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Progressive dysfunction and failure of insulin-releasing
b-cells are a hallmark of type 2 diabetes (T2D). To study
mechanisms of b-cell loss in T2D, we performed islet
single-cell RNA sequencing of two obese mouse strains
differing in their diabetes susceptibility. With mice on a
control diet, we identified six b-cell clusters with similar
abundance in both strains. However, after feeding of a
diabetogenic diet for 2 days, b-cell cluster composition
markedly differed between strains. Islets of diabetes-
resistant mice developed into a protective b-cell cluster
(Beta4), whereas those of diabetes-prone mice pro-
gressed toward stress-related clusters with a strikingly
different expression pattern. Interestingly, the protec-
tive cluster showed indications of reduced b-cell iden-
tity, such as downregulation of GLUT2, GLP1R, and
MafA, and in vitro knockdown of GLUT2 in b-cells—
mimicking its phenotype—decreased stress response
and apoptosis. This might explain enhanced b-cell sur-
vival of diabetes-resistant islets. In contrast,b-cells of di-
abetes-prone mice responded with expression changes
indicating metabolic pressure and endoplasmic reticu-
lum stress, presumably leading to later b-cell loss. In
conclusion, failure of diabetes-prone mice to adapt gene
expression toward a more dedifferentiated state in re-
sponse to rising blood glucose levels leads to b-cell fail-
ure and diabetes development.

The development of type 2 diabetes (T2D) is character-
ized by a gradual decrease of pancreatic islet function ac-
companied by the disability to secrete sufficient amounts
of insulin (1). Currently, no medical treatment can stop
or reverse the loss of b-cell mass, resulting in hyperglyce-
mia, severe secondary complications, and premature death.
Hence, there is a need to improve our knowledge about
the mechanisms driving islet cell failure during the progres-
sion from normoglycemia to T2D.

In humans and mice, genetics strongly contribute to is-
let function and individual T2D risk (2,3). New Zealand
Obese (NZO) mice are used as a model for polygenic diabe-
tes with b-cell failure, closely resembling human T2D path-
ophysiology (4,5). Comparing gene expression signatures in
pancreatic islets of diabetes-resistant B6.V-Lepob/ob (OB)
and diabetes-prone NZO mice represents an appropriate
and valuable strategy for the identification of genetic var-
iants (6,7). Whereas leptin-deficient OB mice are highly in-
sulin resistant but protected from T2D due to adaptive
b-cell proliferation, NZO mice exhibit islet cell failure and
b-cell apoptosis (8,9). Several diabetes genes have been
identified through combining quantitative trait loci (QTL)
and islet transcriptome analysis, and their role in b-cell
proliferation (Lefty1, Apoa2, Pcp4l1) (7) and cilia function
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(Kif3a) (10), as well as insulin secretion and b-cell survival
(Gjb4) (6), has been demonstrated.

Glucose is a major modulator of b-cell function and
fate, and persistent hyperglycemia exerts deleterious ef-
fects on insulin secretion and b-cell survival (11,12). The
concept of glucotoxicity includes molecular mechanisms
such as overstimulation, oxidative stress, and endoplasmic
reticulum (ER) stress, which can induce changes in b-cell
identity (de- and transdifferentiation) as well as b-cell de-
struction (13).

Here, we use a synchronized, 2-day glucotoxic stimulus,
initiated by dietary carbohydrates after 13 weeks of keto-
genic diet, to study early gene expression changes in
pancreatic islets of obese mice known to undergo b-cell
adaptation (OB mice) or b-cell decompensation (NZO
mice) during an extended feeding regimen. Feeding the
mice with a fat-enriched carbohydrate-free diet induces
severe insulin resistance without affecting islet function,
whereas the switch to a carbohydrate-containing diet for 2
days initiates early steps of b-cell dysfunction and failure
in NZO islets in a synchronized manner (7,9,10). These
early events include decreased expression of Foxo1 and cilia
genes and, if extended beyond 2 days, are followed by re-
duced expression of Pdx1, Nkx6-1, and Mafa; reduced pro-
liferation; and increased apoptosis (10,14). The difference
in diabetes susceptibility between NZO and OB mice phe-
nocopies the situation in humans, as there is an overlap of
human diabetes susceptibility genes and differentially ex-
pressed genes (DEGs) of OB and NZO islets (9).

Recent transcriptomic and functional analyses of single
pancreatic endocrine cells have been instrumental in en-
hancing our understanding of islet cell fate and dysfunc-
tion during diabetes (15–18). By using single-cell RNA
sequencing (scRNA-seq) (17) combined with diverse bioin-
formatics analyses, we aim to illuminate the heterogene-
ity and plasticity of pancreatic islet cells and to decipher
the underlying adaptive mechanisms that enable OB islets
to escape b-cell loss under metabolic stress conditions.

RESEARCH DESIGN AND METHODS

Animal Studies
Five-week-old male NZO (NZO/HIBomDife) and B6.V-
Lepob/ob (OB) mice from our own breeding (German Insti-
tute of Human Nutrition Potsdam-Rehbr€ucke [DIfE]; ethics
approval no. 2347-33-2019) were fed a carbohydrate-free
high-fat diet (�CH) (C 1057/89; Altromin) for 13 weeks
(until 18 weeks of age), followed by random allocation into
two diet intervention groups: 2 days of either �CH or a
carbohydrate-rich high-fat diet (1CH) (self-made with 40%
carbohydrates) (7) (Supplementary Fig. 2A).

Immunofluorescence Staining
Pancreata of OB and NZO mice (�CH and 1CH groups,
n = 3) were prepared for immunohistochemistry as previ-
ously described (7). Pancreatic sections were stained for
somatostatin (1:1,000, MA5-16987; Invitrogen), insulin

(1:50,000, I2018; Sigma-Aldrich), and glucagon (1:2,000,
A0565; Dako). Primary antibodies were detected with
fluorophore-labeled secondary antibodies at a dilution
of 1:200 (anti-rat Alexa Fluor 546, anti-mouse Alexa
Fluor 488, anti-rabbit Alexa Fluor 647; Invitrogen) for
1 h at room temperature. Images of 10–15 randomly
selected islets per section were documented with a con-
focal microscope (TCS SP8 X; Leica Microsystems) and
analyzed with ImageJ (19). In total, >6,000 islet cells
were evaluated per group.

Isolation of Pancreatic Islets
Islet were isolated through standard collagenase diges-
tion (7).

In Vitro Detection of Cellular Stress, Apoptosis, and
Proliferation
One day after seeding, INS-1 823/13 cells were trans-
duced with adenovirus expressing scrambled control
shRNA (sh-scrmb) or sh-Slc2a2 (targeting both rat and
mouse Slc2a2 isoforms; multiplicity of infection [MOI]
5–20) overnight. Afterward, they were incubated with reg-
ular INS-1 medium or INS-1 medium containing 30
mmol/L glucose and 0.2 mmol/L palmitate/BSA for 2–3
days. Finally, cells were lysed in radioimmunoprecipita-
tion assay buffer and ER stress and apoptosis markers
were detected via immunoblotting (6,10) (Supplementary
Table 1).

Islets from C57BL/6J mice were isolated, dispersed via
accutase digestion, seeded onto coverslips coated with fi-
bronectin (F1141; Sigma-Aldrich) and extracellular matrix
(E1270; Sigma-Aldrich), and cultured in RPMI medium
(P04-16500; PAN Biotech UK) for 24 h. Dispersed islets
were transduced with sh-scrmb or sh-Slc2a2 (MOI 20; 24 h)
before incubation with regular RPMI medium or glucoli-
potoxic medium (RPMI medium containing 30 mmol/L
glucose and 0.2 mmol/L palmitate/BSA) for 2 days. For
prevention of overgrowth with fibroblasts, FibrOut (7-
15174; CHI Scientific) was added to media. Finally, cells
were lysed in QIAzol and RNA isolated and reverse tran-
scribed and ER stress markers detected via quantitative
RT-PCR.

Proliferation assays were performed with MIN6 cells
cultured in serum-free MIN6 medium with FGF-1 (4034-
50; BioVision), FGF-9 (273-F9-025; R&D Systems), or
BDNF (B-250; Alomone Labs) for 3 and 24 h. BrdU label-
ing (100 mmol/L, 2 h) was detected via immunofluores-
cence staining and analyzed with ImageJ.

Single-Cell Suspension and Single-Cell Libraries
For scRNA-seq, islets from three mice per condition were
pooled (34 islets per animal) and dissociated into single-
cell suspension. The cell suspension was immediately used
for scRNA-seq library preparation with use of the Chro-
mium Single Cell 30 Reagent Kit, version 3 (PN-1000075;
10× Genomics) according to the manufacturer’s instructions.
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Libraries were pooled and sequenced on a NovaSeq 6000 (Il-
lumina) with an average read depth of 60,000–90,000
reads/cell.

Preprocessing of scRNA-seq Data and Identification of
Doublet-Like Cell Clusters
Preprocessing was performed with the Cell Ranger pipe-
line (version 3.0.2; 10× Genomics), as well as python3
and Scanpy (version 1.4.4) (20). mm10 (Ensemble release
97) was used as reference genome. Cells with a mitochon-
drial content <20% and read counts between 1,000 and
150,000 were selected for further analysis. Lastly, we set
a threshold of 500 expressed genes for live cells. An over-
view of cell numbers at each respective filtering step is
shown in Table 1.

For detection and removal of data reflecting expression
of doublet cells, scrublet (21) (version 0.2.1) was applied in-
dependently for each study group (Supplementary Fig. 1).

Normalization of scRNA-seq Data
Normalization of scRNA-seq data was performed in inde-
pendent steps: 1) normalizing the number of reads to the
number of expressed genes with the R package scran (22)
(version 1.16), 2) log-scaling of data, and 3) via batch cor-
rection with scanorama (version 1.4) (23). scanorama
used 3,000 highly variable genes, detected per batch and
merged afterward (scanpy.pp.highly_variable_genes). If
not stated otherwise, subsequent analysis was based on
those highly variable genes.

Clustering, Embedding, and Cell Type Annotation
Preliminary clustering of cell types was based on the
batch-corrected whole expression profile of single cells as
suggested by B€uttner et al. (24). For embedding, a neigh-
borhood graph for single cells was calculated, as k-nearest
neighbor (KNN) graph, based on the first 50 principal
components and considering the nearest 15 neighbors
(17). Next, Louvain-based clustering was applied as imple-
mented by Blondel et al. (25) (version 0.6.1). Variant res-
olutions were used for several different clusters to
appropriately detect strong and weak changes in single
cell gene expression profiles. Clusters were annotated
based on gene expression levels of typical marker genes

and hormones (Supplementary Table 2), from Baron et al.
(26) with adaptations from Martens et al. (27). Plotting
of cell clusters was done via UMAP (28).

Detection of DEGs
DEGs were detected with the MAST R package (29) (ver-
sion 1.12) and P values corrected for multiple testing
through calculation of the false discovery rate (FDR).
Genes with an FDR <0.01 and a coefficient >0.2 were de-
fined as differentially expressed. Since input data were al-
ready log-transformed, the output was not comparable
with classic log (fold change) values. Thresholds similar to
those described by others (17) were used for these log-
transformed input data.

Gene set enrichment for Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways and Gene Ontology (GO) terms
was analyzed with Database for Annotation, Visualization
and Integrated Discovery (DAVID) (30).

Network analysis of DEGs between Beta1 cells of OB
and NZO mice was performed via Ingenuity Pathway
Analysis (QIAGEN) (31). Differentially expressed cilia-as-
sociated genes were identified by overlapping with 5,266
orthologs of cilia-annotated genes in the Cildb database
(version 3.0) (32,33).

Calculation of Cell Cycle State
For estimation of the cell cycle state of single cells, an S
and G2/M phase score with a threshold of 0.25 was used,
based on the data of Macosko et al. (34). The scores were
calculated as previously described (35), using the scanpy
function tl.score_genes_cell_cycle.

b-Cell Embryonic Scores
b-Cell embryonic scores were calculated (17) based on the
GSE87375 data set (36). Expression data from cells be-
tween E17.5 and P0 were used to define embryonic
b-cells, and P60 was used for mature b-cells. DEGs be-
tween those two groups were calculated with log (fold
change) > 0.25 and FDR < 0.01. In taking into account
only the top 500 genes, scores were assigned with the
tl.score_genes scanpy function.

Table 1—Number of cells remaining after several steps of quality control
Start Mt in % <20 Min count >1,000 Max count <150,000 Genes/cell >500 Doublets

All samples 34,695 21,402 20,757 20,491 19,952 19,440

OB �CH 10,829 5,409 5,259 5,198 5,014 4,885

OB 1CH 7,022 4,189 4,189 4,146 3,872 3,787

NZO �CH 6,634 4,393 4,224 4,083 4,061 3,964

NZO 1CH 10,210 7,411 7,085 7,064 7,005 6,804

Cells failing quality control were sequentially subtracted from the total number of cells before quality control (Start). Shown are the
number of cells remaining after each step. Doublets, exclusion of cell doublets; Genes/cell, number of genes detected per cell; Mt
in %, mitochondrial content in percent; Max count, maximum number of reads per cell; Min count, minimum number of reads per
cell.
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Estimation of b-Cell Trajectories
b-Cell trajectories were calculated with slingshot (version
1.4) (37) using only b-cell–related clusters as input
(Beta1, Beta2, Beta3, Beta4, Beta5, BetaP, BG, BDG). To
calculate strain-specific effects related to the 1CH diet,
the data set was split into OB (�CH and 1CH) and NZO
(�CH and 1CH) subsets. The Beta1 cluster was used as
root node for both sets to arrange cells in pseudotime
and obtain diet effects. For confirmation of the observed
pseudotime, randomly selected cells with all DEGs were
used to generate heat maps based on the trajectories
Beta1-Beta2-Beta3-Beta4 (H1) or Beta1-Beta4-Beta2-Beta3
(H2). Finally, 1,000 permutations were performed, and
which trajectory the genes correlated with significantly
was determined.

Weighted Gene Correlation Network Analysis
A gene coexpression network was created from normal-
ized and batch-corrected transcriptome data of all Beta4
cells through following the best practice workflow for
weighted gene correlation network analysis (WGCNA) (38)
(R package, version 1.69) (power = 3, minClusterSize = 30,
and deepSplit = 2). Hub genes were defined by geneModu-
leMembership >0.70 among the top 10 connected genes
within a module. Graphical representation was created
with the R package igraph (version 1.2.6).

Detection of Differentially Coexpressed Genes
Between b-Cell Clusters
The code provided by Tesson et al. (39) was used to detect
differential coexpression between the Beta4 and Beta1–3
clusters. For detection of a variety of differences, a power
value of 3 and a minclustersize of 30 were used.

Estimation of Cell-Cell Communication Using
CellPhoneDB
Cell-cell communication was predicted with use of Cell-
PhoneDB (version 2.0) (40). The normalized and batch-
corrected gene expression matrix, as well as the cell type
clustering depicted in Fig. 2B, were required to identify
the most probable interactions. Interactions were visual-
ized using the R packages ComplexHeatmap (version
2.4.3) and circlize (version 0.4.12).

Sources of Human Genome-Wide Association Study
Genes and Mouse Linkage Studies
The NHGRI-EBI GWAS Catalog (41) was screened for var-
iants associated with T2D, with addition of signals de-
tected in a large metastudy (42). QTLs of C57BL/6J and
NZO mice were extracted from https://146.107.176.32/
QTL-DZD-Cross/ (43).

Detection and Classification of Mouse Single
Nucleotide Polymorphisms
Sequence information and mutations in NZO mice were
downloaded from the Wellcome Sanger Institute (44). We
calculated effects of genes harboring a missense variant

using Protein Variation Effect Analyzer (PROVEAN) (45)
and SIFT (46).

Statistics and Plotting
Statistical significance was analyzed with Student t test,
one-way ANOVA, or two-way ANOVA through compari-
son of the test groups with the appropriate control group.
Data are presented as mean ± SEM, with significance indi-
cated by asterisks in figures (*P # 0.05; **P # 0.01;
***P # 0.001). Where applicable, the number of repli-
cates (n) is stated in figure legends. If not stated other-
wise, enrichment analysis was performed with Fisher
exact test. We created plots with R, version 3.6, using the
RCircos (47,48), DiagrammeR, and gplots packages.

Data and Resources
All relevant data generated or analyzed during this study
are included in this manuscript. Raw scRNA-seq data were
deposited under gene accession no. GSE159211 (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE159211).
Further data sets used or analyzed during the current
study are available from the corresponding author on rea-
sonable request. Resources are available on request.

RESULTS

Different Islet Cell Composition in Diabetes-Resistant
OB and Diabetes-Susceptible NZO Mice
In contrast to previous bulk RNA-sequencing studies
(7,10), we investigated the contribution of different islet
cell subtypes from OB and NZO mice fed a �CH or 1CH
diet for 2 days (10) (Supplementary Fig. 2A). The animals
reacted to the diet regimen as expected, with higher blood
glucose levels and plasma insulin levels on 1CH diet. In
line with previous reports (7,9), NZO islets were smaller
than their diet-matched OB counterparts and contained
significantly fewer b- and more a-cells (Supplementary
Results and Supplementary Figs. 2B–F and 3A–D). Subse-
quently, islets from all four groups (OB �CH, OB 1CH,
NZO �CH, NZO 1CH) were isolated, dispersed, and sub-
jected to scRNA-seq analysis.

In total, 19,440 cells remained following quality control
(Table 1). While the mean number of expressed genes in-
creased in OB 1CH compared with �CH islets, NZO
1CH islets expressed the lowest average number of genes
(Supplementary Fig. 4A). Next, cells from all four groups
were subjected to unbiased clustering analysis and result-
ing clusters assigned to cell types based on known marker
genes (Fig. 1A and B and Supplementary Table 2). Among
the identified populations were six b-cell clusters and one
a-, g-, and d-cell cluster, plus several polyhormonal
(AGD1, AGD2, BDG, BG; abbreviations based on marker
gene expression for a- [A], b- [B], g- [G], and d- [D] cells)
and nonendocrine (acinar and macrophage, endothelial,
and stellate cell) clusters (Fig. 1B). As expected, the majority
of cells (63–73%) were b-cells (Fig. 1C and Supplementary
Table 3). Notably, both OB and NZO mice on �CH diet
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Figure 1—Changes in b-cell subpopulations in response to a 2-day diabetogenic stimulus markedly differ in diabetes-resistant OB and di-
abetes-prone NZO mice. A: UMAP plot of all 19,440 islet cells from OB �CH (blue dots), OB 1CH (lilac dots), NZO �CH (orange dots),
and NZO 1CH (red dots) mice. Islet cells from n = 3 mice per group were pooled and used for scRNA-Seq. B: UMAP plot of all cells from
the four groups with indicated cell clusters. Multihormonal cell clusters were designated by the presence of markers for a-cells (A), b-cells
(B), g-cells (G), and/or d-cells (D). C: Bar plots showing the percentage of cells belonging to a specific b-cell cluster in OB and NZO islets
under �CH or 1CH feeding. Percentages of a-, d-, and g-cells (D) as well as polyhormonal (E) and nonendocrine (F) cells in pancreatic is-
lets of the indicated groups.
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showed a comparable b-cell cluster composition, with most
b-cells belonging to the Beta1 cluster (56.3 and 46.2%, re-
spectively). In addition, NZO �CH islets exhibited a consid-
erable percentage of Beta2 and Beta3 cells and OB �CH
islets a higher number of Beta5 b-cells (Fig. 1C and
Supplementary Table 3). Beta5 cells expressed a very low
number of genes (Supplementary Fig. 4B) and could repre-
sent low-complexity libraries.

Drastic changes in cluster distribution were observed in
1CH-fed mice, in which b-cell composition changed at the
expense of a greatly diminished Beta1 cluster (Fig. 1C). The
b-cell cluster signature between OB 1CH and NZO 1CH
diverged; most OB 1CH b-cells ended up in Beta4, with a
lower percentage in Beta3. In contrast, NZO 1CH b-cells
were allocated into Beta2 and Beta3 clusters at roughly
equal proportions (Fig. 1C). These results suggested that
b-cell adaptation versus failure was mainly presented as
gene expression changes between Beta1 and Beta2–4 clus-
ters. Because NZO mice proceed to develop stark b-cell de-
fects after 16–32 days on a 1CH diet (9), the shift from
Beta1 to Beta2/3 likely represents failure to adapt to the di-
abetogenic stimulus. Alternatively, OB b-cells handle ele-
vated blood glucose levels by switching to a Beta4 cell
subtype. Furthermore, a cluster of proliferating b-cells, des-
ignated BetaP (where P is proliferation), was identified
based on proliferation marker genes (Mki67, Pcna) and
G2/M cell cycle phase genes (Supplementary Fig. 4C–E). Be-
taP was strongly induced by 2-day1CH feeding, particularly
in OB 1CH (2.6%) compared with NZO 1CH (1.6%) islets
(Fig. 1C and Supplementary Table 3). Whereas NZO islets
contained more a- and slightly more g-cells than OB islets,
the percentage of the d-cell cluster was highest in OB islets
(Fig. 1D). Additionally, OB islets exhibited more polyhormo-
nal cells than NZO islets (Fig. 1E), which could indicate that
some OB endocrine cells can proceed toward a developmen-
tally more immature, polyhormonal state. This could protect
them from the glucotoxic effects of the 1CH diet, as op-
posed to NZO islets, which appear less capable of doing so.
Concerning nonendocrine cells, OB islets contained more ac-
inar cells and macrophages than NZO islets (Fig. 1F).

Predisposition of NZO Beta1 Cells to Metabolic Stress
In line with previous studies, we hypothesized that the
changes in NZO islets are maladaptive, leading to func-
tional decline and cell death, while changes in OB islets
generally promote cell survival and proliferation. There-
fore, we addressed the question of why NZO b-cells on a
1CH diet progress toward Beta2/Beta3 rather than the
more protective Beta4 cluster. If genetic predisposition of
NZO mice played a role, transcriptomic differences be-
tween OB and NZO b-cells might be manifest in the
Beta1 cluster that is common to both strains on �CH
diet. While OB and NZO Beta1 gene expression showed
98.48% (8,490 genes) overlap, 131 genes (1.52%) were
differentially expressed (Supplementary Table 4). We re-
cently showed enrichment of cilia-annotated genes in

DEGs of OB and NZO islets (10), and 79 of the 131 Beta1
DEGs were annotated to cilia (Fisher exact test P <
0.00001; odds ratio 2.5) (Supplementary Table 4), 33 of
which were more abundant in OB and 46 in NZO
b-cells. Using linkage analysis from B6-NZO crosses
(43), we located 13 of 52 noncilia genes and 26 of the
79 cilia-annotated genes to a metabolically related QTL
(Supplementary Table 4), suggesting that these genes
are relevant for the divergent development of b-cell clusters
during the progression from �CH to 1CH (Fig. 2A). The
cilia-related genes are involved in different cellular processes
(Fig. 2A and Supplementary Table 4); several encode ribo-
somal proteins (18 Rpl and 13 Rps genes), pointing at al-
tered ribosomal biogenesis and protein synthesis, which,
among other processes, is needed during cellular prolifera-
tion (49,50). Other genes implicated in b-cell function and
survival, such as Isl1 (51–53) and Rgs2 (54), were also more
highly expressed in OB Beta1 cells (Supplementary Table 4).

Interestingly, OB Beta1 b-cells expressed more genes
linked to positive regulation of insulin secretion (Glp1r,
Slc30a8, Isl1, Ucn3), translation (Rpl26, Rps5), oxidation-
reduction process (Ndufa7, Ero1lb), and transport (Naca,
Slc2a2) (Fig. 2B and Supplementary Table 5), implying a
more metabolically active state. At the same time, genes
specific for NZO Beta1 b-cells were enriched in pathways
linked to protein folding (Canx, Hsp90aa1, Calr) and
ER-associated ubiquitin-dependent protein catabolic pro-
cess (Vcp, Ubxn4, Sec61b) (Fig. 2C and Supplementary
Table 5), indicating that these b-cells were already under-
going protein misfolding or oxidative stress. Finally, net-
work analysis by Ingenuity Pathway Analysis demonstrated
that targets of the key b-cell transcription factor Pdx1
were more abundant in OB cells (Supplementary Results
and Fig. 2D). Altogether, the OB-specific gene expression
pattern of Beta1 cells pointed toward active, functional
b-cells, whereas that of NZO Beta1 cells suggested an on-
going response to metabolic and ER stress.

b-Cell Clusters of Diabetes-Prone Mice Are Less
Capable of Mitigating Effects of Diabetogenic Diet
The data above indicated that b-cells of OB and NZO
mice have different capacities to react to a diabetogenic
diet. To test the assumption that Beta1 mainly changes
into the Beta4 cluster in OB 1CH, but into Beta2 and
Beta3 in NZO 1CH islets (Fig. 1C), we estimated cell-to-
cell distances based on similarity of gene expression using
slingshot (37). Since these cell-to-cell distances were com-
parable with pseudotime calculations, we refer to them as
such below.

To assess cell fate changes triggered by 1CH diet, we
defined the predominant cluster in �CH-fed mice (Beta1)
as the starting point for the algorithm. Principal pseudo-
time ordering of the major b-cell clusters was confirmed
based on DEGs (Supplementary Fig. 5A), with the most
likely lineage progressing from Beta1, via Beta2 and Beta3,
to the Beta4 cluster (Supplementary Fig. 5B and C). This

diabetesjournals.org/diabetes Gottmann and Associates 1967

https://doi.org/10.2337/figshare.20080700
https://doi.org/10.2337/figshare.20080700
https://doi.org/10.2337/figshare.20080700
https://doi.org/10.2337/figshare.20080700
https://doi.org/10.2337/figshare.20080700
https://doi.org/10.2337/figshare.20080700
https://doi.org/10.2337/figshare.20080700
https://doi.org/10.2337/figshare.20080700
https://doi.org/10.2337/figshare.20080700
https://doi.org/10.2337/figshare.20080700
https://doi.org/10.2337/figshare.20080700
https://doi.org/10.2337/figshare.20080700
https://doi.org/10.2337/figshare.20080700
https://doi.org/10.2337/figshare.20080700
https://doi.org/10.2337/figshare.20080700


Figure 2—Differential expression of cilia-annotated and PDX1-regulated genes between OB- and NZO mice in the carbohydrate-free
b-cell cluster Beta1. A: Annotation of the 131 genes differentially expressed between Beta1 cells of OB and NZO mice by cellular location
and process. The DEGs were separated into cilia-annotated genes and remaining genes based on the Cildb database. B and C: Top 10
regulated GO terms (biological process) of DEGs from the comparison of OB �CH Beta1 vs. NZO �CH Beta1 cells. Shown are biological
processes upregulated in OB (B) or NZO (C) mice. Absolute log (fold change) > 0.2; FDR < 0.01. D: Network analysis of 131 genes differ-
entially expressed between Beta1 cells of OB and NZO �CH mice. Data were analyzed via Ingenuity Pathway Analysis. Cellular localiza-
tion of gene products is shown in blue.
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lineage was found in both OB and NZO cells. However,
while a large proportion of OB b-cells develops into Beta4
(27.7%) with few cells remaining in Beta2/3 (2.7 and
5.1%, respectively), the majority of NZO b-cells fall into
clusters Beta2/3 (28.2 and 29.4%) with only few reaching
Beta4 (1.9%) (Fig. 3A). Our analysis further predicted that
OB Beta4 cells could develop into the proliferation cluster
BetaP as well as multihormonal (BG and BDG) or Beta5
cells (Fig. 3A). For NZO islets, percentages of these popu-
lations were generally lower, and the algorithm predicted
alternative branching points coming from Beta1 and
Beta3 instead of Beta4 (Fig. 3A). Together, these factors
indicated that similar lineage transitions occurred in
b-cells of both strains, but adaptation of NZO 1CH
b-cell gene expression beyond Beta2/3 was stalled or im-
peded compared with OB 1CH b-cells, a potential under-
lying cause for the maladaptive response of NZO islets to
carbohydrate feeding.

Indeed, dynamic expression changes of several impor-
tant b-cell and ER stress response genes along the pseudo-
time lineage indicated that NZO b-cells (Beta2/3) were less
adept than OB b-cells (Beta4) at compensating for the in-
creased carbohydrate intake on 1CH diet (Supplementary
Results, Fig. 3B and C, and Supplementary Fig. 6A–E). For
example, Slc2a2/GLUT2 fell drastically during the OB Beta1
to Beta4 cluster transition (Fig. 3D and Supplementary Fig.
6E). Immunohistochemical staining confirmed a substan-
tial, transient reduction of GLUT2 signal in OB 1CH ver-
sus �CH islets (Fig. 3E), which partially recovered at later
time points (16 and 32 days, 1CH) (7,9), whereas GLUT2
decreased successively in NZO islets (Fig. 3F). For testing
of whether short-term downregulation of GLUT2 provides
temporary protection from the toxic effects of glucose
overload and thereby protects b-cells from ER stress and
apoptosis, its expression was suppressed in INS-1 cells (Fig.
4A–C). While treatment with palmitate and glucose in-
creased the ER stress marker phosphorylated (phos-
pho)-eIF2a in sh-scrmb–transduced cells, this effect was
abolished in sh-Slc2a2–infected cells (Fig. 4D), indicating
that short-term loss of GLUT2 expression reduces ER
stress. In addition, control cells exhibited elevated activa-
tion of caspase 3 when treated with glucolipotoxic medium,
an effect that was also lower in sh-Slc2a2–transduced cells
(Fig. 4E). Because insulinoma cells are partially dedifferen-
tiated and may already express lower levels of Slc2a2 as pri-
mary b-cells, we sought to validate our hypothesis of a
protective effect due to temporary GLUT2 reduction in dis-
persed islets using the above conditions. Both treatment
with glucolipotoxic medium for 2 days and adenoviral
Slc2a2 downregulation resulted in upregulation of Atf4,
Hspa5, and Hsp90b1. Thus, lower levels of Slc2a2 correlate
with higher levels of these stress response genes (Fig. 4F–
I), suggesting that following Slc2a2 downregulation, meta-
bolic stress is resolved successfully, presumably due to
lower glucose uptake.

Increased Cell Surface Marker Gene Expression in
b-Cells of Diabetes-Resistant Mice on a Diabetogenic
Diet
Dysregulated expression of receptors, transporters, chan-
nels, and cell adhesion molecules cause b-cell defects (55).
We asked whether the maladaptive responses to diabeto-
genic diet in NZO islets were accompanied by genes cod-
ing for cell surface proteins. In the a-, b-, d-, and g-cell
clusters, 874 of 3,702 predicted islet cell surface genes
(55) were detected (mean normalized expression ±0.1).
Average expression levels of cell surface protein–encoding
transcripts were comparable between b-cell clusters, ex-
cept for the OB 1CH-enriched Beta4, which exhibited
much higher expression (Supplementary Fig. 7B). For a-
and d-cells, the highest content of surface marker genes
was found in the OB 1CH cluster, while there was no dif-
ference between groups in g-cells (Supplementary Fig. 7C).

In our further analysis, we focused on the Beta4 cluster
because we hypothesized that its expression pattern par-
ticipates in the protective adaptations of diabetes-resis-
tant mice. Of 41 cell surface marker genes differentially
expressed between Beta1 and Beta4, 36 were more highly
and 5 less highly expressed in Beta4 cells (Fig. 5A). The
upregulated genes were associated with ion transport
(e.g., Atp1b1), N-glycosylation (e.g., Dad1), signal trans-
duction (e.g., Il6ra), cell adhesion (e.g., Bsg), and protein
biosynthesis, processing, and transport (e.g., Tmed10).
The downregulated genes (Slc2a2, Scl30a8, Glp1r, Trpm5,
Atp2a2) play essential roles for b-cell function, confirming a
more dedifferentiated phenotype of Beta4 (Supplementary
Fig. 7A). A temporary reduction of these genes in the Beta4
cluster might participate in protecting b-cells from glucotox-
icity, as shown for Slc2a2/GLUT2 (Fig. 4).

To determine coexpression relationships in Beta4 cells
and to identify important gene modules and hub genes,
we conducted WGCNA. Overall, 18 modules were identi-
fied by the clustering algorithm (Supplementary Table 7).
Module M2 contained many genes related to protein
processing in ER, protein export, N-glycan biosynthesis,
lysosome, and proteasome, with the antiapoptotic oligo-
saccharyl transferase subunit Dad1 as a hub gene (Fig. 5B
and Supplementary Table 7). Among the 70 most con-
nected genes in module M2, 69% were upregulated in
Beta4 compared with Beta1 cells (Fig. 5B [circled]) and 13
genes encoded cell-surface proteins (Fig. 5B [highlighted
in bold]). The majority of these DEGs were involved in
metabolic processes (e.g., Ndufc2), protein biosynthesis
(Eef1g), transport (Sec61b) and folding (Dnajc3), and gly-
cosylation (Ddost). Thus, promoting protein biosynthesis
and stability through co- or posttranslational N-glycosyla-
tion seems to be a key characteristic of the Beta4 cluster.
Next, we applied DiffCoEx in combination with WGCNA
to detect differentially coexpressed genes (DiffCoEx)
unique for one of the 18 Beta4-specific modules. Three
modules (M3, M6, M10) exhibited coexpressed genes
(Supplementary Fig. 8A), which were specifically and
highly connected in Beta4, with limited connections in
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Figure 3—Trajectories of b-cell clusters in OB and NZO in response to 2-day carbohydrate feeding. A: Pseudotime analysis using sling-
shot shows predicted trajectories of OB and NZO b-cells based on cell-to-cell distance. The percentage of cells in the different clusters is
depicted in the respective boxes. The trajectory from Beta1 to BDG in OB is highlighted with purple arrows and the Beta1 to BG trajectory
in NZO with orange arrows. B–D: Expression levels of Slc30a8 (B), Mafa (C), and Slc2a2 (D) along those trajectories highlighted in A. Dots
represent scaled expression levels of individual b-cells color coded according to their cluster allocation. Solid red lines depict fitted
curves, and dotted blue lines depict CIs. E and F: Representative images of GLUT2 (green) staining in pancreatic sections of OB (E) and
NZO (F) mice fed a �CH or 1CH diet for 2, 16, or 32 days. After 16 and 32 days, GLUT2-positive signals were nearly undetectable in NZO
islets, whereas a transient reduction in OB islets at 2 days with1CH was reversed at the later time points. Scale bar, 50 mm. d, days.
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Figure 4—Downregulation of GLUT2 in b-cells ameliorates glucolipotoxic effects. A: INS-1 823/13 (INS-1) cells or dispersed C57BL/6J is-
lets were infected with adenovirus containing scrambled (sh-scrmb) or GLUT2-specific (sh-Slc2a2) shRNA and incubated without (CTR) or
with 30 mmol/L glucose and 0.2 mmol/L palmitate (HG/PA) for 2–3 days. B: Successful downregulation of GLUT2 mRNA at different viral
loads (n = 4) (one-way ANOVA). C: Representative Western blot of GLUT2 in INS-1 cells infected with sh-scrmb or sh-Slc2a2 (MOI 20) (left
panel) and quantification of GLUT2 levels (right panel) (n = 3, Welch t test). D: Representative immunoblots of phospho-eIF2a and total
eIF2a in sh-scrmb or sh-Slc2a2–infected INS-1 cells (MOI 20) (left panel) and quantification of phospho-eIF2a levels relative to total eIF2a
(right panel) (n = 8, two-way ANOVA). E: Representative immunoblot of cleaved caspase 3 in sh-scrmb or sh-Slc2a2–infected INS-1 cells
(MOI 20) (left panel) and quantification of cleaved caspase 3 levels relative to a-tubulin (right panel) (n = 12, two-way ANOVA). F–I: Quantifi-
cation of gene expression via quantitative PCR in dispersed C57BL/6J islets infected with sh-scrmb or sh-Slc2a2 (MOI 20). Slc2a2 expres-
sion (F) was correlated with levels of Atf4 (G), Hspa5 (H), and Hsp90b1 (I). Data are presented as mean ± SEM (*P # 0.05; **P # 0.01;
***P# 0.001). p-, phosphorylated.
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Figure 5—Diet- and strain-dependent differences in cell surface marker gene expression and coexpression analysis. A: Dot plot representing the
number of cells (dot size) andmean gene expression levels in theBeta1 andBeta4 clusters. Shown are genes differentially expressed between the
two clusters and either up- or downregulated in Beta4. Genes were sorted with respect to their main function, as indicated with horizontal bars. B:
Coexpression relationships of Beta4 cells according to WGCNA. Shown are the top 70 genes of module M2, including the M2 hub gene Dad1
(highlighted in red). The main function of genes differentially expressed between Beta1 and Beta4 are indicated with colored circles; those DEGs
that are surface markers are highlighted in bold. C and D: Circos plots showing DiffCoEx of the Beta4-specific modules M3 (C), M6 (D, upper
panel), and M10 (D, lower panel) as detected with DiffCoEx. Coexpressed genes are connected via red lines, with the thickness reflecting the de-
gree of coexpression. TheBeta4 cluster (C andD) exhibits the highest number of connections in comparison with the other (Beta1–3) clusters (C).
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Beta1–3 (Fig. 5C and Supplementary Fig. 8B and C). In
M3, the strongest DiffCoEx were linked to cell prolifera-
tion (Mcm10, Bub1, Ercc6l, Cit, Kif11, and Pbk) (Fig. 5C).
Candidate genes in M6 were related to DNA repair (Uhrf1,
Trip13, Lig1, Dtl, and Mastl) and in M10 to interferon sig-
naling (Ifit1, Ifit3b, Ifit3, and Irf7) (Fig. 5D).

Taken together, these data indicate that OB b-cells—
by developing a Beta4 cluster expression pattern—adapt
to increased insulin demand and promote survival on a
carbohydrate-rich diet via an upregulation of ER chaper-
ones, N-glycosylation, and cell adhesion genes, including
many cell surface proteins.

Enhanced Cell-Cell Communication in b-Cells From
Diabetes-Resistant Mice
To investigate whether cell-cell communication plays a
role in the protective phenotype of OB islets, we analyzed
potential ligand-receptor interactions by comparing the
distribution of receptor and ligand gene expression within
and across cell types using CellPhoneDB (40). A set of li-
gands (FGF1, FGF9, KL) identified as partners of FGFR1
was more likely to interact specifically in the Beta4 cluster
(Fig. 6A), indicating that Beta4 cells could potentially pro-
mote survival and proliferation in an autocrine and/or
paracrine manner. Furthermore, Beta4 gene expression
for receptors activated by CSF1 (Celsr3) and BDNF
(Ntrk2, Ncam1) was higher, including a putative receptor-
receptor interaction between FGFR1 and NCAM1, impli-
cating processes like cell survival, adhesion, and cell-cell
communication (Fig. 6A). We next tested whether FGF1,
FGF9, and BDNF have an effect on b-cell proliferation by
treating MIN6 cells with these ligands. BDNF (Fig. 6B) in-
creased b-cell proliferation, shown via higher BrdU incor-
poration into ligand-treated cells after 24 h; for FGF9, this
effect did not reach statistical significance (Supplementary
Fig. 9A and C). In contrast, FGF1 did not affect cell divi-
sion (Supplementary Fig. 9B and D). These data suggest
that elevated expression of BDNF receptors contributes to
prevention of b-cell failure by increasing proliferation in
OB 1CH-enriched Beta4 cells.

Lastly, genes important for cell-cell communication ex-
hibited different expression patterns between b-cell clus-
ters and other endocrine cell types. Putting a focus on
unique ligand-receptor interactions shared only between
specific b-cell clusters and d-cells (Supplementary Table
8), more significant interactions were predicted between
d-cell ligands and their respective receptors in Beta1 and
Beta4 cells (Fig. 6C). Of note, SST signaling was likely
comparable between b-cell clusters because the most
abundant receptor Sstr3 was expressed at similar levels in
Beta1–4 (Supplementary Fig. 9E). Finally, only few inter-
actions were seen between d-cells and the diabetes-prone
Beta2 and Beta3 clusters (Fig. 6C), suggesting that im-
paired cell-cell communication is part of the diabetes sus-
ceptibility of NZO islets following a diabetogenic diet.
Similarly, more ligand-receptor interactions were observed

between Beta4 and the dual hormonal BG cells, whereas
fewer were seen between BG and the other b-cell clusters
(Supplementary Fig. 9F).

Expression Changes in Mouse Islets Are Associated
With Human Diabetes Risk Genes
Finally, we assessed the relevance of our observations from
diabetes-susceptible NZO mice for human diabetes (T2D).
DEGs from our b-cell clusters were compared with a data
set of human genes and loci associated with diabetes sus-
ceptibility. Overall, 38 of 665 genome-wide association
study (GWAS) genes from the NHGRI-EBI GWAS Catalog
(41) (odds ratio 2.1, P = 8.5e�5) corresponded to DEGs de-
tected in our scRNA-seq data of mouse b-cells, which in-
cluded 21 of 255 genes (odds ratio 3.1, P = 2.13e�5) from
the meta-analysis by Mahajan et al. (42) (Fig. 7A). This
does not only represent a significant enrichment; the ma-
jority of genes (23 of 38) were also located in B6/NZO dia-
betes-related QTLs (43), further illustrating their relevance
for metabolic disease and validity of our analysis. Addition-
ally, eight human diabetes genes (Sctr, Patj, Hnf1a, Plxnd1,
Zzef1, Calcoco2, Poc5, Cept120 [identified with GWAS]) fea-
ture a missense variant in NZO mice but are not differen-
tially expressed according to the scRNA-seq data set,
indicating that NZO b-cells might express proteins with an
altered structure or function (Fig. 7A).

Next, we were interested in the classification and distri-
bution of GWAS genes within the b-cell clusters. Among
them were six transcriptional regulators, which we hypoth-
esized were promising candidates explaining differences be-
tween b-cell clusters and trajectory development. Three
were expressed at similarly high levels in Beta1 and Beta4
(Nfat5, Nsd1, Zbtb20), one at higher levels in Beta4 (Ccnd1)
and one in BetaP (Hmgb1). Hnf1a was not differentially ex-
pressed, but has a missense variant in NZO mice (Fig. 7B),
while Zbtb20 was located in a QTL for pancreatic insulin.
Together, these transcriptional regulators could in part me-
diate the differences in OB and NZO b-cell responses to a
diabetogenic stimulus.

To assess whether the human diabetes gene variants were
conserved in NZO mice, we mapped the 46 diabetes-related
GWAS genes to NZO single nucleotide polymorphisms
(SNPs). Focusing only on regulatory (down/upstream, 30-un-
translated region [UTR]) and missense variants, we found 13
genes with missense mutations in NZO, of which 9 also
have a similar alteration in humans (Fig. 7C). In addition, we
found a large number of NZO variants (119 SNPs in 24
genes) in the 30-UTR, which might affect RNA stability. Alto-
gether, our analysis points to multiple genetic factors, par-
tially shared between mice and humans, as a possible
underlying cause for differences in b-cell fates in diabetes-sus-
ceptible and -resistant mice, mimicking early T2D in humans.

DISCUSSION

In the current study, we used diabetes-resistant and -sus-
ceptible mouse models and evaluated their islet single-cell
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Figure 6—Analysis of islet cell-cell communication based on ligand and receptor gene expression. A: Dot plots representing potential
ligand-receptor (LR) and receptor-receptor (RR) interactions in Beta1–4 cells and upregulated in Beta4. B: Induction of proliferation in
MIN6 b-cells via exposure to BDNF. Serum-starved MIN6 cells were treated with BDNF for 3 or 24 h. Subsequently, BrdU was added
for 2 h, followed by fixation and immunostaining with a BrdU antibody (left panel). Quantification of BrdU-positive MIN6 cells shown as
percentage of DAPI-positive nuclei (right panel) (n = 3). C: Circle plot depicting potential intercellular communication (based on ligand-
receptor gene expression) in d-cells and b-cell clusters Beta1–4. Arrow directions are from ligand to receptor. Nonunique interactions
more likely to occur between d-cells and all four b-cell clusters are not shown. CTR, control.
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Figure 7—Comparison of human T2D GWAS genes with NZO SNPs and mouse transcriptome. A: Circos plot of mouse scRNA-seq b-cell
cluster DEGs compared with human genes and loci associated with diabetes susceptibility. B: Expression and functional annotation of
T2D GWAS genes in the different b-cell clusters. Dot color and size represent expression level and cells expressing the gene. Genes
marked in red harbor a missense variant in NZOmice. C: Mapping of human GWAS variants into NZO variants by variant consequence, fo-
cusing only on regulatory (down/upstream, 30-UTR) and missense variants. var, variant.
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transcriptome to illuminate the transition from health to
diabetes. We observed islet cell–specific alterations and
various trajectories of b-cells in diabetes-prone or -resis-
tant mice in response to a short diabetogenic challenge.
This study supported conceptual findings from earlier
transcriptome analyses, such as the discovery of diabetes
suppressor genes in OB (Lefty, Apoa2, Pcp4l1) and diabe-
tes genes in NZO (Ifi202b, Kif2a) (7,9,10), while enabling
us to find new gene expression signatures at much in-
creased resolution.

In our analysis, we mainly focused on b-cells, hypothe-
sizing that OB mice are protected from diabetes due to an
altered expression of cilia and antiapoptotic genes and a
higher degree of maturation in the absence of carbohy-
drates. In addition, OB mice adapt to carbohydrate feeding
via activation of genes promoting protein biosynthesis and
folding, encoding for cell surface proteins and for cell-cell
communication. At the same time, genes essential for
b-cell function, like Slc2a2, Scl30a8, and Glp1r, were down-
regulated after feeding of a carbohydrate-containing diet.
We believe that—at least via suppression of Slc2a2/
GLUT2—b-cells protect themselves from glucotoxic condi-
tions because INS-1 cells showed a lower degree of ER
stress (phospho-eIF2a) and a reduced induction of apopto-
sis (cleaved caspase 3) after Slc2a2 knockdown. In contrast,
NZO b-cells showed indications of metabolic pressure,
which might participate in the later loss of b-cell function.

Interestingly, the cell cluster pattern of OB and NZO
islets on the �CH diet was very similar. Despite higher
blood glucose in NZO mice, both strains mainly exhibited
b-cells of the Beta1 cluster. However, these cells re-
sponded differently to a rise in blood glucose on the 1CH
diet. While OB Beta1 cells transition to OB 1CH-enriched
Beta4 cells, NZO Beta1 cells progress into Beta2/3. We
propose that the 131 DEGs of OB versus NZO Beta1 cells
participate in their divergent development. NZO Beta1
cells showed indications of elevated protein misfolding
and oxidative stress, which could expose them to reduced
plasticity and prevent an appropriate adaptation to rising
blood glucose levels. Conversely, a higher degree of matu-
rity of OB Beta1 cells, reflected by increased expression of
Glp1r, Ucn3, Slc2a2, and other PDX1 target genes (shown
via IPA), appears to be a key determinant for their diabe-
tes resistance. We propose that if the most differentiated
b-cells are able to mount a higher initial response to met-
abolic changes (e.g., high blood glucose), OB Beta1 cells
are better adapted to rising blood glucose levels.

According to pseudotime analysis, Beta1 cells attempt
to take a path via Beta2 and Beta3 to become Beta4 cells
in both mouse strains. However, the Beta4 cluster is more
prominent in OB than in NZO islets, indicating that the
transition to Beta4 occurs faster or to a higher degree in
OB mice, reducing their diabetes susceptibility. For exam-
ple, a notable upregulation of N-glycosylation–related
genes in the OB-enriched Beta4 cluster might participate
in their diabetes resistance, as N-glycosylation defects are

linked to T2D pathogenesis (56,57). At the same time, im-
portant b-cell genes were downregulated, such as Mafa,
Slc30a8, and Slc2a2. These alterations might protect OB
b-cells from glucotoxicity, as shown in GLUT2 knockdown
experiments where palmitate/glucose treatment showed
attenuated effects on ER stress and the induction of apo-
ptosis. This response is expected, since GLUT2 is the
main glucose transporter in mouse b-cells and its reduc-
tion decreases glucose uptake and metabolism. Impor-
tantly, downregulation of GLUT2 in OB 1CH mice is
transient, since permanent loss contributes to diabetes
(58). The downregulation of several typical b-cell genes in
OB islets could also indicate that their b-cells transition
to a state of reduced b-cell identity, thereby preventing
apoptosis (59) and/or allowing proliferation. Recently,
Whitticar and Nunemaker proposed an intervention that
reduces overactive glucokinase, which restored pulsatility
and functionality to b-cells in prediabetic mouse islets
(60). Their observations indicate that such strategies
mimic a physiologic response occurring in individuals
without diabetes, which is or progressively becomes dys-
functional in patients with diabetes.

OB islets carry more cilia and express higher amounts
of cilia genes than NZO, and cilia disassemble after 2
days of 1CH feeding. This effect is accompanied by an in-
duction of islet cell proliferation (10), a process coinciding
with functional immaturity (61). Interestingly, 79 cilia-
annotated genes were among the 131 DEGs of the Beta1
cluster in OB. This could indicate that functional cilia dy-
namics are essential for the capacity of Beta1 cells to de-
velop into the OB-enriched cluster Beta4, of which a
small fraction develops into proliferation cluster BetaP.
In support of the ability of Beta4 cells to transition to a
proliferative state, many MYC target genes related to ri-
bosome function were upregulated. Together, this helps
clarify why the proliferative capacity of NZO b-cells was
markedly impaired following 1CH in comparisons with
OB b-cells (7), i.e., due to a lack of or delayed dedifferen-
tiation toward Beta4 and BetaP. The reduction in mature
b-cell expression signature in our study is transient and
likely allows cells to reenter the cell cycle (transition to
BetaP) while maintaining b-cell properties. It differs
from pathologic b-cell dedifferentiation, including b- to
a-cell conversion, that is observed during T2D progres-
sion (62–64).

Finally, the evaluation of cell-to-cell cross talk indicated
that Beta1 and Beta4 cells in particular communicate with
d-cells, for instance, via the ephrin ligand EFNA5 (Beta4)
and its receptor EPHB2 (d-cells). Targeting of ephrin re-
ceptors by small molecules increased glucose-stimulated
insulin secretion (65). Another noteworthy cell-cell signal-
ing event could occur via binding of the ligand sema-
phorin 4D (SEMA4D) to the plexin receptor PLXNB1,
which is important for tissue homeostasis and morpho-
genesis (66). Furthermore, BDNF receptors are highly
expressed in OB-enriched Beta4 cells and treatment of
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MIN6 b-cells with BDNF increased proliferation, implicat-
ing it in the adaptation of OB mice to increased b-cell de-
mand. Altogether, our analyses showed that elevated islet
cell-cell communication contributes to diabetes resistance
of OB mice.

The NZO mouse is a well-established model of poly-
genic diabetes (4), sharing many similarities with human
T2D. OB mice (on a C57BL/6J background) with their
monogenic defect in leptin are comparable with respect to
hyperphagia, reduced thermogenesis, and physical inactiv-
ity (all slightly more pronounced in OB) (67) but maintain
functional islet mass despite insulin resistance and do not
develop T2D. Like OB mice, NZO show an element of dys-
regulated leptin signaling, as they develop peripheral lep-
tin resistance and defective transport of leptin across the
blood-brain barrier, suggesting that with progressive age
and duration of HFD feeding, defects in leptin signaling
in NZO become more comparable with OB mice (68). Al-
together, that makes these two strains a good combina-
tion for identifying diabetes risk genes. A limitation of
the inbred NZO strain is genetic homogeneity, which
means that it only reflects a subpopulation of all possible
human diabetes susceptibility genes. However, several dia-
betes-related genes discovered in NZO mice overlapped
with human diabetes GWAS genes (9). Furthermore, we
detected an enrichment of human T2D genes among our
DEGs (Fig. 7), demonstrating the relevance of our mouse
model for human T2D.

In conclusion, our intensive scRNA-seq–based analysis
of islets from diabetes-resistant and -susceptible mice has
helped to clarify the picture of the heterogeneous re-
sponses of islet cells exposed to diabetogenic conditions. In
diabetes-prone mice, the failure to adapt gene expression
leads to higher metabolic stress and b-cell failure. In diabe-
tes-resistant mice, exposure to a diabetogenic diet induces
transcriptional processes that might participate in b-cell
protection. This includes activation of genes involved in
N-glycosylation, cell adhesion, cell surface markers, and in-
dications for elevated cell-cell communication.
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