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OBJECTIVE

To investigate the causal role of choline metabolites mediating sodium–glucose
cotransporter 2 (SGLT2) inhibition in coronary artery disease (CAD) and type 2
diabetes (T2D) using Mendelian randomization (MR).

RESEARCH DESIGN AND METHODS

A two-sample two-step MRwas used to determine 1) causal effects of SGLT2 inhi-
bition on CAD and T2D; 2) causal effects of three choline metabolites, total cho-
line, phosphatidylcholine, and glycine, on CAD and T2D; and 3) mediation effects
of these metabolites. Genetic proxies for SGLT2 inhibition were identified as var-
iants in the SLC5A2 gene that were associated with both levels of gene expression
and hemoglobin A1c. Summary statistics for metabolites were from UK Biobank,
CAD from CARDIoGRAMplusC4D (Coronary ARtery DIsease Genome wide Replica-
tion and Meta-analysis [CARDIoGRAM] plus The Coronary Artery Disease [C4D]
Genetics) consortium, and T2D from DIAbetes Genetics Replication And Meta-
analysis (DIAGRAM) and the FinnGen study.

RESULTS

SGLT2 inhibition (per 1 SD, 6.75 mmol/mol [1.09%] lowering of HbA1c) was asso-
ciated with lower risk of T2D and CAD (odds ratio [OR] 0.25 [95% CI 0.12, 0.54],
and 0.51 [0.28, 0.94], respectively) and positively with total choline (b 0.39 [95%
CI 0.06, 0.72]), phosphatidylcholine (0.40 [0.13, 0.67]), and glycine (0.34 [0.05,
0.63]). Total choline (OR 0.78 [95% CI 0.68, 0.89]) and phosphatidylcholine (OR
0.81 [0.72, 0.91]) were associated with T2D but not with CAD, while glycine was
associated with CAD (0.94 [0.91, 0.98]) but not with T2D. Mediation analysis
showed evidence of indirect effect of SGLT2 inhibition on T2D through total cho-
line (0.91 [0.83, 0.99]) and phosphatidylcholine (0.93 [0.87, 0.99]) with a medi-
ated proportion of 8% and 5% of the total effect, respectively, and on CAD
through glycine (0.98 [0.96, 1.00]) with a mediated proportion of 2%. The results
were well validated in at least one independent data set.

CONCLUSIONS

Our study identified the causal roles of SGLT2 inhibition in choline metabolites.
SGLT2 inhibition may influence T2D and CAD through different choline metabolites.

Sodium–glucose cotransporter 2 (SGLT2) inhibitors, including canagliflozin, dapagli-
flozin, and empagliflozin, are widely approved antihyperglycemic agents to lower
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blood glucose and cardiovascular risk in
patients with diabetes (1). Large clinical
trials have provided compelling evidence
to support their beneficial effects on
major adverse cardiovascular events,
hospitalization for heart failure (2–6),
and renal outcomes (7,8). SGLT2 inhibi-
tors have been demonstrated to have
metabolic effects, though the underlying
mechanism is unclear (9–11). In a prospec-
tive study, a wide range of metabolites
changes was identified in the empagliflo-
zin-treated patients with type 2 diabetes
(T2D) and cardiovascular disease (CVD)
through use of untargeted metabolomics
(10). However, it did not yield definitive
mechanisms or inference of causal effect
of SGLT2 inhibition on the circulating
metabolites because of the observational
nature of the study (10). In the male
Zucker diabetic fatty rats after treatment
with empagliflozin for 6 weeks, the he-
patic lipidome was changed toward a
protective profile, through an increase of
phosphatidylcholines and related metab-
olites (11).
Choline, an essential nutrient that plays

a vital role in human metabolism and
health, is involved in the synthesis of
phospholipids, betaine, and acetylcholine
(12). Elevated levels of choline metabo-
lites generated from the metabolism of
dietary choline and phosphatidylcholine
(mostly originated from red meat, eggs,
and fish) by gut microbiome were found
to be associated with increased risk of
CVD (13–16) and T2D (17). In a recent
case-cohort study investigators reported
that plasma concentrations of choline
pathway metabolites (choline, phospho-
choline, and a-glycerophosphocholine) and
a metabolite score combining choline
pathway metabolites were associated
with risk of major cardiovascular events
during �5 years of follow-up (18). How-
ever, the causal effects of the choline
metabolites on T2D and CVD events are
unclear, and whether the SGLT2 inhibition
acts on the choline metabolism pathway
remains unknown.
Mendelian randomization (MR) is an

approach that uses genetic variants that
are robustly associated with exposure as
potentially unconfounded instruments to
infer a causal relation between exposure
and outcome. New methods such as ge-
netic colocalization and genetic variants
that are associated with drug target mRNA
expression (expression quantitative trait
loci [eQTLs]) can be used to create MR

instruments for drug exposure (19). This
strategy can be introduced for investi-
gation of the biological mechanisms in-
volved in the effects of SGLT2 inhibition
on diabetes and CVD.

Given the underexplored metabolic
mechanism of SGLT2 inhibition in pro-
tection against CVD and T2D, and the
important role of choline metabolism
pathway in pathogenies of these cardio-
metabolic diseases, we hypothesized that
the effect of SGLT2 inhibition on cardio-
vascular events or diabetes might be
mediated through the choline meta-
bolic pathway. We performed a two-
sample, two-step MR study to investigate
the causal role of choline metabolites in
linking the effect of SGLT2 inhibition with
coronary artery disease (CAD) and T2D
(Fig. 1). We identified a causal effect of
SGLT2 inhibition on choline metabolites,
which would guide the mechanism ex-
ploration of SGLT2 inhibition in reducing
cardiometabolic disease risk.

RESEARCH DESIGN AND METHODS

Study Design
Figure 1A illustrates the diagram of the
study design. 1) Selection of genetic var-
iants that were proxies of the effect of
SGLT2 inhibition. 2) Selection of three me-
tabolites on the choline metabolism path-
ways as potential mediators. 3) Selection
of two cardiometabolic outcomes: CAD
and T2D. 4) Two-step MR analysis esti-
mating the causal effects of SGLT2 inhi-
bition and choline metabolites on the two
cardiometabolic diseases, respectively, and
estimation of the mediation effect of cho-
line metabolites linking SGLT2 inhibition
with the two disease outcomes. And
5) integration of causal evidence with
biological pathway information.

Selection and Validation for Genetic
Predictors of SGLT2 Inhibition
The selection of genetic variants that were
proxies of SGLT2 inhibition involved four
steps (Fig. 1A). 1) Select genetic variants
associated with mRNA expression level
of SLC5A2 gene using data from Geno-
type-Tissue Expression (GTEx) (20) and
eQTLGen Consortium (21) and the po-
tential functional gene of SGLT2 inhibitors
(Supplementary Table 1). 2) Estimate the
association of each SLC5A2 variant with
HbA1c level (an indicator of glucose-
lowering effect via SGLT2 inhibition) and
select variants that show regional-wide

association with HbA1c using data from
a subgroup of unrelated individuals of
European ancestry without diabetes in
the UK Biobank (n = 344,182) (associa-
tion P value = 1 × 10�4) (Supplementary
Table 1) (22). 3) Validate whether SLC5A2
and HbA1c share the same causal variant
using the genetic colocalization approach.
Colocalization is a bivariable genetic ap-
proach with application of a Bayesian
model to estimate the posterior proba-
bility that the two traits, expression of
SLC5A2 and circulating HbA1c level, share
the same causal variant in the SLC5A2 re-
gion (19). Colocalization probability >70%
between SLC5A2 expression and HbA1c
was used as evidence of colocalization
and noted as “colocalized.” The rest of
the gene-disease associations were noted
as “not colocalized” (Supplementary
Table 1). And 4) after selection and vali-
dation, conduct a standard clumping pro-
cess (using correlation among variants
<0.8 as threshold to remove variants
with very high correlation). To quantify
the statistical power of the genetic var-
iants, we estimated the strength of the
genetic predictors of each tested expo-
sure using F statistics. After selection
and multiple validation steps, six ge-
netic variants robustly associated with
SGLT2 inhibition via HbA1c were selected
as genetic predictors for the MR analysis
(Supplementary Table 2).

Selection of Choline Metabolites
We systematically searched 249 metab-
olites from UK Biobank, and 3 choline
metabolites were available including total
choline, phosphatidylcholine, and glycine
(n = 114,999). The full genome-wide asso-
ciation studies (GWAS) summary statistics
of the three choline metabolites were
made publicly available via the IEU Open-
GWAS database with GWAS identifier
met-d-Cholines, met-d-Phosphatidylc, and
met-d-Gly (22). The genetic variants that
showed strong associations with the
above three metabolites (P < 5 × 10�8)
were selected as candidate genetic pre-
dictors of these metabolites. A clumping
was further conducted to remove genetic
variants with correlation to each other
(correlation among variants <0.001).
After selection and validation, 64 variants
associated with total choline, 61 associated
with phosphatidylcholine, and 49 asso-
ciated with glycine were selected as
genetic predictors of the three choline
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metabolites, respectively (Supplementary
Table 3). We searched other key choline
metabolites including betaine and acetyl-
choline. There is only one GWAS of circu-
lating betaine in 3,829 individuals (23),
where four genetic variants were reported.
No GWAS data for circulating acetylcholine
are available to date. On considering the
data availability and the statistical power,
we therefore did not include betaine or
acetylcholine in this study.

Study Outcomes
Due to the outstanding beneficial effects
of SGLT2 inhibition on cardiometabolic
diseases, we focused our study on the
two major outcomes, CAD and T2D. The
summary data of the genetic association
for T2D were obtained from the DIAbetes
Genetics Replication And Meta-analysis
(DIAGRAM) consortium (74,124 cases)
(24) and the FinnGen study (37,031 cases)
as a validation data set. The genetic associ-
ation for CAD was extracted from a meta-
GWAS of CARDIoGRAMplusC4D (Coronary
ARtery DIsease Genome wide Replication
and Meta-analysis [CARDIoGRAM] plus The
Coronary Artery Disease [C4D] Genetics)

and UK Biobank with 71,602 CAD cases
(25) and an independent data set with
60,801 CAD cases in CARDIoGRAMplusC4D
as a validation (26) (Supplementary Table 4).

Statistical Analyses

Heritability and Genetic Correlation Analysis

of Choline Metabolites

To estimate the heritability of the three
choline metabolites, we used single-trait
linkage disequilibrium (LD) score regres-
sion (27). LD scores were calculated for
all high-quality genetic variants (i.e.,
INFO score > 0.9 and minor allele fre-
quency > 0.1%) from the metabolites
GWASs. We further quantified the over-
all variant-based heritability with LD score
regression using a subset of 1.2 million
HapMap genetic variants (with variants
in major histocompatibility complex region
been removed due to complex correla-
tion structure among genetic variants;
Supplementary Table 5).

To further understand the correlation
between the choline metabolites, we
conducted a pairwise genetic correlation
analysis of the three choline metabolites
using bivariate LD score regression. The

LD score regression method uses sum-
mary statistics from the GWAS of total
choline, phosphatidylcholine, and glycine;
calculates the cross product of test statis-
tics at each variant; and then regresses
the cross product on the LD score (which
is a measure of how much variation each
variant tags). In total, three pairs of ge-
netic correlations were estimated.

MR Analysis of SGLT2 Inhibition and CAD

and T2D Risk

First, we estimated the effect of SGLT2
inhibition on CAD and T2D risk (Fig. 1B).
A generalized inverse variance–weighted
(IVW) approach was applied to boost
the power of this analysis, where the
method includes consideration of the cor-
relation between the six genetic predic-
tors of SGLT2 inhibition (therefore we
were able to use a relaxed clumping
threshold of 0.8). Specifically, we got an
LD matrix of correlation values for each
pair of variants present in the 1000 Ge-
nomes data set. Then, we used IVW
and MR-Egger method to estimate the
MR effect considering the LD matrix of
six variants. This method used partially

Figure 1—Study design. A: The study question is whether there is a causal role of choline metabolites (mediators) in mediating the effect of SGLT2
inhibition (exposures) on CAD and T2D (outcomes). The green modules and arrow show the selected drugs and their targets, which come from the
literature evidence. The purple modules and arrow show the process of looking up genetic variants associated with the expression level of SLC5A2
gene (using data from GTEx and eQTLGen Consortium), the functional gene of SGLT2 inhibitors, which means a biological link. The blue modules
and black arrows indicate the MR estimates of effects of the variants on HbA1c level using data from the UK Biobank. The orange modules indicate
the selected metabolites from the UK Biobank, and data are from the population-based GWAS. The red modules represent selected cardiometa-
bolic outcomes, T2D, and CAD. B: Diagram of the two steps of MR models: step 1, to establish the causal effect of SGLT2 inhibition on CAD and
T2D, and step 2, to establish the causal effect of the choline metabolites on CAD and T2D.
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correlated variants based on principal
components analysis of a weighted ver-
sion of the genetic correlation matrix,
which would improve numerical efficiency
and stability, since the extra variants ex-
plained additional variation in the expo-
sure (28).

Mediation MR Analysis Linking SGLT2

InhibitionWith CAD and T2D via Choline

Metabolites

We assessed the causal effect of metab-
olites on CAD and T2D (Fig. 1B). The
64 variants associated with total choline,
61 with phosphatidylcholine, and 49 with
glycine were used as genetic predictors
for the three exposures, and CAD and
T2D were selected as the outcomes.
We estimated the effect of SGLT2 on

three choline metabolites. The six ge-
netic variants mimicking SGLT2 inhibi-
tion were used as the exposure, and
the three choline metabolites were used
as outcomes.
We performed multivariable MR as

another method to determine the me-
diation effect of the metabolites on
SGLT2 inhibition and T2D and CAD (29,30).
We used IVW as our main approach to
estimate the effect of SGLT2 inhibition
on the metabolites (b1) and multivari-
able MR to estimate the effect of each
metabolite on risk of T2D and CAD ad-
justing for the genetic effect of SGLT2
inhibition (b2). To calculate the indirect
mediation effect of SGLT2 inhibition on
diseases outcomes, we used the prod-
uct of coefficients method as our main
method, i.e., the casual effect of SGLT2
inhibition on outcomes via metabolites
(b1 × b2). The direct effect was the esti-
mate of SGLT2 inhibition on outcomes
with adjustment for each mediator indi-
vidually (b3) and total effect was the
sum of direct and indirect effect (b3 1
b1 × b2). Thus, the proportion of the
total effect mediated by each metabo-
lite separately was estimated by divid-
ing the indirect effect by the total effect
[b1 × b2/(b3 1 b1 × b2)].

Validation and Sensitivity Analysis
We obtained independent data sets for
independent validation. The data source
was listed in Supplementary Table 4. To
control for heterogeneity, we applied
the Mendelian Randomization Pleiotropy
RESidual Sum and Outlier (MR-PRESSO)
method. To test the underlying MR as-
sumptions, e.g., assessing influence of

directional pleiotropy, we applied the
generalized MR-Egger regression method.
The pleiotropy test using MR-Egger inter-
cept term and heterogeneity test (Cochran
Q statistic for IVW and the global test for
MR-PRESSO) across predictors were both
applied to quantify the level of pleiot-
ropy of the MR analysis. The Bonferroni-
correlated threshold of 0.025 (0.05/2)
was used as the threshold to control for
multiple testing.

Due to the strong genetic correlation
between total choline and phosphatidyl-
choline, we applied the PhenoSpD ap-
proach (31) to estimate the complete
and independent tests that had been
conducted for the two-step MR analysis
and used it as the multiple testing cor-
rection threshold.

All MR analyses were conducted with
the MendelianRandomization R package
(32) and TwoSampleMR R package
(github.com/MRCIEU/TwoSampleMR).
We plotted results as forest plots using
code derived from the ggplot2 package
in R.

Integration of Genetic and Biological
Pathway Evidence
We further integrated the genetic evi-
dence generated in this study with pro-
tein-protein interaction (PPI) information
from the STRING database for better un-
derstanding of the causal mechanisms
linking SGLT2 inhibition with the two car-
diometabolic diseases (33). To build up a
comprehensive PPI network, we selected
proteins/genes from three resources:
1) the drug target SGLT2-related gene
SLC5A2, 2) 82 genes/proteins near the
174 genetic variants associated with the
three choline metabolites (Supplementary
Table 3), and 3) five enzymes in choline-
glycine and four enzymes in choline-
phosphatidylcholine biosynthesis pathway.
The PPI network was built with stringApp
in Cytoscape with following parameters:
data source = protein query, species =
Homo sapiens, network type = full STRING
network, confidence score $0.4, layout =
yFiles Organic layout.

Data and Resource Availability
The GWAS summary statistics used in
this article were accessed from the IEU
OpenGWAS project (https://gwas.mrcieu.
ac.uk/), the GTEx Portal (https://www.
gtexportal.org/), the eQTLGen Consortium
(https://eqtlgen.org/), the DIAGRAM con-
sortium (https://diagram-consortium.org/),

and the CARDIoGRAMplusC4D consortium
(http://www.cardiogramplusc4d.org/) and
the FinnGen study (https://finngen.gitbook.
io/documentation/data-download).

RESULTS

Heritability and Genetic Correlation
of Choline Metabolites
GWAS results of the choline metabolites
were available in up to 114,999 Euro-
pean participants in UK Biobank. There
was little evidence of inflation of the as-
sociation results, as the LD score regres-
sion intercept terms were 1.039, 1.037,
and 1.029 for choline, phosphatidylcholine,
and glycine, respectively (an intercept term
close to 1 means little influence of popula-
tion structure). Single-trait LD score re-
gression results showed that common
variants included in the GWAS explained
13.6%, 14.5%, and 14.1% of the herita-
bility of choline, phosphatidylcholine,
and glycine, respectively (Supplementary
Table 5). Genetic correlation analysis
among the three choline metabolites
revealed a very high genetic correla-
tion between choline and phosphati-
dylcholine (genetic correlation = 0.992,
P = 0) but relatively low genetic correla-
tions between choline/phosphatidylcho-
line and glycine (genetic correlation
between choline and glycine 0.027, P =
0.583, and genetic correlation between
phosphatidylcholine and glycine 0.022,
P = 0.637) (Supplementary Fig. 1 and
Supplementary Table 5).

MR Analyses

Strength of the Genetic Predictors for SGLT2

Inhibition and Choline Metabolites

The predictors of SGLT2 inhibition showed
strong strength (F statistic = 24.1, which
is over the common threshold of 10)
(Supplementary Table 2). The predictors
for the three choline metabolites were
all very strong (F statistics for glycine =
437.0, phosphatidylcholine = 126.7, and
total choline = 110.3) (Supplementary
Table 3). Due to good strength, all of
these genetic predictors were kept for
the MR analysis.

Effect of SGLT2 Inhibition on CAD and

T2D Risk

SGLT2 inhibition was associated with re-
duced risk of T2D (odds ratio [OR] 0.25
[95% CI 0.12, 0.54], P = 4.0 × 10�4) and
reduced risk of CAD (0.51 [0.28, 0.94],
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P = 0.030) for per 1-SD unit (6.75 mmol/mol
or 1.09%) lowering of HbA1c via SGLT2
inhibition (Table 1 and Fig. 2). The het-
erogeneity test using Cochran Q test for
IVW showed that the Q statistics and
P values were not significant (P = 0.63
and 0.66, respectively), which implied no
evidence of heterogeneity for the effect
of SGLT2 inhibition on CAD and T2D. The
pleiotropy test using the MR-Egger inter-
cept term showed that P values of inter-
cept were 0.39 to 0.50, respectively, which
means directional pleiotropy is not an
issue for these results (Table 1).

Mediation MR of SGLT2 Inhibition, Choline

Metabolites, and CAD and T2D Risk

We estimated the effect of total choline
and two choline metabolites on risk for
the two cardiometabolic diseases, CAD
and T2D (six independent tests due to
correlation among the metabolites,
Bonferroni-corrected threshold = 8.33 ×
10�3). For total choline and phosphati-
dylcholine, we observed negative asso-
ciations with T2D (OR for total choline
0.78 [95% CI 0.68, 0.89], P = 6.0 × 10�4;
OR for phosphatidylcholine 0.81 [0.72,
0.91], P = 9.0 × 10�4) but little evidence

to support association with CAD (Table 1
and Fig. 3). For glycine, we observed a
negative association with CAD (0.94
[0.91, 0.98], P = 8.0 × 10�3). Glycine
showed similar effect with T2D (0.93
[0.86, 1.01], P = 0.137), but due to hetero-
geneity across genetic predictors (P value
of Cochran Q = 1.23 × 10�30), the CI was
wide and across OR of 1 (Table 1).

We estimated the effect of SGLT2 inhi-
bition on the three choline metabolites
(two independent tests due to correla-
tion among metabolites, Bonferroni-
corrected threshold = 0.025) (Table 2).

Table 1—MR estimates of the effect of SGLT2 inhibition and choline metabolites on T2D and CAD

Exposure/mediator Outcome Method OR (95% CI) P Q statistic* Ph
Egger

intercept Pintercept

SGLT2 inhibition T2D IVW 0.25 (0.12, 0.54) 0.0004 3.250 0.661
MR-Egger 0.62 (0.04, 9.63) 0.732 2.530 0.639 0.012 0.500
MR-PRESSO 0.22 (0.12, 0.39) 0.003 4.959 0.698

CAD IVW 0.51 (0.28, 0.94) 0.031 3.487 0.625
MR-Egger 0.19 (0.02, 2.18) 0.181 2.049 0.727 �0.014 0.391
MR-PRESSO 0.51 (0.38, 0.68) 0.006 1.904 0.923

Total choline T2D IVW 0.78 (0.68, 0.89) 0.0006 259.773 9.41 × 10�30

MR-Egger 0.91 (0.70, 1.18) 0.498 249.715 2.44 × 10�28 �0.010 0.162
Weighted median 0.88 (0.79, 0.98) 0.021
Simple mode 0.81 (0.65, 1.01) 0.066

Weighted mode 0.91 (0.83, 1.00) 0.058
MR-PRESSO 0.82 (0.74, 0.90) 0.0003 286.130 <0.0001

CAD IVW 1.12 (0.95, 1.31) 0.212 642.922 1.40 × 10�99

MR-Egger 0.95 (0.70, 1.30) 0.769 628.440 3.10 × 10�97 0.010 0.257
Weighted median 1.12 (1.02, 1.23) 0.018
Simple mode 1.10 (0.90, 1.35) 0.365

Weighted mode 1.08 (0.98, 1.19) 0.114
MR-PRESSO 1.10 (1.01, 1.20) 0.311 661.626 <0.0001

Phosphatidylcholine T2D IVW 0.81 (0.72, 0.91) 0.0009 233.996 1.37 × 10�24

MR-Egger 0.90 (0.73, 1.12) 0.357 227.538 8.07 × 10�24 �0.008 0.230
Weighted median 0.89 (0.81, 0.99) 0.026
Simple mode 0.88 (0.72, 1.06) 0.177

Weighted mode 0.91 (0.83, 0.99) 0.028
MR-PRESSO 0.84 (0.77, 0.93) 0.001 246.155 <0.0001

CAD IVW 1.08 (0.94, 1.24) 0.270 491.466 6.84 × 10�71

MR-Egger 0.98 (0.77, 1.25) 0.870 483.221 8.98 × 10�70 0.007 0.337
Weighted median 1.10 (1.01, 1.20) 0.036
Simple mode 1.11 (0.91, 1.36) 0.317

Weighted mode 1.09 (1.00, 1.19) 0.049
MR-PRESSO 1.10 (1.02, 1.18) 0.020 506.247 <0.0001

Glycine T2D IVW 0.93 (0.86, 1.01) 0.137 245.898 1.23 × 10�30

MR-Egger 1.00 (0.91, 1.10) 0.988 211.364 8.42 × 10�25 �0.013 0.013
Weighted median 0.96 (0.93, 1.00) 0.067
Simple mode 0.80 (0.63, 1.02) 0.073

Weighted mode 0.96 (0.92, 1.00) 0.072
MR-PRESSO 0.85 (0.75, 0.97) 0.023 348.477 <0.0001

CAD IVW 0.94 (0.91, 0.98) 0.008 100.528 1.05 × 10�6

MR-Egger 0.97 (0.93, 1.03) 0.326 85.529 5.65 × 10�5 �0.007 0.011
Weighted median 0.96 (0.93, 0.99) 0.013
Simple mode 0.90 (0.79, 1.03) 0.151

Weighted mode 0.95 (0.92, 0.99) 0.008
MR-PRESSO 0.88 (0.81, 0.96) 0.006 226.771 0.015

OR, 95% CI, and P values were for the respective MR analysis. Ph, P value for heterogeneity; Pintercept, P value for intercept of MR-Egger regression.
*Heterogeneity test in the IVW methods was through use of Cochran Q statistic and for the MR-PRESSO method the global test.
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SGLT2 inhibition was associated with
total choline (b = 0.39 [95% CI 0.06,
0.72], P = 0.020), phosphatidylcholine
(0.40 [0.13, 0.67], P = 0.006), and gly-
cine (0.34 [0.05, 0.63], P = 0.023), which
implies that SGLT2 inhibition may have
a general effect on choline metabolism.
The Q statistics and P values were not
significant (P values between 0.24 and
0.54), which implied no evidence of
heterogeneity for the effect of SGLT2
on choline metabolites. The pleiotropy
test using the MR-Egger intercept term
showed that P values of the intercepts
were between 0.13 and 0.38, which
means litter directional pleiotropy
(Table 2).
We observed an indirect effect of

SGLT2 inhibition on T2D through total
choline (OR 0.91 [95% CI 0.83, 0.99]),
with a mediated proportion of 8% of
the total effect, and through phosphati-
dylcholine (0.93 [0.86, 0.98]) with a me-
diated proportion of 5%. The indirect
effect of SGLT2 inhibition on CAD through
glycine had an OR of 0.98 (0.96, 1.00),
with a mediated proportion of 2%. Gly-
cine did not have significant mediation ef-
fect in causal relation of SGLT2 inhibition
on T2D (1.00 [0.98, 1.02]); total choline
and phosphatidylcholine did not have sig-
nificant mediation effect in causal relation
of SGLT2 inhibition on CAD (1.04 [0.97,
1.13], and 1.04 [0.98, 1.10], respectively).

Validation and Sensitivity Analysis
All of the results were well replicated in
the independent data sets or popula-
tions (Figs. 2 and 3 and Supplementary
Tables 6 and 7). The MR-PRESSO analy-
sis reported a narrower 95% CI of the
effects after exclusion of the outlier sin-
gle nucleotide polymorphisms (SNPs)
(for example, IVW estimate for effect
of SGLT2 inhibition on total choline
0.39 [95% CI 0.06, 0.72] and MR-PRESSO
0.35 [0.09, 0.62]) (Table 1 and Supple-
mentary Table 7). The distortion test
comparing the causal estimates before
and after outlier removal suggested no
statistical difference between the two
(distortion test P = 0.651). The MR sensitiv-
ity analyses including MR-Egger, weighted
median, and mode estimator showed simi-
lar effect estimates (Tables 1 and 2 and
Supplementary Tables 6 and 7).

Integration of Choline Metabolism
Pathway Information With Genetic
Evidence
The PPI network suggested that SGLT2
(tagged by SLC5A2 protein) showed inter-
action with lipid metabolism–related pro-
teins (such as LCAT) and glycine-related
proteins (such as PPARG) via two distin-
guished pathways (Fig. 4). SGLT2 inter-
acted with glycine metabolism–related
proteins through the PPARG protein, while
with choline metabolism it could be

influenced by proteins involved in the
lipid metabolism pathway via key pro-
teins such as LCAT.

We summarized the causal evidence
obtained from MR analysis with the bio-
logical evidence obtained from pathway
analysis (Fig. 5). We observed two dis-
tinguished causal pathways that linked
SGLT2 inhibition with CAD and T2D. For
the causal pathway linking SGLT2 inhibi-
tion with reduced T2D risk, the causal
effect was mediated by increasing total
choline and phosphatidylcholine but less
likely to be mediated by changing glycine
levels. For the causal pathway linking
SGLT2 inhibition with CAD, the causal
effect was mediated by increasing gly-
cine levels rather than choline.

CONCLUSIONS

In the present MR study, we identified
the causal roles of SGLT2 inhibition on
outcomes of cardiometabolic disease,
CAD and T2D, and of total choline and
two key metabolites on the choline me-
tabolism pathway, phosphatidylcholine
and glycine. The mediation MR analysis
further suggested that SGLT2 inhibition
may influence T2D and CAD via differ-
ent metabolism pathways. Total choline
and phosphatidylcholine were estimated
to mediate the effect of SGLT2 inhibition
on T2D but showed no association with
CAD. In contrast, glycine was estimated

Figure 2—Causal effect of SGLT2 inhibition on T2D and CAD. The OR and 95% CI indicate the effect estimates of decrease in T2D and CAD per SD
unit (6.75 mmol/mol or 1.09%) lowering of HbA1c via SGLT2 inhibition with use of the IVWmethod. The T2D data were from the DIAGRAM consortium in
the primary analysis (the diamonds) and FinnGen study in the validation analysis (dots). The CAD data were from a meta-GWAS of CARDIoGRAMplusC4D
and UK Biobank in the primary analysis (diamonds) and CARDIoGRAMplusC4D only in the validation analysis (dots).
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to mediate the effect of SGLT2 inhibition
on CAD but not T2D. We also demon-
strated that total choline and phosphati-
dylcholine were genetically associated
with lower risk of T2D, while glycine was
genetically associated with a lower risk
of CAD, which would compensate for
the present evidence from the obser-
vational studies.

Few studies have explored the molec-
ular mechanisms of the effect of SGLT2

inhibition on diabetes and CVD risk pre-
vention. In the previous studies, it was
demonstrated that the improvement in
cardiovascular outcomes with empagli-
flozin, one of the SGLT2 inhibitors, is in-
dependent of glycemic control (34). In
the BI 10773 (Empagliflozin) Cardio-
vascular Outcome Event Trial in Type 2
Diabetes Mellitus Patients (EMPA-REG
OUTCOME) trial, the reductions in risks
of cardiovascular death were consistent

across categories of baseline HbA1c, re-
gardless of the magnitude of reduction
in HbA1c or adjustment for HbA1c con-
trol at baseline and during the trial (34).
This suggests that there may be other
metabolic pathways mediating the ef-
fects. In a previous prospective study,
investigators conducted untargeted me-
tabolomics for 25 empagliflozin-treated
patients with T2D and CVD (10). They
provided an SGLT2 inhibitor–treated

Figure 3—Causal effect of choline metabolites on T2D and CAD. The OR and 95% CI indicate the effect estimates of decrease in T2D and CAD risk
per SD unit of each choline metabolite with use of the IVWmethod. The T2D data were from the DIAGRAM consortium in the primary analysis (dia-
monds) and FinnGen study in the validation analysis (dots). The CAD data were from a meta-GWAS of CARDIoGRAMplusC4D and UK Biobank in the
primary analysis (diamonds), and CARDIoGRAMplusC4D only in the validation analysis (dots).
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metabolic signature in reporting a wide
range of metabolites changes during
the treatment. However, due to the lim-
ited sample size, the study only provided
a systematic snapshot of the effect of
empagliflozin on highly relevant meta-
bolic pathways of the whole organism
and not elucidation of definitive mecha-
nisms on substrate flux in the myocar-
dium. Again, because of the observational
nature of the study, the causal effect of
SGLT2 inhibition on the circulating metab-
olites cannot be inferred. In our present
study, we used a set of robust genetic
proxies of SGLT2 as the instrument varia-
bles (IVs) and the largest metabolites
GWAS resource to date as mediators. We
showed the causal effects of SGLT2 inhibi-
tion on circulating total choline and two
of its key metabolites. The results would
deepen our understanding of the causal
metabolic mechanism of SGLT2 inhibi-
tion influencing multiple cardiometa-
bolic diseases.
In our study, genetic SGLT2 inhibition

leads to a reduction in risk of T2D and
CAD. Whether SGLT2 inhibitors also lead
to a reduction in progression to T2D
is yet to be confirmed. The very recent
study with use of pooled individual
patient–level data from the Dapagliflozin
And Prevention of Adverse outcomes in
Chronic Kidney Disease (DAPA-CKD) and
Dapagliflozin and Prevention of Adverse
Outcomes in Heart Failure (DAPA-HF)
trials (35) showed that treatment with
dapagliflozin reduced the incidence of
new-onset T2D in participants with chronic
kidney disease and heart failure. Our
results provide timely and strong evi-
dence of an effect of SGLT2 inhibition
on reduced risk of T2D. We show that
total choline and phosphatidylcholine

were significantly associated with T2D
and that SGLT2 inhibition may reduce
T2D risk through increasing total cho-
line and phosphatidylcholine levels.

Recent studies suggested that the in-
creased CVD risk is mainly influenced by
the gut microbiota–related dietary cho-
line metabolites (14). Additionally, an
association between increased whole
blood levels of total choline and CVD
has also been reported (36). However,
our MR results with use of large-scale
samples suggested that this observa-
tional association may be unlikely to
be causal in the general population.

Our findings support that genetically
determined glycine level was strongly
associated with CAD, which was consis-
tent with findings from an MR study
(37) and a recent observational study as
well (38). Circulating glycine had negative
associations with atherosclerosis through
increased expression of APOA1BP in the
liver in obese patients (38). In the current
study, the genetic evidence did not sup-
port a significant causal association of gly-
cine with T2D, which was confirmed by
an independent sample set and the previ-
ous report (37). However, another MR
study showed a significant negative as-
sociation of glycine with T2D (39). The
discrepancy was mainly due to the dif-
ferent study population (DIAGRAM and
the FinnGen study in our analysis and
DIAGRAM in the study of Wittemans
et al. [37] and the GoT2D study in the
analysis of Merino et al. [39]), the sample
size, and the IVs of glycine they used.
Further investigations on this issue are
warranted. In the PPI analysis, we found
that a group of lipid metabolism–related
genes/proteins was involved in the inter-
actions of SLC5A2 and choline metabolism

pathways. We highly speculate that the
effect of SGLT2 inhibition via glycine on
CAD might be partially mediated by lipids
metabolism.

Our preliminary data from the bioin-
formatics analysis showed that several
node proteins may be involved in the
lipid metabolism pathway via key pro-
teins such as LCAT, which plays a central
role in HDL metabolism, and insulin resis-
tance such as PPARG. However, few data
have been reported on the potential
mechanism of SGLT2 inhibition exerting a
beneficial effect on T2D and CAD through
the choline metabolism pathways.

This study has several strengths. First,
this is the very first study mimicking
SGLT2 inhibition using genetics. SGLT2
inhibition is a monotherapy that mainly
targets the SLC5A2 gene. This fits well
with the MR design of estimating the
effect of a single drug target. How-
ever, there is a limited number of ge-
netic variants associated with the
expression level of SLC5A2, which makes
it difficult to obtain enough power for
the MR analysis (40). We successfully
applied a recent instrument selection
pipeline, which identified six genetic
variants that are robustly associated
with both expression levels of SLC5A2
and HbA1c level. Using these variants
as instruments, we obtained good in-
strument strength to conduct the MR
analysis of SGLT2 inhibition (F statistic =
24.1). The causal effects of SGLT2 inhibi-
tion with use of the selected IVs on the
two outcomes were well validated in
independent populations. Second, the
sample size of choline metabolites
was >110,000 participants, while the
T2D and CAD data were derived from
one of the largest genetic studies to

Table 2—MR estimates of the effect of SGLT2 inhibition on choline metabolites

Exposure Mediator Method b (95% CI) P Q statistic* Ph
Egger

intercept Pintercept

SGLT2 inhibition Total choline IVW 0.39 (0.06, 0.72) 0.020 6.782 0.237
MR Egger �0.23 (�1.08, 0.62) 0.599 4.349 0.361 0.009 0.127
MR PRESSO 0.35 (0.09, 0.62) 0.048 8.539 0.389

SGLT2 inhibition Phosphatidylcholine IVW 0.40 (0.13, 0.67) 0.006 4.324 0.504

MR Egger 0.02 (�0.88, 0.91) 0.975 3.402 0.493 0.005 0.376
MR PRESSO 0.37 (0.16, 0.58) 0.018 5.293 0.691

SGLT2 inhibition Glycine IVW 0.34 (0.05, 0.63) 0.023 5.207 0.391

MR Egger �0.11 (�0.95, 0.73) 0.800 3.958 0.412 0.006 0.266
MR-PRESSO 0.40 (0.22, 0.59) 0.007 3.859 0.784

b, 95% CI, and P values were for the respective MR analysis. Ph, P value for heterogeneity; Pintercept, P value for intercept of MR-Egger regression.
*Heterogeneity test in the IVW methods was through use of Cochran Q statistic and for the MR-PRESSO method the global test.
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date, which guaranteed the statistical
power to the findings and conclusions
of the study. Third, the findings were
novel. The metabolic pathway of cho-
line metabolites in mediating the ef-
fect of SGLT2 inhibition on T2D and CAD
risk may help with understanding of the
drug effect and mechanisms when further
extensively used in clinical practice.

Study Limitations
Several limitations should be acknowl-
edged. First, limited metabolites were
considered. Specific to our hypothesis,
only total choline and two choline me-
tabolites were included in this study,
which did not cover the whole choline
metabolism pathway. This is mainly due
to the lack of powerful GWAS data. For

example, we used the untargeted nuclear
magnetic resonance metabolomics profil-
ing that initially quantified 249 metab-
olites in the UK Biobank. Therefore, only
some low-density choline metabolites
were measured. Although we searched
other GWAS resources in literature and
further included betaine in our study, we
still missed some key choline metabolites,

Figure 4—Integration of causal and choline metabolism evidence. Proteins in the PPI network including 1 drug target (SLC5A2) (red node), 21 glycine-
choline pathway-related proteins (5 enzymes in choline-glycine biosynthesis pathway and 16 glycine-associated SNP corresponding proteins) (yellow
nodes), and 35 choline-phosphatidylcholine pathway–related proteins (4 enzymes in choline-phosphatidylcholine biosynthesis pathway and 31 choline
and phosphatidylcholine-associated SNP corresponding proteins) (blue nodes). Parameters: network type = full STRING network, confidence score$0.4.
After removal of isolated nodes, the PPI network with 57 nodes (proteins) and 191 edges (interactions) was generated. These proteins/genes were clus-
tered into three groups, proteins related to lipids metabolism, choline metabolism, and glycine metabolism. The PPI network was built with stringApp in
Cytoscape with the following parameters: data source = protein query, species = H. sapiens, network type = full STRING network, confidence score$0.4,
layout = yFiles Organic layout. The edge thickness represents the confidence score of each interaction from evidence channel in STRING. The distance of
each edge was automatically generated with Organic layout algorithm, which rearranges the positions of the nodes to reach well-balanced distribution
of nodes, few edge crossings, and a minimal sum of distance between nodes and edges. Organic layout is well suited for the visualization of highly con-
nected backbone regions, and different modules of a network can be easily identified with proteins containing more interactions as hub nodes placing in
the core of the network and proteins containing less interactions as outliers.
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such as trimethylamine N-oxide and acetyl-
choline. The results of our study raise the
importance of choline in cardiometabolic
health and may encourage more genetic
epidemiological studies to investigate the
choline metabolism pathway as a whole.
However, we still got a substantially large
sample size of targeted metabolites mea-
sured, which provided sufficient power
to reach the conclusion. Second, although
our results suggested that SGLT2 may
influence T2D via choline and CAD via
glycine, we noticed that the center
MR estimates of glycine on CAD and
T2D were similar. The effect of glycine
on T2D showed a wide CI across b of
zero due to the heterogeneity across
single variant effects. The causal role
of glycine for T2D requires further in-
vestigation once more heterogeneity
robust MR methods have been devel-
oped. Third, given that the major and
most consistent outcome for SGLT2 in-
hibitors is reduction of hospitalization
for heart failure, further well-designed
MR study and investigations on mech-
anism(s) linking beneficial effects of
SGLT2 inhibitors are warranted. Fourth,
in our study, there are partially over-
lapped samples of studies that con-
tributed to both GWAS studies for the
exposure and outcome (i.e., the GWAS
for metabolites were performed in �25%

of the UK Biobank, in which the IVs of
the exposure SGLT2 inhibition were also
from the same cohort). The sample over-
lap between the exposure and outcome
participants, in the case of weak instru-
ments, could bias two-sample MR esti-
mates toward the confounded association
between the exposure and the outcome
(41). Nevertheless, in the current study,
the genetic instruments strongly associ-
ated with exposure, as suggested by
large F statistics. We also tested the
type I errors and replicated the results
in independent populations. It showed
that it is unlikely that our results were
biased by weak instruments. Finally, for
the external validity of the MR results,
caution should be exercised to general-
ize the finding to other ethnic groups,
given that the study populations were
predominantly of European ancestry.

Conclusion
In conclusion, we identified causal roles
of SGLT2 inhibition of three metabolites
in the choline metabolism pathway. The
SGLT2 inhibition may influence T2D and
CAD risk via choline and glycine metab-
olism separately, which implies new
mechanisms of this classic metabolism
pathway. The findings provide novel
insights into the mechanisms of SGLT2
inhibition in reducing cardiometabolic

disease risk and evidence to support
future clinical trials of choline metabo-
lites and cardiometabolic health.
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