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Abstract: Each individual has a unique gut microbiota; therefore, the genes in our microbiome
outnumber the genes in our genome by about 150 to 1. Perturbation in host nutritional status
influences gut microbiome composition and vice versa. The gut microbiome can help in producing
vitamins, hormones, and other active metabolites that support the immune system; harvest energy
from food; aid in digestion; protect against pathogens; improve gut transit and function; send signals
to the brain and other organs; oscillate the circadian rhythm; and coordinate with the host metabolism
through multiple cellular pathways. Gut microbiota can be influenced by host genetics, medications,
diet, and lifestyle factors from preterm to aging. Aligning with precision nutrition, identifying a
personalized microbiome mandates the provision of the right nutrients at the right time to the right
patient. Thus, before prescribing a personalized treatment, it is crucial to monitor and count the
gut flora as a focused biomarker. Many nutritional approaches that have been developed help in
maintaining and restoring an optimal microbiome such as specific diet therapy, nutrition interventions,
and customized eating patterns. One of these approaches is time-restricted feeding/eating (TRF/E),
a type of intermittent fasting (IF) in which a subject abstains from food intake for a specific time
window. Such a dietary modification might alter and restore the gut microbiome for proper alignment
of cellular and molecular pathways throughout the lifespan. In this review, we have highlighted
that the gut microbiota would be a targeted biomarker and TRF/E would be a targeted approach
for restoring the gut-microbiome-associated molecular pathways such as hormonal signaling, the
circadian system, metabolic regulators, neural responses, and immune-inflammatory pathways.
Consequently, modulation of the gut microbiota through TRF/E could contribute to proper utilization
and availability of the nutrients and in this way confer protection against diseases for harnessing
personalized nutrition approaches to improve human health.

Keywords: gut microbiome; time-restricted feeding; intermittent fasting; targeted approach;
hormonal signaling; metabolic regulators

1. Introduction

Microbiota in the gastrointestinal tract is seeded just after birth. In the complete
life span of the human being, more than 60 tons of food passes through the entire gas-
trointestinal tract of 250–400 m2 [1], due to which bacteria enter the body, some of which
get colonized in the tract. These colonized collections are called gut microbiota [2]. The
makeup of the gut microbiota can change over a person’s lifetime, despite the fact that it is
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subject to the combined influence of host genetics and environmental factors. The microbial
community’s nature, remodeling, and responses to dietary nutrients are all influenced by
the host’s genetic background [3]. These changes can occur in the gut microbiome and host
nutritional status. Fluctuations in the microbiota have been associated with the emergence
of metabolic syndrome, which encompasses diabetes and obesity. On the other hand, the
gut microbiota also has an advantageous role in the human body. The main benefits are its
roles in the integrity of the mucosal barrier; synthesis of the essential vitamins including
vitamin K, biotin, nicotinic acid, riboflavin, pyridoxine, pantothenic acid, and thiamine for
the protection against infected agents; boosting the immune system; training the circadian
rhythm; and the neurological function of the body [3].

Similarly, gut microbiota act as a factory of substances that affect the chronobiology,
metabolic sensors, inflammatory cytokines, neurological function, and the immune system.
Intestinal microbes consume nutrients from the meal to produce energy and metabolites.
Many of these metabolites are subsequently taken into circulation, where they may go
through extra metabolism and change the host metabolism and nutritional status. The
impact of bacterial metabolites on the metabolism of the host might occasionally be detri-
mental. For instance, short-chain fatty acids (SCFAs), which are produced from ordinarily
indigestible fiber, have effects that are generally advantageous for the host. These effects
include activities that fight against obesity and diabetes [4]. On the other side, N-nitroso
compounds, ammonia, and hydrogen sulfide created by bacteria from dietary protein can
generate reactive oxygen species (ROS) and precipitate in DNA damage. These compounds
can also activate pro-inflammatory pathways. The end product of dietary choline known
as trimethylamine-N-oxide (TMAO) promotes the development of atherosclerosis and
has a correlation with cardiovascular disease (CVD), stroke, and mortality [3]. Numerous
metabolites produced in the gut enter the bloodstream and can either act immediately
or undergo additional metabolism by the host, producing bioactive chemicals that might
affect the host’s metabolism and tissue function. In addition to facilitating fat absorption,
the secondary bile acids are also reabsorbed into the bloodstream, where they act as ligands
for the host cells’ farnesoid X (FXR) and TGR5 bile acid receptors, having impacts such as
on the immunological function and energy metabolism. Similarly, SCFAs made by bacteria,
such as acetate, butyrate, and propionate, not only serve as vital energy sources for the
liver and intestinal epithelium but also have the power to alter insulin secretion, immune
system activity, appetite, brain function, and adipose tissue. These SCFAs influence the
immune, hormonal, and neurological systems of the body as they are involved in the pro-
duction of cytokines, chemotaxis, neurotransmitters, endocrine signals, and the apoptosis
process [3,4]. As a result, these modifications of the microbiome communities in the gut
have the potential to play a part in the emergence of metabolic illnesses such as type 2
diabetes, weight gain, and metabolic syndrome.

Interestingly, a variety of classes of gut bacterial composition and metabolites can
be affected by necessities such as food, nutrition composition, and patterns of eating and
fasting. Time-restricted feeding/eating (TRF/E) is one of the most striking eating patterns
that had been followed by humans for the last many years and has demonstrated benefits
independent of energy restriction in both animals and humans [5]. This pattern allows
no caloric restriction and has an eating window period of as much as 10 h in a day [6].
Many recent studies have demonstrated that TRE has a great impact on gut microbiota
composition and showed that time restriction and meal sizes change the proportions and
abundance of microbiota [7]. Similarly, our recent studies showed that TRE increases
microbial richness and diversity in healthy male adults [8], and polyunsaturated fatty
acids (PUFA), vitamin D, iodine, vitamin E, magnesium, and carbohydrates were in abun-
dance in the gut of TRF practicing groups [9]. Precision nutrition provides tailored dietary
interventions and recommendation based on an individual genetic makeup, metabolic
profile, and environmental exposure [10]. Depending on an individual’s genetic makeup,
nutrigenomics workhorse of precision nutrition may evaluate the different phenotypic
responses to specific diets [11]. Precision nutrition may integrate the information about
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microbiota and adding dietary challenges to magnify the interindividual differences in
postprandial response. Personalized gut microbiome features might help predict an in-
dividual postprandial glycemic response to dietary components [12,13]. The basic gut
microbial profile may be a predictor for an individual’s response to dietary interventions.
Fermentation products of carbohydrates and proteins induce the microbiome-associated
effects on host metabolism [14]. However, the use of the gut microbiome as a biomarker
to predict responsiveness to specific dietary ingredients to develop precision diets and
interventions [15] is very important for optimal health. Therefore, it is very important to
adopt an accessible and non-invasive approach to better tackle the biomarkers of many
metabolic diseases in the shape of healthy gut microbiota.

2. Gut Microbiota: A Targeted Biomarker

Greater microbiota diversity is associated with improved lipid profiles, anti-inflammatory
cytokines, liver enzymes, and eventually genetic pathways, all of which are metabolic in-
dications for better health [8,16]. Prior research has demonstrated that Sirt1 is a crucial
regulator and promoter for the production of clock genes, as well as establishing a biological
link between the control of metabolism and circadian rhythms [17,18]. There is mounting
proof that the gut microbiota composition is associated with Sirt1 expression and propor-
tionally affects the brain via neurological, endocrine, and immunological channels. The gut
microbiome makeup is of particular interest when it comes to cognition and brain-related
disorders [19]. Both the abnormal gut flora and the daily cycle of feeding/fasting have
an impact on the host metabolism and aid in the emergence of metabolic diseases such
as obesity. It is believed that eating and fasting cycles cause periodic changes in the gut
microbiome, which act as a mechanism for controlling host metabolism. These differences
add to the variety of gut microflora. Therefore, the feeding pattern, time, and length, as well
as the composition of the meal, are significant characteristics to consider when determining
the contribution of the microbiome to the physiology and metabolism of the host [20].
Communication between the gut and the brain is essential for determining the appropriate
portion size of a meal and sending signals to the brain to control feelings of hunger and
fullness. Mechanosensitive gastric vagal afferents (GVAs) display diurnal rhythmicity in
the nutrient composition and chemical pathways in response to food-related stimuli. This
allows for satiety signaling to occur at a specific time of day through gut–brain communica-
tion [21]. As a result, the absence of a diurnal rhythm in the GVA axis can contribute to
an increase in both hyperphagia and obesity. Recent studies on both animals and humans
have revealed that the emergence of obesity is correlated with a lower microbiota diversity,
changed gut microbiota activity, and dispersed microbiota abundance, specifically of two
phyla, namely, Bacteroidetes and Firmicutes [22]. When Bacteroidetes are allowed to remain in
the gut, they continue to maintain a dynamic and, for the most part, beneficial relationship
with the host [23].

Gut microbiota dysbiosis is a mediator for the emergence of several human ill-
nesses [24]. It was shown that the prevalence of metabolic and inflammatory diseases
such as obesity, atherosclerosis, neurological disorders, and diabetes correlates inversely
with the number of Bacteriodetes [25]. Similarly, Bacteroidia was found to have an inverse cor-
relation with low-density lipoprotein (LDL) and triglyceride (TG) levels, and both types of
these bacteria exhibited an anti-obesity response. In a similar pattern, a drop in mouse body
weight is closely correlated with an increase in members of the genus Bacteriodetes [26]. The
dysbiosis-induced circadian misalignment and other disturbed host–microbe interactions
may contribute to the etiology of metabolic diseases. In ApoE-/- mice, overexpression
of Bmal1 modifies lipoprotein synthesis and biliary cholesterol excretion, which lowers
hyperlipidemia and atherosclerosis [27]. In addition to the timing of meals and the length
of daylight, microbiota play a role in the control of a circadian system that is responsible
for the regulation of intestinal physiology and systemic metabolism [28]. The circadian
rhythmicity of the gut microbiome contributes to the proper functioning of the circadian
clock of the host. Recent research conducted by our team revealed a substantial encour-
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aging association between Bmal1 and Prevotella and Bacteroidia, as well as between Sirt1
and Prevotellaceae, Bacteroidia, and Dialisster [8]. In mouse tissues, the peripheral clock
can be adjusted more easily through SCFAs derived from Prevotella that were produced
by the fermentation of non-digestible fiber [29]. During the process of gut microbiome
ablation, Bmal1 expression becomes disrupted, leading to a pre-diabetic phenotype and
increased ileal corticosterone production. Inadequate levels of healthy gut microbiota also
contribute to a general downward trend in the expression of clock control genes, which are
particularly involved in the regulation of metabolic processes [30].

2.1. Gut Microbiota and Host Energy Homeostasis

At this time, intestinal microbiota can have a significant impact on the metabolic
pathways involved in energy production in both human and animal models through
pleiotropic mechanisms. Clinical investigations have revealed that atypical antipsychotic
medications (AAPDs) may cause metabolic abnormalities with lower energy expenditure
and body weight gain caused by gut microbial dysbiosis [31]. Through two complementary
yet distinct pathways that result in a reduction in fatty acid metabolism, the gut microbiota
may have an impact on obesity. These mechanisms are (i) reduced levels of the fasting-
induced adipose factor (Fiaf), which inhibits the production of the peroxisomal proliferator-
activated receptor co-activator (PGC-1), and (ii) decreased AMP-activated protein kinase
(AMPK) activity of the liver and muscle. These findings lend credence to the idea that gut
bacteria can influence both the demand and supply ends of the energy balance equation. In
other words, the gut microbiota influences both the regulation of energy consumption and
storage, as well as the harvesting of energy from the diet [32].

2.2. Gut Microbiota and Hormonal Signaling

Through the growth hormone secretagogue receptor 1 (GHS-R1a), the orexigenic
hormone ghrelin regulates body weight [33]. Regardless of the fact that they alter lipid and
glucose metabolism [34], the levels of the hormone ghrelin have been shown to increase in
patients who are receiving treatment with AAPDs, according to clinical observations [35].
Recent research has shown that live microorganisms can influence the ghrelin system
by modulating the GHS-R1a receptor. Furthermore, it has been established that several
strains of Lactobacillus and Bifidobacterium had the same capacity to modify the ghrelin
receptors. Therefore, blocking ghrelin signaling through a gut-microbiota-assisted plan
may be encouraging treatment options to aid overweight patients who have been caused
to gain weight by AAPDs for maintaining their weight loss [29].

Cholecystokinin, glucagon-like peptide-1 (GLP-1), 5-hydroxytryptamine, peptide YY
(PYY), and leptin are all examples of hormones that participate in hormonal signaling. All of
these hormones are crucial for controlling metabolic processes including hunger, fat storage,
and the metabolism of glucose and lipids [36–38]. Microbiota such as Oscillibacter spp.
and Lactobacillus spp. can influence the secretion of hormones such as PYY and GLP-1,
and as a result, microbially mediated gut hormone participates in the regulation of host
metabolism [38,39]. Satiety peptides PYY, GLP-1, and cholecystokinin were expressed less
strongly in germ-free mice, hypothesizing that the gut microbiota may be responsible for
stimulating the production of these hormones [40]. Furthermore, E. coli in the microbiome
may boost enteroendocrine cells’ production of GLP-1 and PYY [41]. Products of bacteria,
such as SCFAs, regulate the release or production of anorexic hormones (PYY and GLP-1),
and they do this by binding to free fatty acid receptors (FFAR) 2 and FFAR 3 [42], possibly
resulting in obesity. Nurmi and colleagues presented evidence that the microbes in the
gut are responsible for the weight gain that is caused by AAPDs [43]. In light of this
observation, a link between the gut microbiota, the production of peptide hormones, and
the weight gain brought on by AAPDs may exist. An intriguing hypothesis regarding how
intestinal bacteria can influence hormonal signaling pathways was presented by Fetissov
and colleagues. In the blood of healthy individuals and rats, they discovered IgG and IgA
autoantibodies specifically directed against leptin, ghrelin, PYY, neuropeptide Y, and other
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appetite-regulating hormones. These findings imply that the immune system affects the
peptidergic system, which regulates hunger and emotions, as well as the microbiota that is
connected with peptides, including Bacteroides, Lactobacilli, Helicobacter pylori, and Candida
species [44].

For facilitating the reaction to strain in animals, the hypothalamic–pituitary–adrenal
axis (HPA) system is the chief neuroendocrine system. This system is promoted by the
release of vasopressin and corticotropin-releasing factor (CRF). The production of gluco-
corticoids is stimulated by the release of adrenocorticotropic hormone (ACTH) from the
pituitary gland, which is encouraged by CRF and vasopressin. It is now known that the
HPA axis malfunction significantly contributes to the emergence of anxiety and depres-
sion [45]. The microbiota in one’s gut can also affect the way the HPA axis works. According
to a recent study, germ-free (GF) mice responded to moderate restraint stress by releasing
corticosterone and ACTH more than normal. Colonization with the fecal microbiota of SPF
animals was able to partially reverse this release, while monocolonization with B. infantis
was able to fully restore it [46]. The SPF-stressed mice also showed substantially lower
Fkbp5 transcription levels when GF animals and SPF-stressed mice underwent repeated
social defeat procedures, which can enhance glucocorticoid receptor sensitivity and boost
the effectiveness of the HPA axis negative feedback [47]. Another study found that the
expression of behaviors resembling depression is decreased when genes associated with
glucocorticoid receptors are upregulated in the hippocampus of GF mice [48]. According to
a report, the bacterium Faecalibacterium prausnitzii ATCC 27766 has the potential to reduce
the hyperreaction caused by CUMS on the HPA system and to increase the SCFAs in order
to bring the inflammatory level down [49]. Intestinal dysfunction and microglial activation
in the hippocampus were also corrected by Clostridium butyricum Miyairi 588 [50].

2.3. Gut Microbiota and Neurological Signaling

The flora of the digestive system is one of the most significant variables in the de-
velopment of brain malformation [51]. The intestinal flora may affect the transcriptional
activity of genes related to neuronal myelin [52], having the potential to bring about a
change in the structural makeup of the brain that is long lasting. It was discovered through
the utilization of various brain imaging technologies that alterations in the population of
the gut microbiome may affect the integrity of the white matter [53]. In elderly Alzheimer’s
patients, Escherichia/Shigella counts are up, whereas E. rectale counts are down [54]. Patients
with major depressive disorder have been shown to have a surge in fecal Bacteroidetes, Pro-
teobacteria, and Actinobacteria, as well as a decrease in fecal Faecalibacterium, all of which are
associated with low levels of brain-derived neurotrophic factor (BDNF) in the serum [55].
In addition to this, it has been discovered that the prevalence of Clostridium XIVb has
an inverse correlation with the level of BDNF in the blood [55]. Similarly, a study con-
ducted on animals revealed that the schizophrenia-like behavior group has an increased
prevalence of the genera Roseburia, Dorea, and Odoribacter [56]. Additionally, the newly
published research shows that certain microbiota associated with schizophrenia, such as
the family Veillonellaceae, has a positive relationship with the volume of the right middle
frontal gyrus, while the regional grey matter is positively correlated with Lachnospiraceae
and Prevotellaceae [57].

These alterations in the gut microbiota’s makeup are because of specific illness situ-
ations possibly act as a new diagnostic marker. The important plasticity-related protein
BDNF is important for learning, memory, and emotional control. It is associated with neu-
ron survival and supports neuron growth, development, and survival [58]. Brain-derived
neurotrophic factor (BDNF) can be measured in the blood as a biomarker to represent its
amount in the brain [59]. In addition, BDNF can lead to weight gain by increasing food
intake while simultaneously decreasing energy consumption [60]. The gut microbiota
regulates the expression of BDNF, which may cause gut cells to secrete BDNF. Overall,
an unbalanced gut flora may change BDNF levels and trigger neuroinflammation, which
is connected to the pathogenesis of obesity and dementia [61]. The exact ways that gut
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microbiota maintains BDNF, however, are mainly unidentified. In the central nervous
system, the major inhibitory neurotransmitter known as GABA performs a crucial role
in maintaining physiological and psychological homeostasis [62]. GABA production by
Bifidobacterium dentium and Lactobacillus brevis has been demonstrated. Bacteria play a part
in the production of GABA, and the resulting GABA can operate independently or as a
secondary messenger to transmit signals from the vagal nerve to the enteric and central
nervous systems [63,64]. In addition to its role as a signaling molecule for both the brain
and the gut, serotonin (5-HT, also known as 5-hydroxytryptamine) plays a pivotal role in
the signaling process that occurs along the brain–gut axis [65]. The peripheral nervous
system and the brain both synthesize tryptophan, the only precursor to serotonin [66]. By
controlling the metabolism of the kynurenine pathway, the microbiota in the gut such as
Streptococcus spp., Candida spp., Enterococcus spp., and Escherichia spp. may alter serotonin
production. This in turn affects both gastrointestinal and central nervous system func-
tion [67]. The enterochromatin cells in the gut produce the majority of the 5-HT in the
body [38]. Through its effect on brown adipose tissue, peripheral serotonin is thought to
have a significant bearing on the development of metabolic syndrome [68].

Several studies conducted on animals have found evidence that microorganisms in the
gut may stimulate the vagus nerve, leading to signal transmission from the gut to the brain.
Anorexia, lethargy, hyperalgesia, and a host of other brain processes and behaviors are
all significantly regulated by this activation [63]. For instance, ingesting L. rhamnosus JB1
alters the expression of genes that code for GABAergic receptors located in the amygdala
and hippocampus, reducing anxiety-like behavior. These two brain regions are responsible
for controlling anxiety and behavior [62]. However, when the vagus nerve was cut, the
antidepressant effects of JB1 were no longer present. In another study, behavior and the
expression of the BDNF gene were regulated through oral administration of Bifidobacterium
longum [69]. According to the findings of these studies, the vagus nerve plays an extremely
important part in the interaction that occurs between gut bacteria and the nervous system.

2.4. Crosstalk between Gut Microbiota and the Immuno-Inflammatory System

In the presence of inflammation, metabolic syndrome (MetS) is more strongly related
to cognitive impairment [61]. In addition, Cuomo and colleagues emphasized that the gut
microbiota influences immunity in one of three ways: either by activating the immune
system; by secreting mediators; or by communicating with other mediators that can freely
enter the brain [70], which activate the inflammatory pathway and have the potential to
make metabolic syndrome and cognitive dysfunction worse. Innate fat cells and immune
cells that have been activated have the potential to produce the proinflammatory cytokine
IL-6 [71], which suggests that higher levels of body fat deposition are connected with higher
levels of IL-6 production and a higher risk of cognitive impairment. The levels of three
key pro-inflammatory mediators identified in the blood of obese patients, namely, IL-6,
TNF-α, and CRP, are closely related to the participants’ waist circumference, weight, and
body mass index [72]. According to the findings of one clinical trial, a higher level of IL-6
in older participants was related to a decreased abundance of Ruminococcus and Prevotella,
together with an increased richness of the Oscillibacter co-abundance group [73]. Similarly,
Biagi and associates showed a favorable association between the amount of circulating IL-6
and the number of bacteria in the genus Proteobacteria. This included Escherichia coli and its
derivatives Haemophilus, Pseudomonas, Klebsiella pneumoniae, Yersinia, Serratia, and Vibrio.
The bacteria Eubacterium hallii et rel., Eubacterium rectale et rel., and Eubacterium ventriosum et
rel., as well as Clostridium nexile et rel. and species Clostridium cluster XIVa, were shown to
have a negative connection with IL-6 levels [74].

TNF-α is involved in a wide variety of cellular processes due to its ability to both regu-
late and disrupt metabolic pathways, particularly those involved in lipid homeostasis [75].
TNF-α levels that are elevated beyond normal in the fatty and muscular tissues of obese
humans may be responsible for the activation of multiple signal transduction cascades,
which leads to an inflammatory response [76]. It was discovered that patients who took
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Lactobacillus Plantarum P8 therapy for 12 weeks had lower levels of pro-inflammatory
cytokines such as interferon-gamma and TNF-α when compared to patients who took a
placebo. This finding is quite intriguing, along with the improvements found in memory
and cognitive function. These improvements include social-affective cognition as well as
verbal learning and memory [77]. In addition to this, it was discovered that Odoribacter
splanchnicus, Bilophila, and Bifidobacterium adolescentis all had a negative correlation with the
production of TNF-α [78]. According to OrbeOrihuela and colleagues, there is a positive
association between TNF-α levels and the abundance of the phylum Firmicutes [79].

In the gut–brain connection, LPS plays a bidirectional communication [80]. Several
studies were conducted to investigate the connections between the microbiota in the gut
and LPS levels. The levels of circulating Escherichia coli were found to have a positive
correlation with LPS levels in a study that included 64 people, 32 of whom were obese
and 32 of whom had normal weights [81]. Another study found that increased bacterial
translocation increases systemic exposure to LPS, which has been linked to MetS and
cognitive problems via inflammatory responses [82,83]. LPS displacement from the colon
to the portal vein, on the other hand, induces obesity-related low-grade inflammation in
rats. This inflammation can be partially reversed by injecting the mice with bacteria that
produce propionic acid, such as Akkermansia muciniphil [84].

2.4.1. Gut Microbiota and Immune Pathways

Independently or in conjunction with one another, the immune system and the mi-
crobiota in the gut can regulate neurophysiology. Both innate and adaptive immune cells
are abundant throughout the central nervous system [85]. It has been hypothesized that
increased intestinal permeability, and possibly even blood–brain barrier (BBB) permeability,
can lead to neurological diseases. Recent research has shown that certain extracellular
pathogens, such as Neisseria meningitidis, Escherichia coli, and Streptococcus, are capable of
invading host cells and causing disease. These pathogens have the potential to provoke
a meningeal immune response that can affect social behavior, memory, and spatial learn-
ing [86]. A recent study found that an elevated level of the protein fatty-acid-binding
protein-2 (FABP2) in those with depression or anxiety was a sign of intestinal barrier
permeability [87]. The immune pathway that connects the microbiota in the gut to the
central nervous system can travel in either direction. Alterations in the gut microbiota have
the potential to cause shifts in the levels of pro- and anti-inflammatory cytokines that are
circulating in the blood, and certain metabolites can directly affect CNS function. As a
result, changes in brain biochemistry may result in changes in immunological responses
and microbial composition via the HPA axis [88]. For instance, it has been shown that
depressed mice exhibit a clear dysbiosis of the HPA axis as well as a high amount of
inflammation in the central nervous system (with increased levels of TNF-α and IL-1 in the
hippocampus) [89].

2.4.2. Gut Microbiota and Inflammation

Neuschwander-Tetri and Caldwell found that there is growing evidence that directly
links insulin resistance in the liver, muscle, and adipose tissue to the quantity of pro-
inflammatory cytokines. These cytokines have multifaceted effects on the genes that
are responsible for insulin resistance susceptibility, including those that regulate lipid
synthesis, gluconeogenesis, and adipogenesis [90,91]. As a result, inflammation blocks
insulin signaling pathways, which reduces the body’s sensitivity to insulin and increases
the chance of developing insulin resistance [92,93]. Recent findings lend credence to the
theory that shifts in the microbial flora of the gut and/or the metabolic activity of its
inhabitants play a crucial role in the etiology of obesity and illnesses that are associated
with it [94].

Lipopolysaccharide, a component of the cell wall of Gram-negative bacteria that
reside in the gut, has been discovered as a significant role in the production of chronic
inflammation that is metabolically driven and related to obesity [95]. An increase in the
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number of lipopolysaccharide producers and a drop in the proportion of intestinal barrier
defenders showed that a high-fat diet had disrupted the gut microbiota. Bifidobacterium spp.
releases lipopolysaccharide into the host’s circulation via a partially compromised intestinal
barrier, acting as the main mediator of inflammation resulting in insulin resistance and
obesity (metabolic endotoxemia) [95]. In obese mice fed a high-fat diet, the plasma concen-
tration of lipopolysaccharide rose by two to three times. These outcomes are analogous
to those observed in MetS-affected human individuals [96]. Oligofructose was added to
help keep bifidobacteria at normal levels, which in turn helped keep the gut barrier less
permeable to lipopolysaccharide. As a result, mice given a high-fat diet did not develop
insulin resistance or obesity [97]. In human participants, it was discovered that a high-fat
diet and an elevated body mass index (BMI) were related to higher lipopolysaccharide
content [98,99]. Endotoxin-producing Enterobacter decreased from 35% to non-detectable
levels in a morbidly obese volunteer’s gut bacteria after 23 weeks on a diet of whole grains,
traditional Chinese medicinal foods, and prebiotics (WTP diet) [100].

Compared to B. fragilis-induced inflammation, Enterobacteriaceae causes a strong in-
flammatory response that is a thousand-fold larger [101,102]. Obesity-related changes in
the gut microbiota have been linked to both local and systemic inflammation. For instance,
plasma CRP levels were found to be elevated in these subjects and correlate with the ratio
of Bacteroidetes to Firmicutes [103]. An inverse correlation between CRP concentrations
and G+C abundance was observed. As a result, bacterial populations with high DNA GC
concentrations might control inflammatory reactions in the host [104]. Intervention with
high levels of cocoa flavonol in healthy human volunteers led to a significant reduction in
CRP concentrations, which correlated with the levels of Bifidobacteria and Lactobacilli [105].
In conclusion, there is a significant abundance of microbes associated with the nutrigenomic
approach boosting the immune system and regulating inflammation in metabolic diseases.
At the same time during abnormal conditions such as inflammatory diseases, some other
microbes trigger a large number of metabolic and signaling pathways in different tissues,
which contribute to metabolic diseases (Figure 1).
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We identified specific gut microbiota that target inflammation associated with metabolic
diseases in different parts of the body. This specific microbiota should be targeted for per-
sonalized diagnosis and nutrition therapy of metabolic diseases to reduce the development
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and progression of inflammation. The blue part indicates positive changes and the white
part negative changes in microbiota-associated inflammation.

3. Time-Restricted Feeding/Eating: A Targeted Approach

The host physiology, environment, and daily dietary changes all play a role in gut
microbiota homeostasis [106]. The make-up and/or activity of gut microbiota is a factor
that distinguishes individuals who are obese from those who are lean, as well as diabetic
patients from those who do not have diabetes [107–109]. What is more important is that
the alterations in gut microbes that are associated with the aforementioned disorders can
be reversed by nutritional intervention [108,110]. This is because of the preeminent role
that diet and the timing of eating play in shaping the composition of the gut microbiota as
well as the gene transcription network [111,112]. A promising strategy for the management
of obesity and metabolic diseases is the modification of gut microbiota through the eating
pattern and consumption of nutrients that contain prebiotic properties [113,114]. This
eating plan ought to not only fulfill the dietary requirements of human beings but also
maintain a healthy microbiota in the gut. A diet that prevents MetS should be high in
whole grains, fruits, vegetables, lean meats and fish, and low-fat or fat-free dairy products
and low in processed foods, which may contribute to a diverse microbial flora [115].

The manipulation of the gut microbiota composition through dietary changes and
intermittent fasting (IF) has emerged as a potentially effective “pharmaco-nutritional”
strategy for reversing dysbiosis and host metabolic disorders [116,117]. However, the
conventional medical care system does not yet have the capability of evaluating both the
qualitative and quantitative changes that occur in the gut microbiota. At the population
level, one potential strategy for the prevention and management of metabolic syndrome
should involve the development of a set of approaches related to changes in the microbiota
of the gut. TRF stands for time-restricted feeding in animals and time-restricted eating (TRE)
in humans throughout a counted number of hours. It allows for a daily fasting duration
that is greater than 12 h, and it does so without affecting either the quality or quantity of
the nutrients consumed [118]. Through the involvement of circadian genes and the gut
microbiome, time-restricted feeding/eating (TRF/E) provides protection against nutritional
challenges that can lead to obesity and metabolic risks [8]. It has been hypothesized that
TRF/E may regulate and modulate gut microbiota in order to prevent metabolic disease
through multiple pathways.

3.1. Communication between TRF/E and Gut Microbiota

It is still too soon to determine how TRF/E affects the composition of the gut and the
functions it performs through daily feeding and fasting rhythms. These daily rhythms
in gut physiology provide context and a basis for adopting TRF to maintain gut health.
Lean meats and fish, fruits, vegetables, whole grains, and low-fat or fat-free dairy products
should all be abundant in a diet that reduces MetS. The variety of the gut microbiota is
increased by these modifications. Therefore, the feeding pattern and duration, in addition
to the composition of the diet, are important parameters to consider when determining
the contribution of the microbiome to the physiology and the host nutritional status [21].
Communication between the gut and the brain is essential for determining the appropriate
portion size of a meal and sending signals to the brain to control feelings of hunger and
fullness. It has been reported that TRF resulting from the same obesogenic diet can restore
the daily rhythm of GVA responsiveness to meal size [119].

Previously, TRF imposed significant alteration in the microbial composition of human
gut microbiota (Table 1). There were substantial alterations and relative richness of bac-
terial communities in healthy persons using combined effect size measures from linear
discriminant analysis (LDA). These communities were classified as either TRF or non-TRF.
At the level of the genus, 34 bacteria were enriched in the TRF group, and 18 bacteria were
enriched in the non-TRF group. The most numerous genera in the TRF group were Bac-
teroidetes and Prevotellaceae (prevotella 9 and prevotella 2), while the most numerous genera
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in the non-TRF group were Escherichia, Shigella, and Peptostreptococcus [9]. Similarly, a study
revealed that timed-feeding protocols (TRF, alternate day fasting and caloric restriction)
induced measurable sifts in the bacterial compositions in mice that coincide with improve-
ments in metabolism [120]. TRF, on the other hand, was successful in reestablishing cyclical
variation in several bacterial families that are thought to play a role in metabolism [21]. In
the Lactobacillus family, TRF was able to restore cyclical variation, which is likewise cyclical
in regular chow animals but not in DIO mice. Diabetes and obesity have been linked to
a number of different species of the genus Lactobacillus [121–123]. Lactobacillus species
express bile salt hydrolases, which are responsible for the conjugation of gut luminal bile
acids (BAs), and they have the ability to affect BA signaling [21]. In addition, TRF was
successful in reintroducing members of the Ruminococcacea family, such as those belonging
to the genus Oscillibacter, which are thought to provide resistance to the metabolic effects
of obesity [123]. A larger number of Firmicutes species in the gut microbiome has been
associated with increased adiposity, suggesting that the Firmicutes phylum may play a
role in the development of obesity. According to the results of research that evaluated the
microbiome at several time periods in normal mice as well as in TRF mice, the amount
of Firmicutes species is connected to the food and feeding pattern rather than obesity or
dysmetabolism itself. The Firmicutes phylum, as a whole, is not obesogenic, and it may
alter within 24 h after a change in diet [124,125]. In addition to that, it was hypothesized
that having a low alpha diversity in the gut microbiome was also a contributor to obesity.
However, when the alpha diversity was averaged between all of the different time points,
there was no difference between the mice that were fed normal chow ad libitum, TRF,
or DIO. Contrary to the metabolic phenotype, fluctuations in alpha diversity were found
to be related to diet and the amount of time feeding [21]. Another study demonstrated
that 12 weeks of TRF did not significantly alter the diversity or overall composition of gut
microbiome in adults with obesity [126].

Table 1. TRF-induced changes in the gut microbiome: evidence from human studies.

Fasting Hours and
Duration of TRF

Number of
Subjects Changes in Gut Microbiome Sequencing

Scheme Reference

16 h/25 days 80 healthy male
adults

↑ microbial diversity
↑ abundance of Bacteroidetes and Prevotellaceae

16s rRNA
(ribosomal
ribonucleic acid)

[8]

8 h/12 weeks 14 adults with
obesity

No significant changes in the abundance of
microbiota 16s rRNA [126]

12 h/12 weeks 24 patients with
obesity

↑ in the frequency of Lachnospiraceae,
Parasutterella, and
Romboutsia

16s rRNA [127]

2 day modified
IF/8 weeks

39 patients with
metabolic
syndrome

Induced significant changes in gut microbiota
communities
↑ production of short-chain fatty acids
↓ circulating levels of lipopolysaccharides

16S rRNA
sequencing [128]

R-TRF/4 weeks 30 healthy male
adults

↑ microbial diversity and remodeling of
microbiome composition
Provoked upregulation of
butyric-acid-producing Lachnospiraceae

16S rRNA
sequencing [129]

R-TRF/4 weeks 34 healthy adults
↑ alpha and beta diversity
↑ abundance of Prevotella, Faecalibacterium,
Bacteroidetes, and Firmicutes

16S rRNA
sequencing [130]
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Table 1. Cont.

Fasting Hours and
Duration of TRF

Number of
Subjects Changes in Gut Microbiome Sequencing

Scheme Reference

16 h/26 days 45 healthy young
adults

↑ alpha diversity
↑ anti-inflammatory bacteria Lactobacillus and
Bifidobacterium
↓ pathogenic bacteria

16S rRNA
sequencing [131]

R-TRF/29 days 9 healthy adults

↑ microbial richness
Enriched genera including Butyricicoccus,
Bacteroides, Faecalibacterium, Roseburia,
Allobaculum, Eubacterium, Dialister, and
Erysipelotrichi

16S rRNA [132]

17 h/29 days 9 healthy adults

↑ abundance of healthy gut microbiota
members (Akkermansia muciniphila,
Faecalibacterium prausnitzii, Bifidobacterium spp.,
Lactobacillus spp., Bacteroides fragilis group, and
Enterobacteriaceae)

16S rRNA [133]

16 h e-TRF and
m-TRF/5 weeks

82 healthy
individuals without
obesity

↑ gut microbial diversity 16S rDNA [134]

↑ = increase, ↓ = decrease, rRNA = ribosomal ribonucleic acid, R-TRF = Ramadan time-restricted feeding,
e-TRF = early time-restricted feeding, m-TRF = mid-day time restricted feeding.

It is well acknowledged that having a variety of species residing in the gut microflora
protects against metabolic illnesses and obesity. The results of metabolomics studies
performed on the feces of mice that had been fed ad libitum with TRF revealed significant
differences, which may help to explain some of the improvements observed in the TRF
mice. Hemicellulose found in food is typically decomposed into xylose and galactose by
the microbes that live in the gut, and the host can absorb a portion of this. The fact that TRF
mice excreted a significantly higher amount of xylose and galactose in their stool compared
to ad libitum-fed mice suggests that TRF lowered the amount of these simple sugars that
were absorbed by the host. Both primary and secondary bile acids were found in high
concentrations in the feces of TRF mice. This suggests that TRF facilitates the reabsorption
of bile acids from the gastrointestinal tract. The fact that there were lower levels of bile
acids in the stool may be responsible for at least some of the decrease in hepatic and serum
cholesterol that was observed in TRF mice [21]. TRF is associated with better metabolic
health, perhaps owing to changes in gut microbiome and circadian pattern of molecules
related to liver metabolism. However, a previous study demonstrated that TRF showed
distinct circadian rhythms in liver expression of PPARα, SREBP, and Sirt1 as well as the
circadian rhythm of the abundance of Bacteroidetes and Firmicutes [134].

3.2. TRF/E and Circadian Rhythm

The changes in the levels or activities of nicotinamide adenine dinucleotide (NAD)
and sirtuins, depending on the energy state of the cell, affect the circadian clock [135,136].
However, AMPK phosphorylates CRY and encourages breakdown of the energy state of
the cell during fasting that affects the circadian system [137]. As a result, the presence
of eating and fasting cycles enhances the robustness or amplitude of the oscillation of
circadian activator and repressor components. The lack of a functioning circadian clock
can result in some oscillations in transcription, downstream metabolites, and even the
gut microbiota [124]. However, these signals cannot completely make up for the loss of
the circadian clock. To guarantee that anabolic and catabolic forms of metabolism are
coordinately controlled in line with the activity/rest cycle, the circadian oscillation and
feeding/fasting signals combine synergistically. This is accomplished by ensuring that the
circadian oscillator is in sync with the feeding/fasting signals. TRF may adjust the phase
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of peripheral oscillators to make them coincide with the phase of the central oscillations.
Through hormonal synchrony, intermittent fasting (IF) can have an effect on the circadian
rhythmicity. Early in the morning, the circadian insulin secretion reaches its highest point,
then continuing to rise throughout and after meals [138,139]. Performing TRF daily in the
morning reduces insulin levels not only after meals but also for an average of 24 h, which
ultimately increases insulin sensitivity [48,140].

TRF can alter circadian-driven processes due to downstream effects caused by an
inhibited mTOR pathway [137,141]. The phosphorylated kinases (AMPK, CK1, and GSK3)
that are activated by mTOR play a direct role in regulating the expression of CRY1 and
CRY2 during times of fasting. Similarly, the mTOR pathway is responsible for the increased
circadian phosphorylation of CREB, which can activate PER (period circadian protein) tran-
scription [142]. The practice of TRF affects circadian rhythmicity through these mechanisms,
which can lead to coupled and strengthened peripheral and central genes, hormones, and
protein secretion [141]. As a result, TRF is responsible for optimal rhythms of behavior,
physiology, gut microbiota, molecular pathways, and metabolism, and it ensures harmony
with an individual’s activity/rest cycle and health span (Figure 2). Recent research has
shown that TRF is responsible for regulating the circadian rhythm and its stimulators in
humans, which is necessary for metabolic health. TRF intervention resulted in a significant
increase in the level of mRNA expression of the Bmal1 gene (p = 0.0020) and the Clock gene
(p = 0.0302) [8]. It is possible that activation of Sirt1 can also modulate mice’s circadian
physiology [143]. Additionally, our results demonstrated that the activation of Sirt1 can
control the circadian rhythm. The mRNA level of Sirt1 was significantly upregulated, just
as it was in the post-TRF group, in comparison to the pre-TRF group and the non-TRF
group, respectively [8].
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Figure 2. TRF/E-targeted pathways for the oscillation of the circadian rhythm.

This figure shows that TRE may target many cellular and genetic pathways that
contribute to the alignment of circadian rhythm with host metabolism. TRE may modulate
the Clock–Bmal1 pathway, synchronize hormonal signals, regulate the Sirt1 pathway,
inhibit mTOR signaling, and modulate gut-microbiome-related nutrient sensors.

Recent studies have shown that the emergence of obesity is correlated with reduced
microbiome diversity, changed gut microbial activity, and dispersed microbiome relative
abundance, especially of two phyla, namely, Bacteroidetes and Firmicutes [23]. A micro-
bial community’s complexity may be seen in its microbial richness, which is a gauge of
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alpha diversity for the gut microbiota. A more diverse gut microbiota is linked to better
health [144,145]. According to Sonnenburg and Backhed (2016), the gut microbiota may
be able to influence systemic metabolic responses [146]. According to earlier studies, Sirt1
is a key regulator and promoter of the expression of clock genes and acts as a molecular
bridge between circadian rhythms and metabolic regulation [18]. A study revealed that
NADH cycle in liver links the nutrients state to whole body energetics through the circa-
dian regulation of Sirt1 [139]. More interestingly, a previous study demonstrated that early
TRE improves 24-hour glucose levels and changes circadian clock gene expression and
lipid metabolism. However, there is increased autophagy due to the anti-aging effect of
early TRE in humans [147]. This represents the fact that TRE may regulate the circadian
oscillation for a healthy lifespan.

3.3. TRF/E and Metabolic Regulators

The level of glucose in the blood drops during intermittent fasting, and as a result of
the process of lipolysis, the fats in the body (triacylglycerols and diacylglycerols) are broken
down into free fatty acids (FFAs). Then, these lipids are transported to the liver, where
they undergo oxidation and proceed through the intermediary steps of acetyl CoA and
HMG-CoA before becoming ketones (acetoacetate (AcAc) and hydroxybutyrate (BHB)).
Both BHB and AcAc are brought from the blood into the brain, where they are eventually
taken up by neurons. Aside from the metabolic process of ketone bodies that occurs in
the liver, astrocytes are also capable of the process of ketogenesis, which may serve as an
important local source of BHB for neurons. Due to a decrease in the amount of glucose that
is readily available and an increase in the number of ketones, the ratio of AMP to ATP in
neurons is decreased. The kinases AMPK and CaKMII are activated as a consequence, and
CREB and PGC1 are consequently activated that, in turn, stimulate autophagy. BHB can
increase the expression of brain-derived neurotropic factor (BDNF), which may support
mitochondrial biogenesis, synaptic plasticity, and cellular stress tolerance. On the other
hand, IF causes a reduction in the amount of insulin that is circulating in the blood,
which boosts neuroplasticity and protects against metabolic and oxidative stress via the
insulin/IGF signaling pathway [148].

The circadian clock oscillations; the cycling of metabolic regulators such as CREB
(cAMP response element-binding protein), AMPK, and mTOR; and the expression of
their target genes are all restored by TRF [137]. The nuclear factors PPARg (peroxisome
proliferator-activated receptor gamma) and PGC-1 alpha (peroxisome proliferator-activated
receptor gamma coactivator 1-alpha), which have several metabolic effects, are modulated
by TRF, which controls the levels of SIRT1. TRF also has a promising effect on nicoti-
namide adenine dinucleotide (NAD+) [149]. The studies conducted on rodents showed
that decreasing the daily eating window has striking effects on metabolism, body weight,
and composition with increased oxidation of fat and energy expenditure [150]. TRF has
promising health roles as it not only improves cardiometabolic health and reduces weight
but can also slow down the progression of the tumor, delay the process of aging, and
eventually increase lifespan through the execution of signaling pathways. The presence
of SIRT1 suggests that it promotes longevity via protection against DNA damage. Due to
increased metabolic roles, it lowers the insulin levels and fasting glucose in the morning,
with the increased production of insulin in the evening, which leads to the decreased
24-hour glycemic index. An increase in fat oxidation due to prolonged fasting periods in
a day leads to higher levels of LDL and HDL [151,152]. Early TRE can improve insulin
sensitivity, blood pressure, and beta cell function through stimulation of insulin [153]. Gut
microbiota may be able to regulate systemic metabolic responses, and TRF can regulate the
gut microbiota, which in turn regulates the genetic pathways [146]. Therefore, we observed
in a recent study that Sirt1 expression and serum HDL showed a positive correlation with
gut microbiome richness in the TRF group. This suggests that TRF lessens the burden
of metabolic risk by regulating Sirt1 expression and serum HDL levels in response to
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modulation of the gut microbiome. Therefore, compared to the group that did not receive
TRF, the TRF group had a significantly higher microbial diversity [8].

The treatment of metabolic diseases in modern humans presents several difficult
medical challenges. Intermittent fasting is a therapeutic lifestyle strategy that can lower the
risk of various metabolic illnesses, including obesity and hypertension [154]. TRF alters the
levels of lipids, metabolic regulators, and inflammatory cytokines in the body to reverse
and prevent diet-induced obesity (DIO) and related metabolic disorders in animals and
humans without changing dietary composition. This is accomplished in the absence of
any changes in dietary intake [155]. We looked into whether or not TRF affects lowering
hyperlipidemia in humans. TRF resulted in a significant reduction in serum levels of both
total cholesterol and triglycerides while elevating HDL levels. Regular consumption of
large amounts of energy at all hours of the day and night has been linked unquestionably
to the development of obesity and, ultimately, to the disruption of liver enzymes. Our
study revealed significant decreases in the levels of the alkaline phosphatase/-glutamyl
transferase, aspartate aminotransferase, and alanine aminotransferase [8].

3.4. TRF/E and Inflammatory Signaling

Even in COVID-19 infection, inflammation plays a pivotal role in the development of
insulin resistance and cytokine release syndrome. This is because different cytokines can
influence a wide variety of molecular pathways. Insulin resistance, for instance, may be
induced by TNF-α via the JNK and IKK/NF-B (jun amino-terminal kinase/inhibitor of NF-
kinase) pathways, which may lead to an increase in the serine/threonine phosphorylation of
insulin receptor substrate 1. In addition, IL-6 has the potential to reduce insulin sensitivity
in skeletal muscle through the induction of toll-like receptor-4 (TLR-4) gene expression
via the activation of STAT3, which is an activator of transcription 3. The activation of
IKK/NF-B signaling could, in turn, stimulate the production of TNF-α, indicating that
this relationship is potentially two-way [156]. TNF-α and IL-1 levels were shown to be
lower in the TRF group than in the normal diet (ND) group, whereas IL-6 levels seemed
to drop in the TRF group but were not statistically different from ND. TRF was found to
modulate some of these inflammatory markers, and it was seen that IL-6 decreased in the
TRF group [157]. Previous information on the effect of IF on inflammatory markers is scant,
but the results of our most recent investigation suggested that TRE lowered the production
of pro-inflammatory cytokines [8]. Excessive consumption of energy-dense food will result
in the production of an inflammatory response, which is a causal factor in the dysregulation
of glucose and lipid metabolism [158]. Dyslipidemia as well as inflammation linked to
obesity can contribute to the development of atherosclerosis, the clinical manifestation of
vascular inflammation in metabolic disorders [159]. Concerning the part that inflammation
plays in the development of atherosclerosis, the level of IL-1 is elevated in atherosclerosis
and is related to the severity of the disease [160]. TNF-α and IL-1 are the most important
pro-inflammatory cytokines that can be traced back to metabolic dysregulation. These
cytokines are secreted by adipose tissue [161]. Despite this, we discovered that the post-TRF
group had much lower blood and mRNA levels of the cytokines IL-1 and TNF-α than the
pre-TRF group and the non-TRF group; however, this difference did not reach statistical
significance [8]. This is the significant effect of TRF on inflammation to reduce the burden
of chronic diseases through these mechanisms.

3.5. TRF/E and Hormonal Signaling

A great number of hormones can be thought of as nutritional signals, and the receptors
on their ends play critical roles in mediating the effects of nutrition on a large number
of genes that are involved in growth, metabolism, and signaling pathways. According
to the findings of a previous study, the levels of total testosterone and IGF-1 in TRF
significantly dropped after 8 weeks of intervention with TRE. Only in TRE subjects, there
was a significant reduction in blood glucose and insulin levels, and in line with this, a
significant improvement in HOMA-IR was found. Within the TRF group, there was a
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significant increase in adiponectin and a significant decrease in leptin and T3; however,
there was no significant change in TSH [157]. As a result, TRF mice showed an increase
in adiponectin and a decrease in leptin [42,162]. In another study, the TSH was measured
to look for signs of thyroid dysfunction, which could influence other metabolic endpoints.
They noted a tendency toward an increase in TSH with 10 h of TRE intervention [163].

4. Conclusions

Gut microbiota dysbiosis (low abundance) is associated with enhanced development
of inflammatory diseases, obesity, atherosclerosis, neurodegenerative diseases, and diabetes.
Therefore, many underlining factors of metabolic diseases are reversed or improved by
gut microbiota modulation through TRF/E. Some specific microbiota such as Lactobacillus
Plantarum P8 improve cognitive and memory function; L. Rhamnosus JB1 decreases anxiety
and controls fear and emotions; Clostridium butyricum restores intestinal dysfunction and
hippocampal microglial activation; Faecalibacterium prausnitzii decreases inflammation;
Oscillibacter spp. and Lactobacillus spp. regulate the host metabolism via glucose and
lipid metabolism; Lactobacillus and Bifidobacterium help to maintain weight; Prevotella
facilitates peripheral clock adjustment; Prevotellaceae, Bacteroidia, and Dialisster control the
circadian system that regulates intestinal physiology and systemic metabolism; Prevotella
and Bacteroidia improve circadian rhythmicity; Bacteroidia exhibits an anti-obesity response
(Table 2). These indicate that specific gut microbiota can be targeted as biomarkers because
of their involvement in many biological, cellular, and metabolic processes. On the other
hand, an approach in the form of TRF/E is essential in terms of target nutrient utilization
and host nutritional status metabolism through modulation of the gut microbiota and
the circadian system. This approach showed an extensive effect in the recovery of gut
microbiota dysbiosis. However, TRF/E may contribute to the prevention of metabolic
diseases via modulation of the Clock–Bmal1 pathway, synchronizing hormonal signals,
regulating the Sirt1 pathway, inhibiting mTOR signaling, and modulating gut-microbiome-
related nutrient-sensors.

Table 2. Gut microbiota and their targeted mechanisms and actions.

Gut Microbiome Target Abundance/Mechanism Action Reference

Bacteriodetes Low abundance

Enhanced the development of
inflammatory conditions, obesity,

atherosclerosis, neurodegenerative
diseases, and diabetes

[25]

Bacteroidia Inversely correlated with LDL-c and
triglyceride level Exhibited anti-obesity response [26]

Bacteriodetes Increased abundance Directly associated with weight loss [26]

Prevotella and Bacteroidia Significant positive correlation with
Bmal1 Improved circadian rhythmicity [8]

Prevotellaceae, Bacteroidia,
and Dialisster Positive correlation with Sirt1

Controlled the circadian system that
regulate intestinal physiology and

systemic metabolism
[8,28]

Prevotella Produced SCFAs Facilitated peripheral clock adjustment [29]

Lactobacillus and
Bifdobacterium

Modulated the GHS-R1a receptor to
influence the ghrelin system

Helped to maintain weight loss in
AAPDs-induced overweight patients [36]

Oscillibacter spp. and
Lactobacillus spp.

Helped in releasing glucagon-like
peptide-1 (GLP-1) and peptide YY

(PYY) hormones

Regulated host metabolism via glucose
and lipid metabolism [38,39]
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Table 2. Cont.

Gut Microbiome Target Abundance/Mechanism Action Reference

Bacteroides, Lactobacilli,
Helicobacter pylori, Candida
specie, and Escherichia coli

Change in appetite and
emotion-controlled peptidergic system Interfered with the immune system [44]

Faecalibacterium prausnitzii
Alleviated CUMS, induce HPA axis
hyper reaction, and upregulate the

SCFAs
Decreased the inflammatory level [89]

Clostridium butyricum Enhanced SCFA production Restored intestinal dysfunction and
hippocampal microglial activation [50]

Lactobacillus brevis and
Bifdobacterium dentium Produced GABA neurotransmitters

Modulated physiological and
psychological processes in the central

nervous system
[64]

Streptococcus spp., Candida
spp., Enterococcus spp., and

Escherichia spp.

Affected tryptophan metabolism and
subsequent serotonin synthesis by

regulating the kynurenine metabolism
pathway

Influenced cognition function in central
areas as well as gastrointestinal

function
[67,163]

L. rhamnosus JB1
Altered the expression of genes

encoding GABA receptors in the
amygdala and hippocampus

Decreased anxiety-like behavior,
controlling fear and emotions [62]

Ruminococcus and Prevotella Low abundance Associated with an increased level of
IL-6 [73]

Lactobacillus Plantarum P8 Decreased pro-inflammatory cytokines,
such as interferon-gamma and TNF-α

Improved memory and cognitive
function [77]

Odoribacter splanchnicus, the
Bilophila, and Bifdobacterium

adolescentis

Negatively correlated with TNF-α
production Regulated the inflammation process [78]

Neisseria meningitidis,
Escherichia coli, and

Streptococcus
Induced a meningeal immune response Affected spatial learning, memory, and

social behavior [86]

Bacteroidetes/Firmicutes ratio Increased plasma CRP Associated with local and systemic
inflammation in obesity [103]

LDL-C = low-density lipoprotein cholesterol, Sirt1 = Sirtuin 1, SCFAs = short-chain fatty acids, GHS-R1a = growth
hormone secretagogue receptor type 1a, CUMS = chronic unpredictable mild stress, HPA = hypothalamic–pituitary–
adrenal, GABA = gamma-aminobutyric acid, TNF-α = tumor necrosis factor-alpha, CRP = C-reactive protein.
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