Table 1.
Explanation Type | Paper | Technique | Intrinsic | Post Hoc | Global | Local | Model-Specify | Model-Agnostic |
---|---|---|---|---|---|---|---|---|
Feature | [28] | BP | * | * | * | |||
[29] | Guided-BP | * | * | * | ||||
[30] | Deconv Network | * | * | * | ||||
[31] | LRP | * | * | * | ||||
[32] | CAM | * | * | * | ||||
[33] | Grad-CAM | * | * | * | ||||
[34] | LIME | * | * | * | ||||
[35] | GraphLIME | * | * | * | ||||
[36] | SHAP | * | * | * | ||||
[37] | Attention | * | * | * | ||||
Example-based | [38] | ProtoPNet | * | * | * | |||
[39] | Triplet Network | * | * | * | * | |||
[5] | xDNN | * | * | * | ||||
Textual | [40] | TCAV | * | * | * | * | ||
[41] | Image Captioning | * | * | * |
“*” indicates it belongs to this category, which is defined in Section 3, BP: backpropagation, CAM: class activation map, LRP: layer-wise relevance propagation, LIME: local interpretable model-agnostic explanations, MuSE: model usability evaluation, SHAP: Shapley additive explanations, xDNN: explainable deep neural network, TCAV: testing with concept activation vectors.