some specific bacteria via altering soil properties.

4.2. Effects of Planting Density on Soil Bacterial Communities

Crops not only directly influence the community structure of symbiotic microor-
ganisms, but also indirectly drive the succession of soil microorganisms by altering the
properties of the growing soil, particularly the rhizosphere soil via secreting root exu-
dates. In our study, plant cultivation altered soil bacterial composition, reflected by the
changes in the RA of some specific taxa. For example, we found increased RA of beneficial
bacteria Bradyrhizobium and some soil bacteria involved in the decomposition of organic
carbon, such as Actinobacteria (Mycobacterium, Nocardioidaceae, and Micrococcales) and
Clostridia [58]. A previous study found that fallow soil had higher carbon content, greater
microbial biomass, and higher microbial diversity compared to the cultivated soil [59].
Our findings confirm that plant cultivation helps to drive the succession of soil bacteria
during the phytoremediation program. However, the planting density of sorghum did not
affect the diversity and richness of soil bacterial community (Table S1), and even decreased
the Faith_pd index in B and C treatments (Table S6). Overall, planting sweet sorghum
had weaker effects on soil bacterial community diversity and richness than SRAs. One
possible reason may be that SRAs caused more significant changes in soil properties, which
generally impact soil bacterial community diversity more strongly than plants [60].

Additionally, sorghum cultivation promoted the upregulation of soil ASVs (classified
as Acidobacteria, Actinobacteria, Chloroflexi, and Proteobacteria) in the soil amended with
biochar, but had a small effect in the soil amended with HAP (Figure S7). Biochar can serve
as a refuge for fungi and bacteria. Pore sizes of biochar could satisfy the space for soil
microorganisms to enter and protect microorganisms from external factors such as grazing
predators, desiccation, adverse pH, or toxic substances in soil [61,62]. In contrast, HAP
cannot provide a good place for bacterial colonization. In our study, sorghum cultivation
did not affect ASVs upregulation in the soil with HAP addition. However, the effects of
HAP on ASVs were significantly greater than that of biochar in the soil without sorghum
cultivation (Figure S7), indicating that HAP has a great direct effect on soil bacterial ASVs,
while plant cultivation had no significant indirect effect.

4.3. Effects of SRAs and Plant Cultivation on Specific Bacteria

In our study, biochar caused the enrichment of some dominant taxa (Figure 3 and
Figure S8). Possible reasons can be ascribed to decreased Cd mobility, improved soil prop-
erties (nutrients and carbon source), and enhanced plant growth by biochar. These bacteria
are reported to promote plant growth and increase plant tolerance to toxic metals. Several
previous studies found that Bacillus sp. facilitated the immobilization of Cd [63], Bacillus
subtilis C (225)(MK334652) reduced the bioavailability of heavy metals (Zn, Cr, and Cu) [64],
whereas Bacillus thuringiensis decreased the phytoavailability of soil Pb [65]. Bradyrhizobium
japonicum was able to enhance the growth of lettuce seedlings under heavy metal stress [66].
Streptomyces pactum decreased the antioxidant activities and lipid peroxidation in wheat
and mitigated metal stress in contaminated soils [67]. Siderophores produced by Strepto-
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myces sp. played a significant role in tolerance to Cd2+ [68]. Methylobacterium alleviated
heavy metal stress induced in plants [69]. Geodermatophilus species have been reported
to occur in heavy metal-contaminated soils [70,71], which may have a potential for soil
bioremediation. Similar to our results, the members belonging to JG30-KF-AS9, Acidother-
mus, Subgroup_6, KD4-96, and Bradyrhizobium were also observed to dominate in the soil
contaminated with Cr, Ni, and Cu [72]. In conclusion, biochar can enrich some beneficial
bacteria involved in heavy metal resistance and plant-growth promotion, thus reducing
heavy metal toxicity and promoting plant growth, which may represent a mechanism for
biochar-amendment effects.

Similarly, the addition of HAP also enriched some important bacteria, such as Can-
didatus_Solibacter and Amycolatopsis (Figure 3). Candidatus_Solibacter has been shown to
comprise the core microbiome of various soils polluted with different toxic metals [73–76].
A previous study showed that Amycolatopsis exhibited possible tolerance to both acid soils
and the presence of certain metals (As, Cr, and Ni) [8]. Other genera, such as Actino-
planes [77], Pajaroellobacter [78], and Pseudarthrobacter [79], were also observed to occur
in heavy metal-contaminated soils. The enrichment of these microorganisms by HAP
indicates their potential use in soil remediation jointly with HAP.

In addition, plant cultivation enriched some specific taxa, Halomonas, Pseudonocardia,
and Ramlibacter. Some members of Halomonas belong to plant growth-promoting bacteria,
with significant tolerance to salt and heavy metals [80]. Pseudonocardia and Ramlibacter
show a high tolerance to heavy metal contamination [81,82]. These taxa may contribute to
the growth of sweet sorghum in Cd-contaminated soil.

4.4. Potential Functions of Marker Species in Soil C and P Cycling

The enriched marker species by biochar may participate in C cycling, particularly
in the utilization of the carbon source in biochar. Previous studies have found that JG30-
KF-AS9 [83], Ktedonobacteraceae [84], Bacillales [85], Gemmatimonas [86], Acidothermus
(Frankiales) [87], Actinomadura [88], Micropepsaceae [89], and Oryzihumus [90], the marker
species in B treatment, are associated with the mineralization of soil organic carbon. Actino-
madura [88], Acidothermus [87], and Ktedonobacteria [84] can decompose cellulose. These
bacteria may enhance the degradation of biochar and thus negatively affect the immobiliza-
tion of toxic metals by biochar.

HAP-enriched marker species may contribute to soil microbial P turnover and phos-
phate solubility, such as Candidatus_Solibacter [91], Amycolatopsis [92], and Myxococcales [93]
(order). Some members of Saccharimonadales are recognized as phosphorus-solubilizing
bacteria (PSB) [94]. Similar to our present results, previous studies found Micrococcaceae
(family) and Myxococcales (order) were the marker species in the soil amended with
HAP [31,95]. These enriched species may modify the immobilization of heavy metals by
HAP and the absorption of P by plants, which need to be evaluated in future work. Finally,
the exact functions of these marker species in C and P cycling must be confirmed by various
experimental techniques.

5. Conclusions

Based on our current experiment, several conclusions can be drawn. First, biochar and
HAP substantially altered the assembly of the soil bacterial community, evidenced by the
decrease in the α diversity and the changes in community composition. Comparatively,
planting with sweet sorghum had a negligible influence on soil bacterial diversity, but
caused some alterations in the abundance of some specific taxa. The changes in soil
properties induced by biochar and HAP may partly explain their effects on soil bacteria,
particularly the taxa sensitive to soil condition changes. The enriched bacteria may have
specific ecological functions in regulating plants’ growth and tolerance to Cd and nutrient
cycling, which deserves more detailed investigations. Finally, our findings are based on
a one-growing-season experiment, and long-term evaluation of soil microbial succession
during soil remediation should be considered.
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