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Abstract: The skin is the main barrier between the body and the environment, protecting it from
external oxidative stress induced by ultraviolet rays. It also prevents the entrance of infectious agents
such as viruses, external antigens, allergens, and bacteria into our bodies. An overreaction to these
agents causes severe skin diseases, including atopic dermatitis, pruritus, psoriasis, skin cancer, and
vitiligo. Members of the flavonoid family include apigenin, quercetin, luteolin, and kaempferol. Of
these, apigenin has been used as a dietary supplement due to its various biological activities and
has been shown to reduce skin inflammation by downregulating various inflammatory markers and
molecular targets. In this review, we deal with current knowledge about inflammatory reactions in
the skin and the molecular mechanisms by which apigenin reduces skin inflammation.

Keywords: apigenin; skin inflammation; flavonoid; skin; atopic dermatitis; psoriasis; pruritus; skin
cancer; vitiligo

1. Introduction

The skin may be divided into several layers according to their main functions, includ-
ing the epidermis, dermis, and hypodermis [1]. The epidermis is the outermost layer of
the skin and acts as a barrier to prevent disruption by external stimuli [2,3]. Moreover, it
acts as a defense system to retain immune homeostasis against many pathogens, including
bacteria, antigens, and viruses [4]. The epidermis consists largely of keratinocytes and some
Langerhans cells (LC), melanocytes, and Merkel cells [5]. Among these, the Langerhans cell
is a type of dendritic cell (DC) that can present the necessary antigen for the innate immune
response. When LCs are activated by ultraviolet (UV) irradiation, E-cadherin is expressed
at low levels in keratinocytes. As a result, migration of LCs into the lymph nodes occurs,
and regulatory T cells can be further matured [6,7]. Idoyaga et al. [8] revealed that skin DCs
can be targeted for immunomodulatory therapies. In the outer layers of the epidermis, the
skin microbiome retains skin acidity to protect against external infections [9–11]. Organisms
in the microbiome also interact with each other to form a community in the skin, and these
interactions ensure immune homeostasis in the skin. On the other hand, dysregulation of
the inflammatory equilibrium can induce skin immunological diseases [12–14], including
atopic dermatitis (AD), pruritus, psoriasis, skin cancer, and vitiligo [15–17]. As part of
the efforts to attenuate inflammatory symptoms, steroidal and non-steroidal drugs are
mostly used as classical treatments [18–22]. However, because of the side effects of anti-
inflammatory drugs, studies investigating natural compounds to replace chemical drugs
have been more actively performed [23].

Apigenin (4′,5,7-trihydroxyflavone, Figure 1) is a natural compound that belongs
to the subclass of flavonoids [24,25]. In previous studies, Tanacetum, Achillea, Artemisia,
and Matricaria genera belonging to the Artemisia family of plants have been reported as
the main source plants of apigenin [26–29]. It has been presented that apigenin has the
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potential to attenuate skin inflammatory conditions, such as AD, pruritus, and psoriasis,
and the tumorigenic response of skin cancers (Figure 2). In addition, its anti-apoptotic [30],
anti-inflammatory [31], and anti-hyperglycemic effects [32] have been researched. In this
review, we focus on describing the functional properties of apigenin and its potential for
pharmacological effects.
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2. Anti-Inflammatory Effects of Apigenin on UV-Irradiated Skin

UV light is the main cause of skin inflammation and can be divided into UVA
(320–400 nm), UVB (280–320 nm), and UVC (100–280 nm), according to the wavelength.
Especially, UVA and UVB penetrate the skin layers, and can induce skin inflammation and
aging in keratinocytes and fibroblasts [33,34]. UVB exposure causes an acute inflammation
response in the epidermis by promoting the synthesis and secretion of pro-inflammatory
cytokines, such as tumor necrosis factor (TNF)-α and interleukin (IL)-6 from epidermal
cells [35]. Moreover, UVA penetrates the dermal layers and indirectly causes DNA damage
with degradation of the collagen and elastin fibers [34].
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In previous studies, apigenin attenuated skin inflammation by downregulating the
expression of cyclooxygenase-2 (COX-2) [36]. Another finding suggests its potential as a
novel target for reducing skin inflammation. This compound works in the keratinocyte
by targeting the non-receptor tyrosine kinase (e.g., Src) and COX-2 [37]. Apigenin pre-
vented cyclobutene pyrimidine dimers, which are generated by UV exposure. Due to this,
apigenin restored the lower level of nucleotide excision repair proteins and affected cell
apoptosis [38,39]. Apigenin downregulated the level of metalloproteinase-1 by interfering
with the Ca2+ influx-dependent mitogen-activated protein kinase (MAPK) and activator
protein-1 (AP-1) pathways in HaCaT or normal human dermal fibroblast cells under UVA-
irradiated conditions. Especially, the levels of c-Jun and c-Fos were decreased by apigenin
treatment, which suppressed the phosphorylation of extracellular signal-regulated kinase
(ERK), c-Jun N-terminal kinase (JNK), and p38 [40,41]. As a result, apigenin could attenuate
UV-mediated inflammation by decreasing the transcription of inflammatory cytokines via
the downregulation of the AP-1, MAPK, and apoptotic signaling pathways (Figure 3).
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3. Effect of Apigenin on Attenuating AD

AD is a chronic inflammatory disease that affects 80% of patients in infancy or child-
hood. Its severe symptoms include itching, dry skin, eczema, and swallowing. The
cytokines and chemokines secreted in AD are summarized in Table 1; however, the exact
mechanism of the stimulus is still unclear. There are many hypotheses to explain AD
pathogenesis, including: (I) disproportion of skin microbiomes [3,42–44]; (II) weakness
of skin barrier junctions [45,46]; (III) dysregulation between pro- and anti-inflammatory
cytokines [47,48]; and (IV) excessive immunoglobulin E (IgE) secretion. Among these expla-
nations, apigenin reduced IgE and interferon (IFN)-γ levels in serum in an NC/Nga mouse
model. Moreover, apigenin attenuated damaging skin lesions induced by picrylchloride.
Considering the protein levels, apigenin suppressed the phosphorylation of the signal trans-
ducer and activator of transcription 6 (STAT6) in IL-4–stimulated mouse spleen cells [49].
In addition, apigenin showed a low expression of IL-31 in messenger RNA in a human
mast cell line (HMC-1). In HMC-1 cells, apigenin downregulated nuclear factor-κB (NF-κB)
pathway proteins, including the inhibitor of κB kinase, inhibitor of κB, and the p65/NF-κB,
and MAPK pathway factors of c-Jun N-terminal kinase, ERK, and p38 [50]. In summary, it
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is thought that apigenin can ameliorate the symptoms of AD by decreasing the levels of
pro-inflammatory cytokines and inflammatory mediators by downregulating the MAPK,
NF-κB, and Jak/STAT signaling pathways (Figure 4).

Table 1. The cytokines and chemokines that stimulate AD.

Cytokines Classification Role Reference

IL-4

Th2 cell-derived cytokines

• Interacts with keratinocytes to produce eosinophil
chemokine (CCL26) in the acute phase.

• Regulates IgE secretion from B cells.
• Directly acts on itch sensory neurons to

promote pruritus.

[51,52]IL-13

IL-31 Th2 cell-derived cytokines
• Causes pruritus by binding the IL-31 receptor A (IL31RA).
• Downregulates barrier-associated protein expression.
• Inhibits keratinocyte differentiation.

[53,54]

IL-1α
IL-1 family

• Recruits leukocytes to inflammation sites.
• Decreases the natural moisturizing factors in stratum

corneum layers.
[55,56]

IL-1β

IL-33 IL-1 family
• Regulates the activation of mast cells, ILC2,

and basophils.
• Secretes pruritic cytokines from Th2 cells

or keratinocytes.

[57–59]

IFN-γ
Th1 cytokines

• Recruits CXCR3 agonistic chemokines, which induce the T
cell into the inflammation site. [60]

TNF-α

TSLP IL-7-like cytokines
• Promotes dendritic cells to differentiate into naïve

T cells.
• Binds to the TSLP receptor which is placed in cutaneous

sensory neurons to induce pruritus.

[61–64]
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4. Treatment with Apigenin for Alleviating Pruritus

Pruritus or itching negatively affects quality of life [65,66]. Many different factors
play a role in this event, but the exact pathogenetic mechanisms are not known [67,68].
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Histamine, serotonin, cytokines, peptides, and phospholipid metabolites are included
as mediators of pruritus [69]. Among these, cytokines are strong players that manage
itching by activating receptors [70]. One example, IL-31, which is derived from the IL-6
family, acts as the therapeutic target of pruritus in the Th2 cell-mediated response. IL-
31 has been reported to induce chemokines such as CCL1, CCL17, and CCL22 [71,72].
Additionally, IL-33 has also been considered a pathophysiologically important cytokine
that manages innate immune responses [73] and Th2 cell differentiation by promoting the
expression of chemokines and pro-inflammatory cytokines, and by activating natural killer
cells and dendritic cells [74]. Apigenin weakened the expression of IL-31 in human mast
cells and mouse skin through downregulation of MAPK and NF-κB signaling [50]. In an
ovalbumin-induced BALB/c mouse model, apigenin regulated the balance of Th1/Th2
cells by downregulating the NF-κB pathway and reducing histamine, IgE, and STAT1
expression. Moreover, apigenin improved the Th1 response by controlling the expression of
IFN-γ and T-box protein expressed in T cells [75]. Furthermore, apigenin-treated microglial
cells lowered the expression levels of IL-31 and IL-33 without displaying cytotoxicity. This
expression was verified by polymerase chain reaction as well as Western blotting via the
inhibition of the ERK and JNK pathways [76]. In experiments using astrocytes, apigenin
significantly suppressed IL-31 and IL-33 messenger RNA expression. Pre-treatment with
apigenin in astrocytes decreased the expression levels of IL-31 and IL-33 at the protein
level. In astrocytes, apigenin also inhibited the phosphorylation of MAPK and NF-κB
signaling proteins [77]. Taken together, these studies suggest that apigenin can ameliorate
pruritus by inhibiting IL-31 and IL-33 secretion through suppression of the NF-κB and
MAPK pathways (Figure 5).
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5. The Mechanism of Apigenin for the Amelioration of Psoriasis

Psoriasis is a chronic, immunological skin disease affecting about 125 million patients
in America [78]. These patients and others motivate the study of psoriasis to improve
pathophysiological knowledge of the condition. Psoriasis is a sustained inflammatory
disease caused by the hyperproliferation of keratinocytes and dysfunctional differentiation.
In addition, the infiltration of Th17 cells secreting inflammatory cytokines, such as IL-23,
into keratinocytes, dominantly occurs in psoriasis [79].
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Apigenin showed the greatest effects in a psoriasis model by decreasing cytokine
levels. Skin barrier recovery effects were observed in apigenin-treated skin. Apigenin also
improved the skin’s condition by increasing the hydration level of the stratum corneum.
Meanwhile, apigenin influenced the synthesis of skin structural proteins such as filag-
grin, involucrin, and loricrin in mouse models [80]. With co-treatment of apigenin and
lipopolysaccharide (LPS) in DCs, this compound significantly inhibited TNF-α messenger
RNA expression. Moreover, apigenin suppressed the level of pro-inflammatory cytokines,
including IFN-γ, IL-6, IL-1β, IL-23, and IL-10, in both LPS treatment and non-treatment
groups. Meanwhile, apigenin affected naïve T cell differentiation by modulating the
function of DCs [81]. Overall, apigenin treatment may ameliorate psoriasis symptoms
by regulating the transcription of inflammatory cytokines via regulation of the Toll-like
receptor 4 pathway (Figure 6).
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6. The Suppressive Activity of Apigenin on Skin Cancer

The inflammation response promotes cell proliferation to renew damaged cell tis-
sues, so it plays a pivotal role in retaining tissue homeostasis [82]. However, chronic
inflammation is also known to induce tumorigenesis. The tumor microenvironment is
initiated by the excessive production of inflammatory cytokines. Thus, this phenomenon
merits study. Many cytokines and chemokines can be induced in hypoxic conditions in
this tumorigenic environment [83]. Skin cancer is a malignant tumor, particularly in Cau-
casians, with about 1 million cases occurring annually in the United States [84–86]. Skin
tumors have been named according to their involved cells and clinical behavior. There are
three types of skin tumors: basal cell carcinoma; cutaneous malignant melanoma (CM);
and non-melanocytic skin cancer (NMSC), which is also known as squamous cell carcinoma [84,87].
Chronic UV exposure most commonly leads to skin cancer among all known risk en-
vironments and affects gene mutation, immunosuppression, and oxidative stress [88–90].
From various studies, there are several approaches to suppress skin cancer, including
through the PI3K/Akt/mTOR, TNF-related apoptosis-inducing ligand, JAK/STAT, and
MAPK signaling pathways [91–94].
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6.1. NMSC

Apigenin downregulates the Akt signaling pathway in UVB-irradiated keratinocytes,
blocking the mammalian target of rapamycin (mTOR) activation and suppressing the
cell cycle and cell proliferation in mouse skin and keratinocytes. Meanwhile, it pro-
motes autophagy via mTOR inhibition, which inhibits keratinocyte proliferation [95,96].
In primary human epidermal keratinocytes and a skin cutaneous squamous cell car-
cinoma cell line (COLO-16), treatment with apigenin decreased the conversion of the
microtubule-associated protein 1 light chain 3 (LC3) and GFP-LC3 puncta [97]. Apigenin
also inhibited skin carcinogenesis by downregulating the COX-2 expression level in UVB-
irradiated mouse skins [98]. It is commonly known that 12-O-tetradecanoylphorbol-13-
acetate (TPA) can induce a tumor by binding and activating the protein kinase C signaling
pathways [99,100]. Apigenin treatment suppressed PKC activity dose-dependently and in-
hibited TPA-mediated carcinogenesis in mouse skin [101,102]. In summary, it is speculated
that apigenin treatment can reduce tumorigenic responses by inducing autophagy and via
the inactivation of Akt and PKC in keratinocytes (Figure 7).
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6.2. CMs

Apigenin inhibited the proliferation of melanoma cell lines by downregulating the
AKT signaling pathway, which promotes cell apoptosis [103]. Moreover, apigenin treat-
ment suppressed melanoma metastasis to the lungs in C57BL/6 mice and inhibited the
phosphorylation of STAT3 in melanoma cells [104]. The presence of apigenin induced
anti-melanoma effects by triggering the apoptosis of A375SM cells. Apoptotic proteins,
including the caspases, p53, Bcl-2-associated X protein, and poly ADP-ribose polymerase
(PARP), were upregulated by apigenin treatment. The compound also downregulated
the levels of Akt, STAT3, and MAPK in melanoma cells [105]. Therefore, it is suggested
that apigenin could inhibit carcinogenesis by inducing apoptosis in melanoma cells and
downregulating the activities of some important survival factors, such as STAT3, Akt, and
MAPK proteins (Figure 8).
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7. The Therapeutic Effects of Apigenin on Vitiligo

Vitiligo has been reported as a pigmentary disorder impacting about 1% of the world’s
population [106]. The symptoms of this disease include inconsistent and various sizes of
white spots found on the skin and a change of hair color to white [107–109]. The main
cause of vitiligo is concerned with the autoimmune chronic destruction of melanocytes.
The death of pigment cells expands the white lesions on the skin. Therefore, the therapeutic
strategy has focused on preventing the apoptosis of melanocytes from oxidative stress and
suppressing the proinflammatory response [110]. Of many different compounds, apigenin
was reported to upregulate antioxidant enzyme activities, such as superoxide dismutase
(SOD), catalase (CAT), and glutathione peroxidase (GSH-Px). Moreover, apigenin was
found to promote the gene expression level that is involved in the antioxidant process the
at mRNA and protein levels [111]. Meanwhile, it was revealed that apigenin can affect
dopamine (DA)-triggered apoptosis in melanocytes by downregulating cleaved PARP
and cleaved caspase 3 levels [112]. Apigenin also protected melanocytes from apoptosis
by blocking the phosphorylation of Akt, p38, and JNK, which are induced by DA [112]
(Figure 9).
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8. Conclusions

This review described the attenuating effects of apigenin on skin inflammatory condi-
tions and cancer as summarized in Table 2. A natural flavonoid, apigenin showed the great-
est activity by attenuating the symptoms of skin inflammatory diseases and tumorigenic
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responses. Apigenin downregulated inflammatory cytokine expression by suppressing
the AP-1, MAPK, and NF-κB pathways in keratinocytes. In addition, apigenin induced
autophagy by decreasing mTOR activity and inactivating Akt and PKC activities. Moreover,
apigenin protects the cell from oxidative stress-induced cell death. Through treatment,
apigenin could prevent skin inflammatory responses to retain the proper regulation of
inflammatory cells. Furthermore, apigenin could affect the synthesis of skin barrier factors
and Ca2+ influx. Based on this review, apigenin could be applied to treat skin inflammatory
diseases and cancer.

Table 2. Mechanism of apigenin against inflammatory skin diseases and cancers.

The Type of Skin Disease Mechanisms of Apigenin Test Model Dose References

UV-mediated
inflammation

Downregulates Src and COX-2 levels. In vitro 10, 20, 40, 50 µM [36,37]

Regulates the level of apoptotic proteins
and anti-apoptotic proteins.

In vitro 7, 15 µM
[38,39]

Inhibits MMP-1 expression by suppressing
Ca2+ influx.

[40,41]
Suppresses the MAPK and AP-1
signaling pathways. In vitro 1, 5, 10, 20 µM

Atopic dermatitis

Suppresses phosphorylation of STAT6 in
IL-4 stimulated mouse spleen cells. Ex vivo 25 µM

[49]
Ameliorates damaged skin lesions induced
by picrylchloride(piCl). In vivo 0.05% feed to mice

Downregulates the protein levels of the
NF-κB, MAPK pathways. In vitro 10, 20, 30 µM [50]

Pruritus

Suppresses IL-31 levels by inhibiting the
NF-κB and MAPK signaling pathways. In vitro 10, 30 µM [50]

Regulates Th1/Th2 balance by inhibiting
the NF-κB pathway, and levels of
histamine, IgE, and STAT1 expression.

In vivo 5, 10, 20 mg/kg
of mice

[75]
Enhances the Th1 response by decreasing
the expression of IFN-γ, and T-box proteins
in T cells.

Shows low expression of IL-31, IL-33 in
apigenin-treated microglial cells via
downregulating ERK and JNK expression.

In vitro 5, 10, 20, 40, 60, 80,
100 µM [76]

Inactivates MAPK and NF-κB proteins. In vitro 30, 60 µM [77]

Psoriasis

Promotes the synthesis of skin
barrier factors. In vivo

60 µL of 0.1%
apigenin in 100%

ethanol
[80]

Downregulates the mRNA expression of
inflammatory cytokines in
LPS-treated DCs.

In vitro 8, 20 µM [81]
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Table 2. Cont.

The Type of Skin Disease Mechanisms of Apigenin Test Model Dose References

Skin cancer

Downregulates mTOR and AKT
signaling pathways.

In vitro 25 µM

[95,96]
In vivo

5 µM in 0.2 mL
DMSO/acetone (1:9)
vehicle mix of mice

Induces autophagy by inhibiting mTOR
expression and the conversion of LC3. In vitro 6, 12, 25, 50 µM [97]

Decreases carcinogenesis in TPA-mediated
mouse skin and PKC activity,.

In vivo 5, 25 µM to mice
10, 50, 100 µM

[101,102]
In vitro

Attenuates melanoma metastases to the
lung by decreasing STAT3 levels. In vivo 150 mg/kg of mice [104]

Promotes the expression of apoptotic
proteins in A375SM cells.
Inactivates the Akt and MAPK
pathway proteins.

In vitro 25, 50, 75, 100 µM

[103,105]
In vivo 25, 50 mg/kg of mice

Vitiligo

Promotes antioxidant enzyme activity in
dose-dependent ways.
Increases the expression of antioxidant
genes at the mRNA and protein levels.

In vitro 1, 5, 10, 20 µM [111]

Protects pigment cells from DA-induced
apoptosis by decreasing the level of
apoptotic agents. In vitro 10 µM

[112]

Inactivates p38, JNK, and Akt levels in the
presence of DA.

9. Perspective

Apigenin is a bioactive compound used as a therapeutic agent for various diseases,
such as diabetes, Alzheimer’s disease, cancer, and amnesia [113–116]. Treatment with
apigenin has led to decreased levels of many inflammatory cytokines. According to study
results, apigenin could inhibit the inflammatory response in the skin by downregulating
transcription factors, such as AP-1, NF-κB, and STAT. These mechanisms not only back
up the excellence of apigenin, but also suggest the possibility of using it as a drug for
inflammatory skin diseases. There are now many trials assessing active natural compounds
as substitutes for chemically synthetic drugs because of severe side effects associated with
the latter [117,118]. Previous studies administered apigenin by applying it to damaged skin
or cells to attenuate skin inflammation. Nowadays, apigenin products manufactured with
chamomile extracts are being sold in markets to attenuate stress hormones, and bad dreams,
as well as in the form of commercially available capsules that provide powerful antioxidant
supplements to promote healthy aging and skin health [119]. However, flavonoids can be
degraded by high temperatures [120], thus studies aimed at stabilizing apigenin therapeu-
tics should be performed. We suggest that apigenin can not only be used as a therapeutic
material, but also as a health supplement for skin diseases, based upon the various studies
discussed in this review.

Author Contributions: J.H.Y., M.-Y.K. and J.Y.C. conceptualized this review; J.H.Y. visualized the
figure for the paper; J.H.Y., M.-Y.K. and J.Y.C. wrote the manuscript; M.-Y.K. and J.Y.C. administrated
the writing and editing. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by grant from the Basic Science Research Program through the
National Research Foundation of Korea (NRF), funded by the Korean Ministry of Education (Grant
No.: 2017R1A6A1A03015642).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Int. J. Mol. Sci. 2023, 24, 1498 11 of 16

Data Availability Statement: The data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

LC Langerhans cells
UV Ultraviolet radiation
Treg Regulatory T cells
AD Atopic dermatitis
TNF-α Tumor necrosis factor-α
IL-6 Interleukin-6
COX-2 Cyclooxygenase-2
Src Non-receptor tyrosine kinase
CPD Cyclobutene pyrimidine dimers
NER Nucleotide excision repair
MMP-1 Metalloproteinases-1
MAPK Mitogen-activated protein kinase
AP-1 Activator protein 1
nHDF Normal Human Dermal Fibroblasts
IgE Immunoglobulin E
IFN-γ Interferon-gamma
PiCl Picrylchloride
STAT6 Signal transducers and activators of transcription 6
IL-4 Interleukin-4
IL-31 Interleukin-31
HMC-1 Human mast cells
NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells
IKK Inhibitor of NF-κB kinase
IκB Inhibitor of kappaB
JNK c-Jun N-terminal kinase
ERK Extracellular signal-regulated kinase
CCL26 Eosinophil chemokine
IL-31RA Interleukin-31 receptor A
ILC2 Innate lymphoid cells-2
CXCR3 C-X-C Motif Chemokine Receptor 3
TSLP Thymic stromal lymphopoietin
CCL C-C motif chemokine ligand
NK cells Natural killer cells
OVA Ovalbumin
T-bet T-box protein expressed in T cells
IL-23 Interleukin-23
LPS Lipopolysaccharide
TLR4 Toll-like receptor 4
TME Tumor microenvironments
BCCs Basal cell carcinomas
CMs Cutaneous malignant melanomas
NMSC Nonmelanocytic skin cancer
SCCs Squamous cell carcinomas
TRAIL TNF-related apoptosis-inducing ligand
mTOR Mammalian target of rapamycin
HEKs Human epidermal keratinocytes
COLO-16 Skin cutaneous squamous cell carcinoma cell line
LC3 Light chain 3
TPA 12-O-tetradecanoylphorbol-13-acetate
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Bax Bcl-2-associated X protein
PARP Poly ADP-ribose polymerase
SOD Superoxide dismutase
CAT Catalase
GSH-Px Glutathione peroxidase
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