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Abstract 
The objectives of this study were to evaluate the net energy (NE) partition patterns of growing–finishing pigs at different growing stages and to 
develop the corresponding prediction models using nonlinear regression (NLR) and artificial neural networks (ANN). Twenty-four pigs with an 
initial body weight (BW) of ~30 kg were kept in metabolic cages and fed ad libitum and were moved into six respiration chambers in turns until 
~90 kg. The NE partition patterns, i.e., NE for maintenance (NEm), NE retained as protein (NEp), and NE retained as lipid (NEl), were calculated 
based on indirect calorimetry and nitrogen balance techniques. The energy balance data collected through the animal trial was then randomly 
split into a training data set containing 75% of the samples and a testing data set containing the remaining 25% of the samples. The NLR models 
and a series of ANN models were established on the training data set to predict the metabolizable energy intake, NE intake, NEm, NEp, and NEl 
of pigs. The best-fitted ANN models were selected by 5-fold cross-validation in the training data set. The prediction performance of the best-fitted 
NLR and ANN models were compared on the testing data set. The results showed that the average NE intakes of pigs were 17.71, 23.25, 24.56, 
and 28.96 MJ/d in 30 to 45 kg, 45 to 60 kg, 60 to 75 kg, and 75 to 90 kg, respectively. The NEm and NEl (MJ/d) kept increasing as BW increased 
from 30 kg to 90 kg, while the NEp increased to its maximum value and then kept in a certain range of 4.64 to 4.88 MJ/d. The proportion of 
NEm for pigs at 30 to 90 kg stayed within the range of 42.0% to 48.6%, while the proportion of NEl kept increasing. For the prediction models 
built based on the animal trial, ANN models exhibited better performance than NLR models for all the target outputs. In conclusion, NE partition 
patterns changed in different growth stages of pigs, and ANN models are more flexible and powerful than NLR models in predicting the NE 
partition patterns of growing–finishing pigs.

Lay Summary 
Net energy (NE) is the most refined energy system in animal nutrition, and understanding the NE partition patterns of pigs can help us to develop 
suitable feeding strategies to improve the growth performance and carcass traits of pigs. However, it is time-consuming, laborious, and expen-
sive to directly measure the NE; thus, establishing a predicted model is more efficient. In research on the energy nutrition of pigs, regression 
is the most used tool to develop models, but little literature has focused on the application of artificial neural networks (ANN) models. In this 
study, we measured the NE partition patterns of pigs, and our results show that the proportion of NE for maintenance stayed within the range 
of 42.0% to 48.6%, while the proportion of NE retained as a lipid kept increasing as pig grows (pigs body weight: 30 to 90 kg). The value of NE 
retained as protein increased to its maximum value and then stayed in a certain range of 4.64 to 4.88 MJ/d, but with a decreased proportion of 
NE intake. Additionally, we applied the corresponding nonlinear regression (NLR) and ANN models and made comparisons between them. The 
ANN models exhibited better performance than NLR models for all the target outputs.
Keywords: artificial neural network, energy partition pattern, net energy, nonlinear regression, pig nutrition, prediction models
Abbreviations: ANN, artificial neural networks; BW, body weight; CCC, concordance correlation coefficients; CST, comparative slaughter technology; FHP, 
fasting heat production; GE, gross energy; HI, heat increment; HP, heat production; Ld, lipid deposition; IC, indirect calorimetry; MAE, mean absolute error; MRE, 
mean relative error; ME, metabolizable energy; NE, net energy; NEm, net energy for maintenance; NEl, net energy retained as lipid; NEp, net energy retained as 
protein; NLR, nonlinear regression; Pd, protein deposition; Pdmax, maximal rate of protein deposition; RE, retained energy; RMSE, root mean square error; THP, 
total heat production

Introduction
Energy is one of the most important nutrients, which 
accounts for nearly 60% to 70% of the total animal feed-
ing cost (Pirgozliev and Rose, 1999; Noblet et al., 2004). 
Adequate energy supplementation in diets is the prerequisite 
for efficient growth and high carcass quality of animals. The 
most commonly used energy systems in swine nutrition for 
describing the energy values in feedstuff as well as the energy 
requirements of pigs include digestible energy, metabolizable 

energy (ME), and net energy (NE), among which NE is the 
most refined system because it considers the heat increment 
(HI) (Noblet and van Milgen, 2004).

Based on the factorial approach, NE intake could be par-
titioned into energy for basic functions (i.e., NE for main-
tenance, defined as NEm) and energy retained in the body 
(i.e., NE retained as protein or lipid, defined as NEp and NEl, 
respectively) (Noblet and Henry, 1993). However, due to the 
high cost of NE measurement, most previous studies have 
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reported the energy partition patterns of pigs on the ME basis 
with the following model:

ME = MEm + 1/kp × Pd + 1/kl × Ld

among which MEm, kp, and kl represent ME for maintenance, 
coefficient of protein, and lipid deposition on the ME basis, 
Pd and Ld represent the protein deposition and lipid deposi-
tion. Only a few studies reported the directly measured NEm or 
reported the calculated NE partition patterns of growing pigs 
using a stable NE/ME ratio (Noblet, 2007). Thus, evaluating 
the NE partition patterns of growing–finishing pigs at different 
growing stages based on scientific-designed animal trials and 
then developing the corresponding prediction models may pro-
vide a clearer understanding of energy utilization in pigs, and 
could help to develop suitable feeding strategies to improve the 
growth performance and carcass traits of pigs (Tess et al., 1984).

Regression is the most widely used mathematical tool to 
depict the relationships between two variables in swine nutri-
tion research, and it is well known that the predictive accuracy 
could be greatly affected by the model types (Li et al., 2019). 
Machine learning models, e.g., artificial neural networks 
(ANN), have been applied to animal nutrition research within 
the last 20 yr. With the advent of big data in recent years, the 
ANN and machine learning realms have reinvigorated these 
models, which have demonstrated their advantages in dealing 
with big data collected from various sensors installed in mod-
ern farms. The latest relevant studies have demonstrated the 
promising prediction performance of ANN models, especially 
in handling a large number of variables with complex rela-
tionships (Dallago et al., 2019; Fu et al., 2020). However, to 
our knowledge, little literature has focused on the application 
of ANN models to swine energy partition patterns.

Therefore, the objectives of this study were to evaluate the 
NE partition patterns (including NEm, NEp, and NEl) of grow-
ing–finishing pigs fed ad libitum at different growth stages, 
and to develop the corresponding prediction models using 
nonlinear regression (NLR) and ANN.

Materials and Methods
The general scheme of this study is outlined in Figure 1. All 
experimental protocols including animal care and use were 
approved by the Institutional Animal Care and Use Commit-
tee of China Agricultural University (Beijing, China).

Equipment
In the current study, six open-circuit respiration chambers 
with a volume of approximately 7.8 m3 were used, and 
the construction of these chambers was based on a design 
described by van Milgen et al. (van Milgen et al., 1997). 
Details on the open-circuit respiration chambers and indi-
rect calorimetry (IC) method were reported by Zhang et al. 
(2014) and van Milgen et al. (1997), respectively. Gas was 
extracted continuously from the respiration chamber by a 
vacuum pump. The respiration chamber was air-conditioned 
to maintain a constant temperature and humidity using an 
air conditioner and a heater. Temperature and atmospheric 
pressure in the chamber were measured and calibrated to 
the standard temperature and pressure (0 °C and 101 kPa) 
before quantifying the extraction rate. The O2 concentra-
tion was measured with a paramagnetic differential ana-
lyzer (Oxymat 6E; Siemens, Munich, Germany), whereas 
CO2 and CH4 concentrations were measured with infrared 
analyzers (Ultramat 6E; Siemens, Munich, Germany). Before 
utilization, the analyzers were standardized and calibrated 

Figure 1. The general scheme of this study. Firstly, 24 pigs were used and took turns into the net energy (NE) assay and metabolic energy (ME) assay. 
Secondly, data were handled to obtain NE intake, NE for maintenance (NEm), NE retained as protein (NEp), and NE retained as lipid (NEl). Thirdly, data 
from the NE assay were divided into four groups based on their body weight and used to evaluate the NE partition patterns of growing–finishing pigs. 
Finally, data of the NE assay and the ME assay were mixed and randomly split into a training data set containing 75% samples and a testing data set 
containing the remaining samples. The best-fitted nonlinear regression (NLR) models and artificial neural networks (ANN) models were generated on 
the training data set and were further compared on the testing data set.
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by applying a series of prepared standard gases to span the 
measurement range of sensors. The analyzers had a mea-
suring range of 19.5% to 21% for O2, 0% to 1% for CO2, 
and 0% to 0.1% for CH4 with a sensitivity of 0.2% within 
the range. The gas extraction rate was measured by a mass 
flow meter (Alicat, Tucson, AZ). Two respiration chambers 
shared one analyzer system. Gas concentrations in the cham-
ber were measured at 5-min intervals.

Animals, diets, experimental design, and 
procedures
The animal trial was conducted at FengNing Swine Research 
Unit of China Agricultural University (Academician Work-
station in Chengdejiuyun Agricultural and Livestock Co., 
Ltd, Hebei Province, China). To mimic the practical feeding 
conditions, two commercial corn-soybean meal diets used in 
the swine research unit were adopted in this research to feed 
pigs at two different growth stages (30 to 60 kg and 60 to 
90 kg), respectively, which meet the nutrient requirements of 
pigs reported in Nutrient Requirements of Swine in China (Li 
et al., 2020) (Table 1). Twenty-four growing (Duroc × Land-
race × Yorkshire, 34.4 ± 2.6 kg) barrows were used to elim-
inate the impact of gender and breeds on energy partition, 
which were randomly divided into four batches and took 
turns into six IC chambers, with 1 pig per chamber at each 
time. The period from one batch of pigs entering the IC cham-
bers to the same batch of pigs reentering the chambers was 
defined as one experimental cycle which lasted 4 wk: diet and 
cages adaptation for the first week, NE measurement in the 
IC chambers for the second week, the recovery period after 
moving out of the IC chambers for the third week, and ME 
measurement in the metabolic cages outside chambers for the 
fourth week. Under such arrangement, the NE partition data 
of one batch of pigs (through NE assay in IC chambers) and 
the ME partition data of another batch of pigs (through ME 
assay in metabolic cages) were collected simultaneously each 
week. The whole animal trial lasted for 12 consecutive weeks 
using the same facility and similar experimental conditions 
and procedures.

Specifically, data including NE intake and NE partition 
(NEm, NEp, and NEl) could be gained through the NE assay. 
The fasting heat production (FHP) was considered equal 
to NEm in this research because the 8-h measurement was 
performed at night when pigs were sleeping, during which 
the heat production (HP) caused by physical activity could 
be ignored (Tess et al., 1984; van Milgen et al., 2000). The 
retained energy (RE) as protein and lipid (defined as REp 
and REl, respectively) was used to estimate NEp and NEl, 
respectively. In addition, data including NE intake and NEp 
could also be gained through the ME assay, with the NE 
value of the diet calculated from the NE assay, and feed 
intake and N balance data collected from the ME assay. 
The information of the data set from the NE assay and ME 
assay are available in Supplementary Tables S1 and S2.

The NE assay
Each batch of six pigs stayed individually in the IC cham-
bers for 7 d in one experimental cycle for the NE assay, 
with day 1 for adaptation, day 2 to day 6 for daily O2 
consumption and CO2 and CH4 production measurement, 
and day 7 for FHP measurement. To ensure pigs were fed 
ad libitum, excessive feed and water were given to pigs in 
the airtight IC chambers. During day 2 to day 6, total feces 

and urine samples were collected once daily for determina-
tion of energy and N in feces and urine, and feed refusals 
and spillage were collected once daily and subsequently 
dried and weighted to calculate the feed intake. On day 
7, pigs fasted, total urine samples were collected, and 
gas exchanges were measured during the lasted 8 h from 
22:30 (day 7) to 06:30 (day 8) to calculate FHP. During 
this period, pigs are generally sleeping and the heat gen-
erated from activities was ignored, so the value of FHP 
was considered as NEm. Moreover, pigs were weighed on 
day 2 and day 6. Collected feces were weighted daily and 
stored at −20 °C. Urine was collected in plastic containers 
containing 50 mL of 6 N HCl to minimize N losses, and 
the volume was determined daily, and a 10% daily aliquot 
was stored at −20 °C. For the IC chamber settings, the tem-
perature was maintained at 22 °C in the fed state (day 2 to 
day 6), the relative humidity was controlled at 70%, and a 
10-h lighting schedule was used.

Table 1. Ingredients and nutrient compositions of the experimental diets 
used in the animal trial (as-fed basis)1

Items 30–60 kg 60–90 kg 

Corn 74.68 76.82

Soybean meal 22.00 20.00

Dicalcium phosphate 0.90 0.80

Limestone 0.75 0.75

Sodium chloride 0.35 0.35

Premix2 0.50 0.50

Lys-HCl 0.36 0.36

DL-Met 0.13 0.11

L-Thr 0.17 0.16

L-Trp 0.05 0.05

L-Val 0.11 0.10

Total 100.00 100.00

Calculated values3

  ME, MJ/kg 13.64 13.67

  NE, MJ/kg 10.27 10.33

  CP 16.65 15.88

  SID Lys 1.00 0.95

SID AA/SID Lys

  Met 0.36 0.35

  Thr 0.65 0.65

  Trp 0.20 0.20

  Val 0.70 0.70

  Ile 0.55 0.55

  Met + Cys 0.60 0.60

1All the dietary nutrient concentrations were calculated based on the 
nutrient compositions of ingredients published in Nutrient Requirements 
of Swine in China.
2Premix provided the following quantities per kilogram of diets: vitamin 
A as retinyl acetate, 8,250 IU; vitamin D3 as cholecalciferol, 825 IU; 
vitamin E as DL-alpha-tocopheryl acetate, 40 IU; vitamin K3 as menadione 
nicotinamide bisulfite, 4 mg; vitamin B12, 25 μg; riboflavin, 5 mg; 
pantothenic acid as DL-calcium pantothenate, 15 mg; niacin, 35 mg; 
choline chloride, 600 mg; folacin, 2 mg; thiamin as thiamin mononitrate, 
1 mg; pyridoxine as pyridoxine hydrochloride, 2 mg; biotin, 4 mg; Mn 
as MnO, 25 mg; Fe as FeSO4·H2O, 80 mg; Zn as ZnSO4, 100 mg; Cu as 
CuSO4·5H2O, 50 mg; I as KI, 0.5 mg; Se as Na2SeO3, 0.15 mg.
3CP, crude protein; NE, net energy; ME, metabolic energy; SID, 
standardized ileal digestible.

http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skac405#supplementary-data
http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skac405#supplementary-data
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The ME assay
Each batch of 6 pigs stayed individually in the metabolic 
cages outside the IC chambers for 7 d in one experimental 
cycle for the ME assay, with day 1 to day 2 for adaption, and 
day 3 to day 7 for total feces and urine collection (twice daily 
at 8:00 h and 16:00 h). Pigs were weighed at the beginning 
and the end of the assay and were fed ad libitum. Feces and 
urine samples as well as feed refusals and spillage were col-
lected, weighed, and stored as described in the NE assay. The 
feed intake of each pig in each turn can be calculated. The 
room temperature and relative humidity were set the same as 
those in the NE assay.

Chemical analyses, calculation, and data set 
preparation
All the feed, feces, and urine samples collected from the NE 
assay and the ME assay were prepared and analyzed follow-
ing the same procedure with two replicates. Before chemical 
analysis, fecal samples were oven-dried for 72  h at 65 °C 
and were ground through a 1-mm screen, while urine sam-
ples were thawed and pooled separately for each pig. The dry 
matter (DM) content of feed and feces samples was deter-
mined by drying 5 g of samples in a forced-air oven (model 
GZX-9140 MBE; Boxun Company, Shanghai, China) at 105 
°C to a constant weight (method 934.01; AOAC, 2006). The 
gross energy (GE) contents in the feed, feces, and urine sam-
ples were determined using an isoperibol calorimeter (Parr 
6300 Calorimeter, Moline, IL) with benzoic acid as a stan-
dard. The N contents in the feed, feces, and urine samples 
were determined following the standard procedure (method 
984.13; AOAC, 2006).

The ME intake was calculated as the difference between 
GE intake and GE losses in feces, urine, and methane (Adeola, 
2001). Energy loss in methane was calculated using the con-
version factor 39.54 kJ/L (Brouwer, 1965). Total heat produc-
tion (THP) was calculated on daily basis from gas exchanges 
using the equation reported by Brouwer (1965):

HP (kJ) = 16.18 × O2 (L) + 5.02 × CO2 (L)2.17

× CH4 (L)5.99×N (Urinary N, g)

FHP was also calculated using the same equation, but the 8-h 
HP was extrapolated to a 24-h period to base production for 
the same period as for the calculation of THP. The RE was 
calculated as the difference between ME intake and average 
HP. The NE intake was calculated as the sum of FHP and RE, 
and the NE value of the diet was calculated as the NE intake 
divided by the average feed intake. Energy retained as pro-
tein (NEp) was calculated as N retention (g) × 6.25 × 23.86 
(kJ/g) (Chwalibog et al., 2005), and NEl was calculated as 
the difference between RE and NEp (Labussière et al., 2009). 
Nitrogen retention was calculated as the difference between 
N intake and N losses in feces and urine (Noblet et al., 1994). 
Ld (g/d) was calculated as NEl divided by the conversion fac-
tor of 39.6 kJ/g.

Data set was built to contain ME intake, NE intake, THP, 
RE, NEm, NEp, NEl, Pd, and Ld of each pig and pig informa-
tion was collected through the NE assay, and each pig was 
considered as an observation. To better understand the energy 
partition patterns, NEm, NEp, and NEl were presented in three 
forms with different units: on a daily basis (MJ/d), metabolic 
body weight (BW) basis (MJ/kg BW0.6·d−1), or as percentages 

of NE intake (%). The whole data set was then divided into 
four subsets based on growth stages of pigs with ~15 kg BW 
as a stage gap: earlier growing stage (30 to ~45 kg BW), later 
growing stage (45 to ~60 kg BW), earlier finishing stage (60 
to ~75 kg BW), and later finishing stage (75 to ~90 kg BW). 
Additionally, six observations were discarded because of gas 
leakage of the IC chambers, and 10 observations were deleted 
due to failure in fecal samples collection caused by diarrhea. 
As a result, 59 observations from the NE assay and 61 obser-
vations from the ME assay remained in the database.

Moreover, ME intake, NE intake, NEp, and Pd could also be 
obtained from the ME assay and were combined with those 
gained from the NE assay in the same data set to develop the 
prediction models. The whole data set was randomly split into 
a training data set containing 75% samples for the best-fitted 
model selection and a testing data set containing the remain-
ing 25% samples for model comparison. In the analysis of 
ANN models, the training data set (75%) was then divided 
into a new training data set and the validation data set by 
using a 5-fold cross-validation.

Statistical analyses
The normality of the data was tested using the Shapiro–Wilk 
test, and outliers were detected using the UNIVARIATE pro-
cedure of SAS 9.4 (SAS Institute Inc., Carry, NC). Data were 
then analyzed using the MIXED procedure of SAS 9.4. The 
statistical model included the growth stage as the only fixed 
effect and the IC chamber as the random effect. Multiple 
comparisons were performed with the Tukey–Kramer test as 
adjustment. P-value of <0.05 was set as the threshold for sig-
nificance.

Analysis of NLR models
NLR model analysis
The NLR models on ME intake of pigs have been well stud-
ied; thus, the most widely used Bridge function (Bridges et 
al., 1986): y = a × {1 − exp [−exp(b) × BWc]}, was adapted 
to fit the ME intake and NE intake data in this study. Con-
sider that NRC (2012) used the cubic equation (y = a + b × 
BW + c × BW2 + d × BW3) to predict Pd and Ld. Our pilot 
study showed that the newly introduced variable (NE intake) 
could greatly increase the accuracy of RE prediction, so the 
NE intake and BW and their quadratic and cubic terms were 
included as candidate input variables to predict NEm, NEp, 
and NEl using NLR models, and stepwise regression was con-
ducted for further variables selection. The Nonlinear and Fit 
Model procedures of JMP Pro 14.0 (SAS Institute Inc., Carry, 
NC) were used to establish the NLR models. The stop limit of 
iteration was set at 1,000. For stepwise regression, the mixed 
direction and P-value threshold stopping rules were chosen, 
and the criteria for variables entered and removed from the 
model were set at a probability of 0.05. Models with the min-
imized root mean square error (RMSE) were identified as the 
best-fitted regression model (Littell, 2002).

Analysis of NLR models
ANN is an information-processing paradigm inspired by the 
way the brain processes information. The architecture and 
hyperparameters of ANN were shown in Figure 2. Cross-val-
idation is a data resampling method to tune model parame-
ters, which can assess the generalization ability of predictive 
models and to prevent overfitting (Duda et al., 2001). Thus, 
the k-fold cross-validation procedure in JMP Pro 14.0 was 
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applied to tune the hyperparameters in the ANN models. One 
epoch was defined as all the training data entering ANN once 
and greater epochs allow the neural network to more fully 
explore the relationships between the data. The main com-
ponents of an ANN model include an input layer, a series of 
hidden layers and an output layer (Shafi et al., 2006). The 
input layer is connected to the hidden layer, and then con-
nected to the output layer, representing the handling direction 
of the raw input information. The information of each input 
was multiplied by their weight and computed the sum, then 
fed to a neuron (node), and the same procedure is adopted 
to the next hidden layers. The last hidden layer applies an 
activation function to process the information to the output 
layer (Margenot et al., 2020). The number of hidden layers 
in ANN is dependent on the complexity of the relationships 
between inputs and target outputs. More hidden layers would 
increase the chance of obtaining local minima during the 
training phase but contribute to a more unstable gradient. 
Huang (2003) stated that an ANN model with two hidden 
layers can learn the data with any desired precision; thus, 
only the ANN models with one and two hidden layers were 
analyzed in this study. The use of penalty methods prevents 
ANN overfitting and increases the predictive ability of the 
model. The learning rate is related to the update of weighting, 
with learning rate close to 1 resulting in faster convergence 
on a final model, but also a higher tendency to overfit data. 
All of the above parameters could affect the predictive power 
of the ANN model. Therefore, the grid search method was 
employed for tuning the hyperparameters of the ANN model. 
The candidate hyperparameters were: hidden layers (range: 
1 to 2), nodes in hidden layers (1 to 10), activation functions 
(hyperbolic tangent function, tanh(x) = e2x−1

e2x+1; Gaussian func-
tion, RB(x) = e−x2), learning rate (0.01, 0.1), penalty method 

(squared and weight decay), and epochs (200, 400, 600, 800, 
and 1,000). Totally, 4,000 candidate ANN architectures were 
generated by the grid search method using JMP Pro 14.0 (SAS 
Institute Inc., Carry, NC), and the above hyperparameters 
were tuned using the Neural Network procedure in JMP Pro 
14.0. The 5-fold cross-validation procedure was used in the 
training phase. The training data set (75%) was divided into 
a new training data set and validation data set in ANN anal-
ysis. The averaged RMSE of validation data was recorded to 
select the optimal ANN hyperparameters. The model with the 
minimized RMSE in the validation set was considered to be 
the best-fitted ANN model.

To ensure the unbiased comparison between NLR and 
ANN, the input variables in ANN models were fixed to the 
same as the NLR models. The BW and its quadratic and cubic 
terms were used as the input variables for ME intake and NE 
intake prediction, while the BW, NE intake, and their qua-
dratic and cubic terms were used as the input variables for 
NEm, NEp, and NEl prediction. Before establishing the ANN 
models, all data would be normalized to get prediction errors 
with step sizes and update systematic weights (Li et al., 2019). 
Therefore, data sets in the current study were normalized 
using the min-max approach, and the output variables were 
re-normalized using the minimal and maximal values of the 
data.

Comparison and evaluation of NLR and ANN 
models
Comparison between NLR models and ANN models: pre-
dicted values gained through the best-fitted NLR models and 
ANN models based on the training data set were recorded, 
and used to calculate the RMSE, R2, and concordance cor-
relation coefficients (CCC). A lower RMSE is considered to 

Figure 2. The architecture and hyperparameters of artificial neural networks (ANN). Cross-validation was used to resampling the data set and to prevent 
overfitting. The information of each input was multiplied by their weight and computed the sum, then fed to a neuron (node), and the same procedure is 
adopted to the next hidden layers. The last hidden layer applies an activation function to process the information to the output layer. The penalty method 
and learning rate are related to adjusting the weights of the inputs after one iteration.
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be more accurate while a higher R2 is considered to be more 
precise. The CCC represents both accuracy and precision of 
the model and a higher CCC value means this model is more 
accurate and precise (Tedeschi, 2006). The comparison and 
evaluation of NLR and ANN models were the same as Wang 
et al. (2022). Simplify, predicted values were also gained 
through the two models based on the testing data set (25% of 
the whole data set, data normalization was performed when 
using the ANN model for prediction). The observed vs. pre-
dicted plots were generated, and the following linear equation 
was obtained in each plot: y = a + bx, where x refers to the 
observed values, and y refers to the predicted values. The plot 
with a slope closer to 1 represents a better prediction perfor-
mance of the corresponding model in the testing phase. In 
addition, the RMSE, mean absolute error (MAE), and mean 
relative error (MRE) were calculated based on the observed 
values and predicted values. The prediction models with less 
RMSE, MAE, and MRE were considered as better prediction 
accuracy in the testing phase.

Results
NE partition patterns of growing–finishing pigs
The averaged ME intake and NE intake of pigs fed ad libi-
tum increased as BW increased (P < 0.01), which were 21.75 
and 17.71, 29.40 and 23.25, 30.73 and 24.56, and 35.88 
and 28.96 MJ/d at 30 to 45 kg, 45 to 60 kg, 60 to 75 kg and 
75 to 90 kg, respectively (Table 2). Moreover, the THP and 
RE in MJ/d also increased as BW increased (P < 0.01) but 
revealed no differences when expressed as MJ/kg BW0.6·d−1 
(P > 0.05). The Pd of pigs at 30 to 45 kg was lower than that 
at 45to- 60 kg, and the Ld of pigs at 60 to 90 kg was greater 
than that at 30 to 45 kg (P < 0.01). Efficiency of NE/ME 
was 81.42%, 79.13%, 80.07%, and 80.53% at 30 to 45 kg, 
45 to 60 kg, 60 to 75 kg, and 75 to 90 kg, respectively, with 
no difference among the four stages that were set manually 
based on data sets (P > 0.05).

For the partition patterns of NE (Table 2), both NEm and 
NEl increased as BW increased, and pigs at 45 to 60  kg 
showed the greatest NEp value when expressed as MJ/d (P 
< 0.01). When expressed on a metabolic BW basis (MJ/kg 
BW0.6·d−1), pigs at 30 to 45  kg showed greater NEm than 
those at 60 to 75 kg (P < 0.01), while NEp decreased with 
BW raised (P < 0.01), and NEl revealed no difference among 
the four growth stages (P > 0.05). When expressed as pro-
portions to NE intake, NEm maintained in a range of 42.0% 
to 48.6% in all growth stages (P > 0.05), and the NEp pro-
portion decreased while the NEl proportion increased as BW 
grew (P < 0.05).

Development and comparison of the NLR models 
and ANN models
The best-fitted NLR models for predicting ME intake and 
NE intake were 76.66 × {1 − exp[−exp(−3.397) × BW0.6820]} 
and 65.74 × {1 − exp[−exp (−3.445) × BW0.6543]}, respectively 
(Table 3). For NEm prediction, the NLR model with BW3 
as the only predictor exhibited the smallest RMSE, among 
which BW3 had a positive effect on NEm. For NEp prediction, 
the NLR model with BW3, NE intake, and NE intake3 as pre-
dictors showed the smallest RMSE, among which BW3 and 
NE intake3 had negative effects while NE intake had a posi-
tive effect on NEp. For NEl prediction, the NLR model with 
BW3 and NE intake2 as predictors demonstrated the smallest 

RMSE, among which BW3 had a negative effect while NE 
intake2 had a positive effect on NEl.

The NLR models developed in the current study for ME 
intake and NEm prediction were compared with those avail-
able in NRC (2012) using a curve plot (Figures 3 and 4). The 
predicted ME intake values using our NLR models were 600 
to 900 kcal/d greater than those using models reported by 
NRC (2012). The predicted NEm values using our NLR mod-
els were also greater than those using models reported by 
NRC (2012) for pigs at 20 to 50 kg, with the gap narrowed 
when BW increased in this BW range.

Table 2. The energy balance and NE partition patterns of growing–
finishing pigs in different growth stages1

Items 30–45 kg 45–60 kg 60–75 kg 75–90 kg SEM P-value 

n 12 16 14 17

Energy balance

  ME intake, 
MJ/d

21.75c 29.40b 30.73b 35.88a 0.85 <0.01

  NE intake, 
MJ/d

17.71c 23.25b 24.56b 28.96a 0.69 <0.01

  THP, MJ/d 12.55c 16.01b 16.44b 19.49a 0.40 <0.01

  RE, MJ/d 9.20b 13.39a 14.29a 16.38a 0.59 <0.01

  ME intake, 
MJ/kg 
BW0.6·d−1

2.40 2.56 2.35 2.44 0.04 0.36

  NE intake, 
MJ/kg 
BW0.6·d−1

1.95 2.02 1.88 1.97 0.04 0.58

  THP, 
MJ/kg 
BW0.6·d−1

1.39 1.4 1.26 1.32 0.02 0.06

  RE, MJ/kg 
BW0.6·d−1

1.01 1.16 1.10 1.11 0.04 0.64

  NE/ME, % 81.42 79.13 80.07 80.53 0.48 0.41

Growth

  Pd, g/d 169b 204a 195ab 201ab 4.52 0.03

  Ld, g/d 131a 215ab 243b 293b 13.5 <0.01

NE partition

  NEm, MJ/d 8.51c 9.86b 10.23b 12.57a 0.26 <0.01

  NEp, MJ/d 4.03b 4.88a 4.64ab 4.80ab 0.11 0.03

  NEl, MJ/d 5.17b 8.52ab 9.64a 11.58a 0.53 <0.01

  NEm, 
MJ/kg 
BW0.6·d−1

0.94a 0.86ab 0.78b 0.85ab 0.01 <0.01

  NEp, 
MJ/kg 
BW0.6·d−1

0.44a 0.42a 0.36b 0.33b 0.01 <0.01

  NEl, MJ/kg 
BW0.6·d−1

0.57 0.74 0.74 0.79 0.04 0.20

  NEm, % of 
NE intake

48.6 43.6 42.0 44.7 1.10 0.24

  NEp, % of 
NE intake

22.8a 21.3ab 18.9bc 16.7c 0.47 <0.01

  NEl, % of 
NE intake

28.7b 35.1ab 38.5a 39.1a 1.31 0.03

1ME, metabolic energy; NE, net energy; NEm, NE for maintenance; NEp, 
NE retained as protein; NEl, NE retained as lipid; Pd, protein deposition; 
Ld, lipid deposition; RE, retained energy; THP, total heat production; k, 
ME/NE × 100.
a–cMeans within a row with different superscripts differ (P < 0.05).
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The best ANN models with the optimal hyperparameters 
were selected by grid search using a 5-fold cross-validation 
(Table 4). All the best-fitted ANN models for predicting ME 
intake, NE intake, NEm, NEp, and NEl were those using the 
Gaussian function and penalty method of weighted decay. 
The best-fitted ANN models for predicting ME intake and 
NEl contained 1 hidden layer with 3 and 5 nodes, respectively. 
The best-fitted ANN model for predicting NE intake, NEm, 
and NEp contained 2 hidden layers with 3, 3, and 2 nodes in 
the first hidden layer and 4, 4, and 4 nodes in the last hidden 
layer, respectively. Except for the learning rate of NE intake 
which is 0.01, the optimal learning rate of all the other pre-
dictors is 0.1. The optimal epochs for ME intake, NE intake, 
NEm, NEp, and NEl predictions were 600, 800, 600, 600, and 
1,000, respectively.

On the training data set, the best-fitted ANN models 
showed lower RMSE and greater R2 and CCC than the 
best-fitted NLR models in all five parameters (ME intake, NE 
intake, NEm, NEp, and NEl) prediction compared with NLR 
models (Table 5). Moreover, both the NLR model and ANN 
model exhibited the poorest performance for NEp prediction 
but revealed the greatest accuracy in NEl prediction.

On the testing data set, the best-fitted ANN models showed 
slopes closer to 1 in the observed vs. predicted plots than 
the best-fitted NLR models in all five parameters prediction, 
implying the superiority of ANN models over NLR models 
again (Figure 5A–E). Meanwhile, the corresponding slopes of 
lines for NEl prediction of both models were the closest to 1, 
while those for NEp prediction of both models were the far-
thest to 1, indicating that NEp prediction had the lowest accu-
racy in all five parameters. In addition, the best-fitted ANN 
models exhibited approximately 25% to 38% smaller MAE 
values compared to the best-fitted NLR models in all five 
parameters prediction (Table 6). In ANN models, the RMSE 
of ME intake and NE intake in the testing phase were similar 
to the training phase. The RMSE of NEm in the testing phase 
was lower than in the training phase while NEp and NEl were 
opposite. This indicates no overfitting occurs in ANN models 
except a slight overfitting in NEl.

Based on the defined ANN models in the current study, a 
Microsoft Excel application (named Pig_NE_Partition_ANN 
calculator) was developed as an efficient and user-friendly 
tool to share our results with readers who might be interested 
to duplicate the results or predict a new output (ME intake, 
NE intake, NEm, NEp, and NEl for pigs at growing–finishing 
stages) using ANN models (Figure 6). The only required input 
information was the BW (kg). This spreadsheet is accessible 
via the Supplementary Materials.

Discussion
NE partition patterns of growing–finishing pigs
One of the most important findings of this article is using 
the scientific approach to determine the NE partition pat-
terns of 30 to 90  kg pigs. The NE can simplify divided 
into two parts, HP and energy retained in the body (RE). 
In the current study, the THP of pigs tended to increase as 
BW grew, which may be due to the increased energy intake 
in later growth stages, and higher energy intake could 
strengthen the thermal effects of feeding (de Lange et al., 
2006; Labussière et al., 2011). The average THP value (1.34 
MJ/kg BW0.6·d−1) during the whole growing–finishing phase 
was close to the value (1.39 MJ/kg BW0.6·d−1) reported by 
Zhang et al. (2014). The RE usually can be evaluated by 
the comparative slaughter technology (CST) and IC meth-
ods. The CST method, specifically, refers to slaughtering 
different pigs in a group at the beginning and end of the 
trial, and then physically dividing the carcass into bone, 
muscle, and fat. The Pd and Ld can be calculated by the dif-
ferences in muscle and lipid weight between the beginning 
and the end of the trial, then the RE can be calculated by 
multiplying Pd and Ld by their corresponding energy val-
ues (Quiniou et al., 1995). Even though the measurement 
of RE using either the CST or IC method is considerable, 
it should be noted there is a risk to produce inaccurate 
HP and RE values using the IC method. The RE obtained 
from the CST method may be lower than that from the IC 
method, which is induced by the discrepancy in environ-
mental conditions, pig behaviors, and thermoregulatory 
demand between the respiration chambers and the housing 
conditions, leading to systematically lower energy expen-
diture and greater RE using the IC method (Noblet et al., 
2021). The RE values of growing pigs (1.01 and 1.16 MJ/
kg BW0.6·d−1 for 30 to 45 kg and 45 to 60 kg, respectively) 
reported in the current study were in accordance with the 
results of Lyu et al. (2018), who also use the IC method 
(1.08 MJ/kg BW0.6·d−1 for growing pigs). Besides, Quiniou 
et al. (1995) reported an average RE value of 14.49 MJ/d 
for three breeds of pigs ranging from 45 to 100 kg using 
the CST method, which was also similar to the average 
value in this study (14.69 MJ/d for pigs at 45 to 90 kg). 
Moreover, as to the k value (i.e., NE/ME), the standard 
range should be between 0.70 to 0.80 for pigs (Noblet et 
al., 1994; van Milgen et al., 2001). Even though different 
measurement methods were used, the k values in this study 
and in Lyu et al. (2018) were close to those reported by Just 
et al. (Just, 1982). The similar RE and k values obtained in 

Table 3. The best-fitted nonlinear regression models generated on the training data set1,2

Items, MJ/d Nonlinear regression models RMSE 

ME intake y = 76.66 × {1 − exp [−exp(−3.397) × BW0.6820]} 4.64

NE intake y = 65.74 × {1 − exp [−exp(−3.445) × BW0.6543]} 4.24

NEm y = 8.173 + 5.965 × 10−6 × BW3 1.26

NEp y = 0.6343 − 6.364 × 10−7 × BW3 + 0.2133 × NE intake − 6.239 × 10−5 × NE intake3 0.63

NEl y = 0.2731 − 3.976 × 10−6 × BW3 + 1.672 × 10−2 × NE intake2 1.50

1The training data for predicting ME intake, NE intake, and NEp were obtained from NE assay and ME assay, but the training data for predicting NEm and 
NEl were obtained only from NE assay.
2ME, metabolic energy; NE, net energy; NEm, NE for maintenance; NEp, NE retained as protein; NEl, NE retained as lipid; RMSE, root mean square error.

http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skac405#supplementary-data


8 Journal of Animal Science, 2023, Vol. 101 

the current study using the IC method to those obtained 
using the CST method indicated the reliability of our data, 
as well as the negligibility of HP caused by physical activity 
in FHP measurement in this study.

The NEm proportion does not change greatly during the 
growth period of 30 to 90 kg in pigs. This part of the NE 
may be preferentially retained by the organism to ensure 
the survival of the animal. It also reminds us that regard-
less of the growth stage, roughly 40% to 50% of the NE 
will be used to generate heat that cannot be converted into 
products. Usually, the NEm value of pigs could be measured 
using the calorimetry method or regression method (Close 
and Mount, 1975). Zhang et al. (2014) reported that the 
NEm values were 758 and 732 kJ/kg BW0.6·d−1 for pigs at the 
growing and finishing stages using the regression method, 
respectively, which were all lower than the values measured 
in the current study using IC method. The regression method 
usually sets various dietary energy levels, with some groups 
below the energy requirement, which then could underesti-

mate the NEm value. The greater NEm value using IC method 
in this study could also be attributed to the greater energy 
intake that can increase the basal metabolic rate and the 
HI of pigs, and the fasting process that may generate exces-
sive physical activity and greater NEm measurement. The HI 
would eventually result in reduced feed intake, even when 
the animal is in its thermoneutral range. Furthermore, agree-
ing with Zhang et al. (2014) and van Milgen et al. (1998), 
we observed decreased NEm values on the metabolic BW 
basis with increased BW, which could be explained by the 
declined Pd rate in finishing pigs considering that muscle 
mass and visceral organ are the main contributors to HP in 
pigs. Thus, it is also reasonable that we observed the greatest 
percentage of NEm (48.6%) in pigs at 30 to 45 kg, when the 
pigs contained the highest proportion of muscle mass and 
visceral organ.

Differing from NEm, NEp, and NEl are dynamic in the NE 
partition patterns throughout the growth phase. Whittemore 
and Fawcett (1976) proposed that the relationship between 

Figure 3. The predicted metabolic energy (ME) intake using best-fitted nonlinear regression (NLR) model in this research vs. NRC (2012). 

Figure 4. The predicted NE for maintenance (NEm) using the best-fitted nonlinear regression (NLR) model in this research vs. NRC. 
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energy intake and Pd comprised an initial ascending linear 
component and a plateau representing the animal’s maxi-
mal rate of protein deposition (Pdmax). It was also reported 
that Pd was affected by energy intake rather than pig’s BW 
(Quiniou et al., 1995; Sandberg et al., 2005). Therefore, Pd 
would increase as energy intake ascends at the initial growth 
stage of pigs until the maximum rate of Pd is reached, which 
is called Pdmax. Then Pd keeps stabilized in the later growth 
stages of pigs. The Pdmax value observed in the current study 
was 204 g/d, with Ldmax value of 293 g/d, which were slightly 
different from those reported by Quiniou et al. (1996) espe-
cially for Pd (Pdmax = 170 g/d and Ldmax = 290 g/d), indicating 
that the Pd potential of modern pig breeds was greater com-
pared with those two decades ago. It is reasonable because 
modern pig breeds have been genetically improved to achieve 
a faster growth rate and greater lean meat deposition, thus 
leading to changes in patterns of body deposition as well as 
energy partition. Even though the changed genetic potential, 
the increment of Pd and NEp in the current study mainly came 
from the increased NE intake, which would deposit as lipid 
in later growth stages after pigs reached their Pdmax, leading 
to increased NEl proportion and decreased NEp proportion 
as pigs grow. It should be pointed out that during the later 
stage of growth, more NE would deposit as a lipid. Therefore, 
energy concentrations in diets fed to pigs in the late growth 
stage should be paid special attention to, which would directly 
affect the meat quality.

Development and comparison of the NLR models 
and ANN models
The development of mathematical models for NE partition 
is necessary because the NE values of many commonly used 
feed ingredients have been evaluated recently (Li et al., 2017, 
2018; Lyu et al., 2018). It is the prerequisite to use the same 
energy system to describe the available energy value in feed 
ingredients and energy utilization of pigs to achieve precision 
diet formulation. The starting point of simulation models to 
predict animal growth was using fewer parameters, which is 
easier for understanding and utilization (Wellock et al., 2004). 
As a result, the simple cubic regression function with BW as 
the only predictor has been adapted for Pd and Ld prediction 
previously. Thus, NE intake was also introduced into the 
above cubic NLR model for NEm, NEp, and NEl prediction, 
just as reported by van Milgen et al. (2000) and has achieved 
better prediction accuracy.

The predicted ME intake and NEm values using NLR mod-
els generated in this study were greater than those reported in 
NRC (2012), which were summarized from different pieces of 
literature a decade or two ago, and may be greatly influenced 
by systematic errors caused by different experimental condi-
tions. For example, the variation in diet formulations would 
result in different protein intakes, which are highly related to 
the loss of NE as nitrogen (contained in NEm) and voluntary 
feed intake. Even though an increase in NE requirement and 
NEm of modern pig breeds could still be observed compared 
to previous pig breeds, and that the heavier muscle mass and 
visceral organs weights in modern pig breeds were the main 
contributors to the greater energy demand (Tess et al., 1984; 
Kerr et al., 1995; Rhule, 1996; Schiavon et al., 2018).

The learning ability of ANN models is highly determined 
by their architecture, such as the number of hidden layers, 
neurons in the hidden layer, activation functions, momentum 
term, epochs, and learning rate (Cross et al., 2018). Insuffi-
cient numbers of neurons could limit the learning capacity 
of ANN (Kumar, 2005). However, excess numbers of neu-
rons may lead to overfitting (SubbaNarasimha et al., 2020). 
In agreement with previous studies which stated that the 
number of neurons in the hidden layers should be between 
the input numbers and output numbers (Blum, 1992; Boger 
and Guterman, 1997), the neurons of the best-fitted ANN 
models developed in the current study followed this princi-
ple. All the selected epochs in 5 prediction models were at 
least 600, which can be explained by that the greater epochs 

Table 4. The optimal hyperparameters selected by grid search in trainng phase1,2

Items3 Candidate hyperparameters4 ME intake, MJ/d NE intake, MJ/d NEm, MJ/d NEp, MJ/d NEl, MJ/d 

Layer 1, 2 1 2 2 2 1

Nodes 1–10 3 3, 4 3, 4 2, 4 5

Activation TanH, Gaussian  Gaussian  Gaussian  Gaussian  Gaussian  Gaussian

Learning rate 0.1, 0.01 0.1 0.01 0.1 0.1 0.1

Penalty methods Squred, weighted decay Weighted decay Weighted decay Weighted decay Weighted decay Weighted decay

Epoch 200, 400, 600, 800, 1,000 600 800 600 600 1,000

1Artificial neural networks (ANN) models were developed on a training set originating from 75% of the whole training data set. In the training of ANN 
models, the training data were divided into a new training data set and a validation data set by using the 5-fold cross-validation procedure.
2The averaged root mean square error (RMSE) of the validation data set was used to select the optimal ANN hyperparameters. The model with the 
minimized RMSE in the validation set was considered to be the best-fitted ANN model.
3ME, metabolic energy; NE, net energy; NEm, NE for maintenance; NEp, NE retained as protein; NEl, NE retained as lipid.
4A total of 4,000 candidate ANN models were generated by the grid search method.

Table 5. The comparison between nonlinear regression (NLR) models 
and artificial neural networks (ANN) models in the training phase1,2

Items, MJ/d n RMSE R2 CCC

NLR ANN NLR ANN NLR ANN 

ME intake 90 4.90 3.61 0.50 0.69 0.65 0.74

NE intake 90 3.74 2.94 0.49 0.74 0.66 0.81

NEm 45 1.23 0.70 0.64 0.86 0.78 0.90

NEp 90 0.61 0.41 0.29 0.72 0.46 0.79

NEl 45 1.45 0.36 0.88 0.97 0.94 0.98

1The RMSE, R2, and CCC were calculated using the predicted value and 
observed value in the whole training data set.
2CCC, concordance correlation coefficients; RMSE, root mean square 
error; ME, metabolic energy; NE, net energy; NEm, NE for maintenance; 
NEp, NE retained as protein; NEl, NE retained as lipid.
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provided more opportunities for the ANN model to fully 
understand the relationships between the inputs and outputs. 
Furthermore, the activation function is also an imperative 
hyper-parameter in ANN, which empowers ANN to learn 
and recognize complex mapping from data. TanH function 
is continuous and differentiable, and it is symmetric around 
the origin. So, it is preferable in most cases considering it has 
gradients that are not restricted to vary in a certain direction 
and also, it is zero-cantered (Sharma et al., 2017). The Gauss-
ian function is also a universal approximator in ANN models 
and can be used for approximation of any continuous func-
tion with given accuracy, but the main problem is the num-
ber of Gaussian functions required for approximation. Karlik 

and Olgac (2011) compared five conventional differentiable 
and monotonic functions and stated that the TanH function 
performed better recognition accuracy than Gaussian func-
tion. However, ANN models with Gaussian function devel-
oped in this study were observed to be more powerful than 
those with TanH function in all five parameters prediction, 
which could be explained by the limited numbers of input 
variables in this research, making only one Gaussian function 
enough, not like the situation in other comparative studies 
with more input variables that had a complex relationship 
with output variables (Shymkovych et al., 2021). Due to the 
strong learning abilities of ANN models, overfitting often 
occurs, but not in the current study, which could be attributed 
to the cross-validation, the larger learning rate, and the use 
of the penalty method. When we decayed the learning rate, 
parameter update takes a smaller step toward the minimum 
loss function and easier to locally optimal solutions (Jacobs, 
1988). However, the lower learning rate increases the com-
puting time and the risk of overfitting. The penalty method 
is introduced to prevent overfitting; thus, the tuning process 
may prefer a larger learning rate.

On both the training data set and the testing data set, ANN 
models exhibited more flexibility and accuracy than NLR 
models in this study. Similar results have been reported by 
previous studies conducted on other species (Dallago et al., 
2019; Fu et al., 2020; Margenot et al., 2020). The superi-
ority of ANN over the regression model is mainly because 
the regression model requires a pre-assumption relation-
ship (linear or nonlinear) between input variables and tar-
get variables, which greatly limits its flexibility in prediction 
(Hanrahan, 2011). The existing associations between input 
and output variables may not follow the pre-assumption of 
regression model, especially in animals, which is a dynamic 

Table 6. The MAE and MRE of nonlinear regression models and artificial 
neural networks (ANN) models in testing phase1,2

Items, 
MJ/d 

n RMSE MAE MRE

Regression ANN Regression ANN Regression ANN 

ME 
intake

30 4.46 3.23 3.56 2.64 11.39 7.99

NE 
intake

30 4.24 2.95 3.47 2.15 12.45 8.30

NEm 14 0.67 0.45 0.82 0.52 7.75 5.19

NEp 30 0.74 0.51 0.6 0.39 14.02 8.80

NEl 14 0.78 0.58 0.93 0.63 15.21 8.11

1The RMSE, MAE, and MRE were calculated using the predicted value 
and observed value in the testing data set which was not used to establish 
the prediction models.
2RMSE, root mean square error; MAE, mean absolute error; MRE, mean 
relative error; NE, net energy, NEm, NE for maintenance; NEp, NE retained 
as protein; NEl, NE retained as lipid.

Figure 5. Relationship between the observed vs. the predicted (A) metabolic energy (ME) intake, (B) net energy (NE) intake, (C) NE for maintenance 
(NEm), (D) NE retained as protein (NEp), and (E) NE retained as lipid (NEl) from the best-fitted models using testing data set. The best-fitted models 
were the nonlinear regression (NLR) and artificial neural networks (ANN) models generated in training. Thirty observations in the testing data set were 
used in ME intake, NE intake, and NEp while 14 observations in the testing data set were used in NEm and NEl. Each plot represents a sample with an 
observed value or predicted value from prediction models. 



Wang et al. 11

physiology system and can change at any time (Wang et al., 
2022). On the contrary, ANN models do not need to make 
assumptions between inputs and outputs, alternatively, it 
uses neurons to weight the input and employ activations to 
transform to approximate the actual values (Adamczyk et 
al., 2016). Moreover, Margenot et al. (2020) stated that the 
architecture selection can improve the accuracy of ANN mod-
els. Based on the fact that the hyperparameters were carefully 
selected by the grid search method, the architecture selection 
can interpret part of the greater accuracy of ANN than NLR 
models. Fu et al. (2020) reported that the precision improved 
nearly 70% when using ANN models compared to regres-
sion models, while we only observed a smaller improvement 
in this study, which may be due to two main reasons. Firstly, 
Fu et al. (2020) used simple linear regression methods, which 
usually had much lower prediction accuracy. Secondly, large-
scaled comparisons between those two models have illus-
trated that the ANN models would greatly outperform the 
regression models when using relatively large data sets (n > 
20,000), while the opposite pattern occurred for small data 
sets. The data set used in this study was relatively small (n = 
45 or 90) and cannot exhibit the full advantages of ANN to 
capture the complex relationship between inputs and outputs. 
With more reliable data collected using sensors installed in 
modern farms, the model parameters can be updated, thus 
greatly improving model applicability. It should also be high-
lighted that the ANN models did not always perform better 

than regression models, especially in the data set with skewed 
distribution or introducing extra variables (Duliba, 1991; 
SubbaNarasimha et al., 2020).

Among the five parameters predicted in the current study, 
NEp was the variable with the highest predictive error in both 
two models. Similarly, Tess et al. (1984) found Pd suffered 
more from measurement error than any other body compo-
sition of pigs, especially at heavier weights. To achieve better 
prediction on NEp, more accurate data are needed, and intro-
ducing extra relevant variables is also helpful even though 
this is hardly achieved. The utilization of a better predictive 
method such as ANN can reduce the predictive error more 
easily, as revealed in this study, encouraging future ANN 
applications in swine nutrition. In addition, the developed 
Microsoft Excel application containing trained results and 
connection weight matrices could also greatly help to share 
the developed ANN models in the current study. The repre-
sentative, normality, and homogeneity of data for modeling 
need to be checked in advance to avoid overfitting, because 
the run mode of ANN is to obtain a local optimal solution 
rather than a global optimal solution (Ghorbani et al., 2016).

Even though we have used the animal trial data to build 
the most accurate and precise NLR and ANN models, there 
were still some limitations that can not be ignored. The ANN 
model was labeled “black box,” which means the inputs and 
outputs are known, but the connections among them are 
unknown (Jacobs et al., 2022). If we want a more concise 
and more easily understandable model, then its accuracy must 
be surrendered. However, we believe that this kind of model 
has even more serious consequences. For example, Gauthier 
et al. (2022) applied simple regression equations to predict 
the litter growth as well as the standardized ileal digestible 
Lys requirements of lactating sows. Even though the regres-
sion models are simple and understandable, the precision was 
poor with an R2 of 0.12, which may result in Lys deficiency 
in half of the lactating sows. Another inevitable limitation is 
that we built a data set in a standardized condition (i.e., same 
breeds, sexes, temperatures, and the same metabolic cages), 
which limits our models being applied to various and com-
plex conditions. The breeds, sexes, temperatures, and feed-
ing conditions were all important factors that would affect 
energy intake and partition patterns (Renaudeau et al., 2006; 
Noblet et al., 2021; Zhang et al., 2021) and the data would 
produce great variation if these variables were not controlled. 
Extremely variable data can greatly increase the difficulty of 
developing a prediction model and decrease the accuracy of 
the model. Therefore, data on NE partition patterns under 
special breeds, sexes, and different feeding conditions can also 
be collected to update model parameters. Such an operation 
would increase the adaptability of the model and reduce the 
effort of rebuilding new models.

Similarly to the decision support system built by Institut 
National de la Recherche Agronomique (van Milgen et al., 
2007; Dourmad et al., 2008), our models could be used to 
predict the ideal dietary energy concentrations according 
to the BW, feed intake, and the targeted body composition 
(Pd and Ld) of pigs. Furthermore, with the automatic feed-
ing equipments, e.g., an auto-blend feedline system (Gauth-
ier et al., 2022), the dietary energy concentrations could be 
achieved by blending high-energy and low-energy diets, which 
can greatly contribute to feed waste control, manure emission 
reduction, and carcass quality regulation, and finally promote 
the realization of precision feeding in growing–finishing pigs.

Figure 6. The Microsoft Excel application (named Pig_NE_Partition_ANN 
calculator) developed to predict metabolizable energy (ME) intake, net 
energy (NE) intake, NE for maintenance (NEm), NE retained as protein 
(NEp), and NE retained as lipid (NEl) for pigs at growing–finishing stages 
based on artificial neural networks (ANN) models.
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Conclusions
The NE intake and NE partition patterns are influenced by 
the growth stages of growing–finishing pigs. The NEm and 
NEl (MJ/d) kept increasing as BW increased from 30 kg to 
90  kg, while the NEp increased to its maximum value and 
then kept in a certain range of 4.64 to 4.88 MJ/d which aligns 
with previous studies. The proportion of NEm for pigs at 30 
to 90  kg kept in the range of 42.0% to 48.6%, while the 
proportion of NEl kept increasing. The NE intake, NEm, and 
NEp measured were greater compared with those reported 
previously, indicating the increased NE requirements for the 
specific breeds used in this study. The ANN models were more 
accurate and precise than NLR models in NE partition pat-
tern prediction. However, considering the difficulties of estab-
lishing an ANN model with appropriate architecture, more 
concise and easier-to-understand regression models using BW 
and energy intake as inputs were also recommended. The pre-
diction models of NE partition pattern shows great potential 
for precision feeding in the future.
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