
Citation: Muralidhar, A.; Potluri,

H.K.; Jaiswal, T.; McNeel, D.G.

Targeted Radiation and Immune

Therapies—Advances and

Opportunities for the Treatment of

Prostate Cancer. Pharmaceutics 2023,

15, 252. https://doi.org/10.3390/

pharmaceutics15010252

Academic Editor: Frank Wuest

Received: 16 December 2022

Revised: 3 January 2023

Accepted: 6 January 2023

Published: 11 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pharmaceutics

Review

Targeted Radiation and Immune Therapies—Advances
and Opportunities for the Treatment of Prostate Cancer
Anusha Muralidhar 1, Hemanth K. Potluri 1, Tanya Jaiswal 1 and Douglas G. McNeel 1,2,*

1 University of Wisconsin Carbone Cancer Center, 1111 Highland Avenue, Madison, WI 53705, USA
2 7007 Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Madison, WI 53705, USA
* Correspondence: dm3@medicine.wisc.edu; Tel.: +1-608-265-8131; Fax: +1-608-265-0614

Abstract: Prostate cancer is the most diagnosed malignancy in men in the United States and the second
leading cause of cancer-related death. For localized disease, radiation therapy is a standard treatment
that is often curative. For metastatic disease, radiation therapy has been primarily used for palliation,
however, several newer systemic radiation therapies have been demonstrated to significantly improve
patient outcomes and improve survival. In particular, several targeted radionuclide therapies have
been approved for the treatment of advanced-stage cancer, including strontium-89, samarium-
153, and radium-223 for bone-metastatic disease, and lutetium-177-labeled PSMA-617 for patients
with prostate-specific membrane antigen (PSMA)-expressing metastatic castration-resistant prostate
cancer (mCRPC). Contrarily, immune-based treatments have generally demonstrated little activity in
advanced prostate cancer, with the exception of the autologous cellular vaccine, sipuleucel-T. This
has been attributed to the presence of an immune-suppressive prostate cancer microenvironment.
The ability of radiation therapy to not only eradicate tumor cells but also potentially other immune-
regulatory cells within the tumor immune microenvironment suggests that targeted radionuclide
therapies may be well poised to combine with immune-targeted therapies to eliminate prostate cancer
metastases more effectively. This review provides an overview of the recent advances of targeted
radiation agents currently approved for prostate cancer, and those being investigated in combination
with immunotherapy, and discusses the challenges as well as the opportunities in this field.

Keywords: combination therapy; radiation therapy; targeted radionuclide therapy; immunotherapy;
prostate cancer

1. Introduction to Prostate Cancer Radiotherapy

Prostate cancer is the most diagnosed cancer among men with an estimated 268,490 new
cases and 34,500 deaths in the United States in 2022 [1]. Traditional treatments for local-
ized disease include surgery or radiation therapy, and with or without limited androgen
deprivation therapy [2]. Although a majority of patients respond to these therapies, about
one third of them have recurrence. Recurrent disease is generally treated with androgen
deprivation, however, tumors ultimately develop castration resistance, and the median life
expectancy of metastatic, castration-resistant prostate cancer (mCRPC) is less than three
years [3].

Radiation therapy that is used in both localized and advanced stage disease can be
categorized into three main categories: external-beam radiation therapy (EBRT), which
uses an X-ray machine (linear accelerator) to produce high-energy photons outside the
body that target cancer cells; brachytherapy (BT), which uses radioactive seeds adminis-
tered internally, and targeted radionuclide therapy (TRT) which involves administering
radionuclides coupled to cancer targeting compounds to irradiate tumor cells.

2. External Beam Radiation Therapy

EBRT is a potentially curative treatment for localized prostate cancer, and typically
prioritized for patients who are not candidates for prostatectomy and/or have adverse
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pathologic features [4–6]. The standard regimen for treating low-risk disease is 75–80 Gy,
and for intermediate-risk and high-risk prostate cancer, EBRT is often combined with
short-term androgen deprivation [7,8].

During the past three decades, technological advances have greatly improved radiation
therapy delivery with emphasis on improving target definition with smaller radiation
fields [9]. To achieve dose escalation, 3-dimensional conformal radiation therapy (3D-CRT)
was developed using planning computed tomography (CT) scans, and as reported in the
RTOG 9406, phase I/II trial, yielded favorable outcomes for localized prostate cancer [10].
With the development of more sophisticated treatment-planning software in the mid-1990s,
intensity-modulated radiation therapy (IMRT) emerged as an advanced form of conformal
therapy. In addition to IMRT, image-guided radiotherapy (IGRT) is an essential adjunct for
dealing with daily changes to the target anatomy [11]. It has been reported that IMRT may
be more effective than 3D-CRT for higher dose treatments [12].

Several studies have indicated that prostate cancer responds well to EBRT delivered in
fewer fractions with higher doses (hypofractionation) [13–15]. Stereotactic body radiation
therapy (SBRT), also called stereotactic ablative radiotherapy (SABR), is a technique that can
deliver higher doses in hypofractionated regimens and has shown comparable biochemical
control and morbidity to standard fractionation schedules in prospective randomized
trials [13,16]. Results with SBRT in limited numbers of patients with low-risk prostate
cancer suggest that this approach is feasible, with comparable efficacy and safety to other
forms of radiation therapy [17–19].

In contrast to conventional photon (X-ray) therapies, proton beam therapy (PBT) can
also confer several advantages in terms of tumor targeting and dose exposure. Multi-
institutional randomized trials (NCT01617161, NCT03561220) are comparing IMRT versus
PBT for impacts on treatment-related toxicity and quality of life, however, no prospective
trials have evaluated the efficacy of PBT relative to EBRT [20].

3. Brachytherapy

In the early 19th century, Pasteau and DeGrais explored treatments for prostate cancer
by implanting radium sources through a catheter in the urethra or rectum. This initial
approach led to improvement in techniques and instruments for brachytherapy using
radioactive sources by multiple others [21]. In particular, the interest in brachytherapy was
revived by Bagshaw and colleagues in the late 1950s with a series of patients being cured by
high-energy cobalt treatment [22]. In the early 1980s, Whitmore experimented with a variety
of different radioisotopes implanted as permanent brachytherapy sources in patients, and
found this approach was well tolerated [23]. Holm and colleagues applied transrectal
ultrasound to the guidance of iodine-125 seed placement [24]. Iodine-125, palladium-103,
and cesium-131 are now the three isotopes routinely used for low-dose-rate (LDR) prostate
brachytherapy [25]. Neither isotope appears to be more effective than another based on the
available data [26]. In some cases, LDR brachytherapy is used in combination with EBRT in
men with intermediate- or high-risk prostate cancer [27]. Escalating the dose of radiation
through high-dose-rate (HDR) brachytherapy with iridium-192 has also been used as a
monotherapy and/or in combination with EBRT, and this has been a promising approach
for treating locally advanced prostate cancers [28–31].

There have been no randomized prospective trials to compare the efficacy of EBRT and
BT treatments. However, a meta-analysis of randomized clinical trials provided evidence to
support the use of a BT boost after EBRT to improve biochemical progression-free survival
(bPFS) in intermediate- and high-risk patients [32].

4. Targeted Radionuclide Therapy

Despite potentially curative therapy for localized prostate cancer, nearly one third
of patients will ultimately progress to metastatic disease [33–35]. Due to the inability
to feasibly target all metastatic lesions, EBRT has typically been used only for palliative
purposes in this setting [36,37]. However, in recent years, TRT has emerged as a promising
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treatment strategy for metastatic prostate cancer. Strontium-89 (Sr-89) choloride and
samarium-153-ethylene-diamino-tetramethylene-phosphonate (Sm-153-EDTMP) were the
first TRT agents approved for palliative use due to their ability to target metastatic bone
disease, although they did not improve overall survival [38,39]. Radium-223 dichloride,
which is a calcium mimetic, similarly targets bone metastatic disease, and was the first
alpha-emitting radionuclide approved by FDA as a treatment for mCRPC based on evidence
of extended survival [40,41].

While these TRT agents have been useful for patients with disease localized exclu-
sively to the bone, they are not effective for those with other disease sites. Hence, other
investigations have focused on compounds that specifically target cancer cells rather than
the bone. One of the most studied targets for these approaches has been prostate-specific
membrane antigen (PSMA) which is highly expressed on prostate cancer cells [42]. As
the first PSMA-targeting antibody, capromab pendetide was initially used as an imaging
tool for prostate cancer. Labeling of this agent with therapeutic isotypes demonstrated
limited clinical efficacy, probably because it binds to an intracellular epitope of PSMA,
requiring the internal domain of PSMA to be exposed externally [43]. However, J591, a
monoclonal antibody that binds the extracellular domain of PSMA, has been conjugated
to multiple radionuclides and evaluated in trials for patients with mCRPC. Using an
activated monoclonal antibody-fluorophore conjugate of J591, Nakajima and colleagues
successfully imaged prostate cancer in vivo in murine prostate tumor models [44]. Bander
et al. conducted several trials assessing dose-limiting toxicities and efficacy of radiolabeled
J591 and demonstrated that the agent can accurately target metastatic prostate cancer
sites in bone and soft tissue, and may be useful for targeting diagnostic or therapeutic
imaging agents [45,46]. In particular, a phase II clinical trial evaluating a single adminis-
tration of 177Lu-J591 found this to be well tolerated and capable of targeting metastatic
sites. Of 47 patients with mCRPC treated, 59.6% experienced a decrease in PSA, and 1
out of 12 with measurable disease achieved a partial response. Those with low PSMA
expression by imaging were less likely to respond [47]. As a mixed alpha and beta emitter,
bismuth-213 (213Bi) has also demonstrated preclinical activity when tagged to the PSMA-
targeting antibody J591 [48–51]. However, 213Bi-J591 has not yet been evaluated in patients
with prostate cancer.

More recently, a small molecule ligand that binds PSMA, PSMA-617, has been radi-
olabeled with different radionuclides and investigated for both diagnostic imaging and
therapeutics (theranostic agent). 68Ga-PSMA-617 was the first approach to utilize PSMA-
617 for the diagnosis of prostate cancer. As reported by Liu and others, PET/CT imaging
of 68Ga-PSMA-617 was useful as an imaging biomarker to assess metastatic disease, not
detectable by conventional imaging, to stratify the risk of metastatic prostate cancer [52–54].
Preclinical studies of PSMA-617 with the 177Lu beta emitting radioligand yielded encour-
aging results for safety and efficacy as reported by Ruigroket et al. [55]. 177Lu-PSMA-617
(Lu-PSMA) was evaluated in a prospective single-arm phase II study in which 57% of
patients experienced PSA declines greater than 50%. Patients also experienced pain im-
provements, and median PFS and OS of 7.6 months and 13.5 months, respectively, were
identified [56]. This was confirmed in a randomized phase III trial in which patients
with mCRPC, who had received prior taxane chemotherapy and at least one AR path-
way inhibitor agent, were randomized to receive 177Lu-PSMA-617 or a non-chemotherapy
standard of care (SOC). This trial demonstrated that Lu-PSMA therapy was effective in
generating a longer radiological progression-free survival (rPFS, 8.7 months) in patients
with PSMA+ mCRPC who previously received standard of care therapies, as well as overall
survival (15.3 months), compared to 3.4 and 11.3 months, respectively, for the SOC group.
These findings led to FDA approval in 2022 for the use of Lu-PSMA as a treatment for
mCRPC following previous treatment with chemotherapy and a second-generation AR
pathway targeting agent [57,58].

PSMA-617 has also been evaluated conjugated to other radioisotopes, notably with
the higher energy alpha emitter actinium-225 (Ac-225). A series of small studies have
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evaluated 225Ac-PSMA-617 in patients with mCRPC, including patients resistant to 177Lu-
PSMA-617 [59–62]. A retrospective meta-analysis of 6 trials comprising 201 patients treated,
showed that PSA declines > 50% occurred in 66.1% of patients, with low rates of hema-
tological toxicity. The most common adverse effect, as with Lu-PSMA, was xerostomia,
which occurred in 77.1% of all patients. Further prospective clinical trials with this agent
are anticipated [63]. A list of radionuclides commonly used for brachytherapy and targeted
radionuclide therapy of prostate cancer is shown in Table 1.

Table 1. Physical characteristics of radionuclides commonly used in brachytherapy and targeted
radionuclide therapy for prostate cancer.

Brachytherapy

Radionuclide Emission Half-Life Mean Energy (MeV)

Palladium-103 beta 17 days 0.021

Iodine-125 gamma 60 days 0.035

Iridium-192 gamma 74 days 0.355

Cesium-131 X-ray 9.7 days 0.029

Targeted radionuclide therapy

Bismuth-213 alpha 0.03 days 8.37

Actinium-225 alpha 10 days 6

Radium-223 alpha 11.43 days 5.64

Strontium-89 beta 50.5 days 1.46

Samarium-153 beta 1.95 days 0.80

Gallium-68 beta 68 min 1.83

Lutetium-177 beta 6.7 days 0.497

Yttrium-90 beta 64.1 h 2.3

5. Immunotherapy in Prostate Cancer

The concept of immunotherapy for prostate cancer dates back to the 1970s when Ablin
and colleagues reported anecdotal cases of metastatic prostate cancers that regressed after
being treated locally with cryotherapy [64]. The identification of autologous antibodies that
recognized the prostate tissue suggested that this abscopal-type treatment response was im-
mune mediated [65]. This led to significant interest in developing immune-based strategies
for prostate cancer treatment. Early efforts focused on vaccines aimed at generating T-cell
and antibody responses to the prostate. This concept was ideal for prostate cancer since
the prostate is a non-essential organ, and therefore an immune response directed against
the prostate need not be necessarily limited to malignant cells. Since then, there have
been several approaches to developing anti-tumor vaccines, most commonly delivering
inactivated or modified tumor cells (antigen non-specific), or delivering components of
tumors to stimulate immune responses to specific antigenic targets (antigen-specific vac-
cines) [66]. Five phase III clinical trials have been conducted in patients with mCRPC using
different vaccine approaches. Four of these approaches did not demonstrate improved
overall survival [67–71]. To date, only sipuleucel-T met its primary endpoint of extending
survival in patients with advanced metastatic prostate cancer and was approved by FDA
as a treatment for mCRPC in 2010 [71]. Sipuleucel-T is comprised of autologous antigen-
presenting cells loaded ex vivo with a fusion protein of a tissue-specific antigen (prostatic
acid phosphatase, PAP) and GM-CSF. The approval of sipuleucel-T has demonstrated that
vaccine therapies can be useful in the treatment of prostate cancer, however, the absence
of significant objective radiographic responses or substantial changes in serum prostate
specific antigen (PSA) with sipuleucel-T, or other vaccines when used as monotherapies,
has led to the exploration of vaccines as parts of combination therapies.
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Since 2010, the success of immune checkpoint blockade therapies for multiple cancer
types has led to their exploration in the treatment of prostate cancer as well. Single-agent tri-
als using agents blocking either CTLA-4 or PD-1 have advanced through clinical testing and
have also been evaluated in randomized phase III clinical trials. Unfortunately, the results
of these trials have been relatively disappointing. In particular, two phase III trials using
CTLA-4 blockade (ipilimumab), either alone or combined with bone metastasis-targeted
radiation therapy, did not demonstrate prolonged overall survival [72,73]. Clinical trials
using PD-1/L1 blocking agents have similarly demonstrated little evidence of single-agent
activity in earlier phase clinical trials for patients with metastatic prostate cancer [74,75]. A
combined PD-1 and CTLA-4 blockade demonstrated slightly more clinical activity against
advanced prostate cancer, but with significantly more toxicity, hence is not being further
pursued [76]. A phase III trial using enzalutamide with or without atezolizumab found
no difference in overall survival [77]. Similarly, a recently completed phase III trial using
docetaxel with or without pembrolizumab (KEYNOTE-921) for patients with advanced
prostate cancer showed no improvement in overall survival. Notwithstanding, earlier
phase clinical trials have suggested that checkpoint blockade therapies may have efficacy
in combination with other agents, including vaccines, and hence combination trials are
being further pursued [78,79].

More recently, efforts have been directed toward recruiting effector T cells to the
sites of tumor with the development of bispecific T-cell engagers (BiTE). These agents
consist of a tumor-specific domain and a T-cell activating domain. Several such agents
targeting PSMA are in clinical stages of development. In particular, pasotuxizumab (AMG
212) and acapatamab (AMG 160) have demonstrated objective responses in patients with
mCRPC [80,81]. A phase I clinical trial with JNJ-081, a similar bispecific antibody for PSMA
and CD3, demonstrated transient reductions in PSA in patients with mCRPC [53]. A second
generation BiTE approach, HPN424, has also recently completed evaluation in a phase I/II
clinical trial [53]. More BiTE approaches targeting other prostate-specific surface molecules
are being explored.

Although all of the vaccine approaches evaluated in phase III trials were effective in
activating antigen-specific T cells, most did not improve clinical outcomes when used alone
in treating advanced prostate cancer. Similarly, despite immune checkpoint blockade ther-
apy being effective for many different cancer types, these treatments have been relatively
ineffective as monotherapies for advanced prostate cancer. Together, these findings suggest
that mechanisms of immune suppression are active in prostate cancer. Prostate cancer
is known to have an immunologically “cold” tumor microenvironment characterized by
a low mutational burden and limited infiltration of effector CD8+ T cells. In addition,
the secretion of immune-suppressive cytokines like TGF-β and CXCR2 by prostate tumor
cells leads to the recruitment of immunosuppressive populations, such as regulatory T
cells (Treg) and myeloid-derived suppressor cells (MDSC), that have also been associ-
ated with poor clinical outcomes [82,83]. The expression of nitrous oxide synthase and
indoleamine-2,3-dioxygenase by these populations can further suppress the activity of
CD8+ T cells [83,84]. Consequently, these immunotherapeutic approaches may be most
active when used in combination with agents that target the mechanisms that underlie
tumor-associated resistance and immune evasion.

6. Rationale for Combining Radiation Therapy and Immunotherapy

Radiation therapy (RT) has effects on both tumor cells and immune cells within the
tumor microenvironment, potentially making immunotherapies more effective against
poorly immunogenic tumors. The optimal dose and fractionation of radiotherapy are
likely important and may differ for each tumor type and immune microenvironment. In
addition to its direct effect on cell killing, radiation at optimal doses can cause release of
proinflammatory cytokines such as IL-1β and TNFα [85,86], increase FAS expression on
tumor cells rendering them susceptible to FAS-ligand-expressing lymphocytes [87], and
increase MHC-I expression on tumor cells making them more readily detected by CD8+
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T cells [88]. In addition, RT-induced dsDNA fragments can be sensed by cGAS within
irradiated cells in the tumor, activating STING signaling, and leading to a type I IFN
response and increased cross-presentation by DCs. Radiation therapy can also increase
CD86 and CD70 expression on intratumoral DCs, as well as promote DC maturation,
increased expression of MHC II, and migration to the tumor-draining lymph nodes to
present antigens to CD8+ T cells [89,90]. Additionally, as the dose of radiation increases,
greater accumulation of DNA damage occurs [91]. DNA damage leads to cell death,
which is accompanied by release of damage-associated molecular patterns and a cascade
of inflammatory response activation known as immunogenic cell death [92]. RT-induced
immunogenic cell death can lead to the release of tumor-associated antigens that, cross-
presented by activated DC, may elicit an adaptive immune response and lead to further
increased T-cell infiltration into tumors [93].

In addition to the extensive literature demonstrating that RT has immunostimulatory
effects, it has been shown that a significant portion of the anti-tumor effects of radia-
tion are already mediated by immune populations. Immunocompromised mice require
much higher doses of radiation to result in tumor eradication than do immunocompetent
mice [94]. Additionally, when CD8+ T cells are depleted from tumor-bearing mice, the
anti-tumor effect of radiation is greatly reduced [89]. Although RT initially results in tem-
porary depletion of CD8+ T cells, this population is eventually activated and infiltrates the
tumor, as reported in both preclinical models and human cancers [95–97]. It has also been
shown that RT skews tumor-infiltrating CD8+ T-cell populations towards resident memory
phenotypes, in part because these memory cells are more radioresistant [98,99]. There is
also some evidence that RT can facilitate NK expansion, activation, and accumulation in
draining lymph nodes, resulting in improved anti-tumor efficacy in vivo [100,101].

While rare, there have been reports of patients receiving radiation therapy who have
had reduced tumor growth of lesions outside of the field of radiation, a process known as
an abscopal effect. While poorly understood, the identification of anti-tumor responses to
non-irradiated tumors, similar to what was observed following cryotherapy of prostate
tumors [64], was assumed to be mediated by immune responses elicited to the tumor
by the primary radiation therapy. Demaria and colleagues investigated this hypothesis
in a murine model in which mice had syngeneic mammary tumors implanted on both
flanks. Mice were then treated with or without flt3-ligand, and EBRT was delivered to
one of the two tumors. They observed slower growth of the non-irradiated tumors only
when both flt3-ligand and EBRT were both delivered, and this effect was eliminated if
repeated using nude mice [102]. This effectively demonstrated that an abscopal effect
could occur, and at least in this system, was mediated by T cells. The treatment effect
using flt3-ligand suggested that increased antigen presentation by DC following radiation
could be a potential mechanism for this response. Since the approval of several immune
checkpoint inhibitors as treatments for cancer, abscopal responses have been observed with
increasing frequency in patients treated with T-cell checkpoint inhibitors and radiation
therapy [103]. This suggests that radiation therapy might not need to target all sites of
tumor, at least for some tumor types, to be effectively combined with immunotherapy.
The further study of the mechanism of abscopal responses could lead to new combination
treatment approaches.

While conceptually radiation can be used to stimulate the development of an anti-
tumor cytotoxic response, many tumors also have an increased number of immunosup-
pressive cell populations (tumor-associated macrophages (TAMs), MDSC, and Tregs) that
are more radioresistant than the other immune subtypes. These populations can cause
NK-cell and T-cell anergy and block DC maturation [104,105]. The dose of RT can therefore
significantly affect the phenotype of immune cells and alter the signaling within the tumor
microenvironment, making them pro- or anti-tumorigenic. For instance, RT can affect
the functional polarization of macrophages that can activate either anti-tumor M1-like
macrophages or immunosuppressive M2 macrophages, encouraging angiogenesis and
remodeling of the stromal matrix to help tumor establishment [106]. However, high doses
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of RT have been correlated with increased TGFβ release that has potent immunosuppres-
sive properties, including polarization of CD4+ T cells into Tregs, suggesting that targeted
chemokine receptor antagonists might be effectively combined with RT [107,108]. Addi-
tionally, radiation can increase T-cell checkpoint molecule/ligand expression. Specifically,
high-dose radiation results in upregulation of PD-L1 on tumor cells [109]. This explains
the rationale behind treatment combinations with radiation and checkpoint blockade. As
prostate cancer is associated with multiple immunosuppressive pathways, combining im-
munotherapy that targets these immunosuppressive pathways with radiotherapy may be a
promising approach for increasing anti-tumor responses and preventing immune escape.

7. Preclinical Studies Combining Radiation Therapy and Immunotherapy
7.1. EBRT

The combination of radiation therapy and immunotherapy has shown promise in
several preclinical studies of prostate cancer. In an early effort using an in situ gene
therapy, HSV-tk (ADV-HSV-tk) in combination with ganciclovir therapy, and EBRT in the
RM1/C56BL/6 murine prostate tumor model, it was shown that the combination group had
the most significant inhibition of tumor growth and survival compared to either therapy
alone, with a significantly higher frequency of infiltrating CD4+ T cells [110]. Similar
results were found when adenoviral glioma pathogenesis-related protein 1 (AdGLIPR1)
gene therapy and radiotherapy were combined in the 178-2 BMA/129/Sv murine model
of metastatic prostate cancer. Combined treatment resulted in significant tumor growth
suppression and survival extension compared with either therapy alone or control, and
was associated with an increase in tumor-infiltrating CD4+ and CD8+ T cells [111].

In a study published by Harris et al., in the TRAMP mouse model in which the tumors
expressed the hemagglutinin antigen (HA), a recombinant vaccinia virus vaccine targeting
the hemagglutinin antigen (Vacc-HA) in combination with stereotactic radiation therapy
with three doses of 10 Gy augmented CD4+ T-cell responses to the tumor vaccine [112].
In the same cancer model, Wada et al. demonstrated the combination of granulocyte
macrophage-colony-stimulating factor (GM-CSF)-secreting cellular immunotherapy with
stereotactic radiation of 12 Gy dose caused a dramatic increase of CD8+ T cells, resulting in
long-term survival in 25% of the animals [113]. Similarly, in a preclinical study by Udayaku-
mar and colleagues, EBRT of 5 Gy/day was administered for 5 days with intratumoral
delivery of a vesicular stomatitis virus (VSV) expressing IFNβ. This led to an increase in
systemic CD8+ T-cell numbers, eradication of tumors, and induced a memory response in
100% of animals when re-challenged with RM9 prostate tumors, suggesting the potential
synergy between oncolytic viral therapies and RT [114].

Immune checkpoint blockade has also been evaluated in combination with radiation
therapy in preclinical models. Dudzinski et al. reported a preclinical study in which mice
implanted with MycCaP prostate cancer cells were treated with EBRT using 20 Gy × 2 in
combination with anti-PD-1/L1. In this study, mice demonstrated a 70% longer survival
with anti-PD-1 and 130% with anti-PD-L1, when delivered with EBRT, suggesting that EBRT
can sensitize poorly immunogenic tumors to checkpoint blockade [115]. Similarly, Xu et al.
demonstrated that blocking CSF-1R signaling enhanced the effectiveness of radiotherapy in
a murine prostate cancer model by targeting the recruitment of tumor-infiltrating myeloid
cells, illustrating the potential for clinical translation of targeting an immunosuppressive
phenotype to enhance anti-tumor responses [104].

7.2. Brachytherapy

In spite of the fact that brachytherapy has been extensively used in the clinic and is
well studied in a small number of preclinical xenograft models of prostate cancer, there
are few reports of how this treatment might affect the tumor immune microenvironment.
A recent preclinical report by Keom et al. evaluated a cohort of 28 patients who received
high-dose BT for prostate cancer. They found that treatment induced the expression of
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several immune checkpoints (B7-H3, CTLA4, PDL1, and PDL2) within prostate tumors,
suggesting the potential for combining BT and immune checkpoint blockade [116].

7.3. TRT

As a treatment option for metastatic prostate cancer, targeted radionuclide therapy
offers the advantage of delivering a highly concentrated dose to multiple tumor sites
while sparing the surrounding healthy tissue. In a preclinical study using C57BL/6 mice
implanted with RM1-PGLS tumors expressing PSMA, anti-PD-1 in combination with 225Ac-
PSMA-617 demonstrated improved tumor control, extended time to progression, and
increased survival compared to monotherapies [117]. This was the first report demonstrat-
ing synergistic anti-tumor efficacy between PSMA-targeted TRT and PD-1 blockade in a
syngeneic mouse model of prostate cancer.

NM600 is another TRT agent that has been investigated in preclinical models of
prostate cancer. NM600 is an alkylphosphocholine (APC) developed based on investiga-
tions of phospholipid ethers that accumulate specifically in cancer cells instead of healthy
cells [118]. The selective retention of NM600 by multiple tumor types, and its ability to be la-
beled with different radiometals without affecting tumor retention, has led to its exploration
as a theranostic agent [119]. Potluri et al. demonstrated that 90Y-NM600 was selectively
retained within TRAMP-C1 and Myc-CaP murine prostate tumors and, while it exhibited
modest anti-tumor efficacy itself, treatment led to increased expression of PD-L1 by these
tumors [120]. Combining PD-1 blockade with 90Y-NM600 led to an unexpected decrease
in anti-tumor efficacy that was found to be due to increased activity of PD-1-expressing
CD4+ Treg that persisted in tumors despite TRT treatment. These findings underscore
the importance of understanding effects of TRT on the tumor microenvironment to guide
effective combinatorial approaches [120].

8. Clinical Trials Combining Radiation Therapy and Immunotherapy
8.1. EBRT

Several clinical trials investigating the combination of radiation therapy and im-
munotherapy have been completed or are currently underway, as indicated in Table 2.
Early trials evaluated EBRT in combination with tumor vaccines. Twardowski et al. re-
ported a phase II clinical trial in which patients were randomized to receive sipuleucel-T
with or without EBRT of 300 cGy/day to 3000 cGy total. In that trial, the EBRT was delivered
to a single metastatic site, with treatment completed one week prior to sipuleucel-T infusion.
The authors reported that radiation therapy did not enhance the generation of humoral
or cellular responses following sipuleucel-T treatment, and no difference was noted in
median PFS (2.46 months versus 3.65 months, p = 0.06) [121]. In another randomized phase
II study, patients with localized prostate cancer were treated with definitive EBRT given
with or without the Prostvac vaccine (priming immunization with a recombinant vaccinia
virus encoding PSA followed by 7 booster immunizations with a recombinant fowlpox
vaccine encoding PSA). EBRT was delivered between the fourth and sixth immunization.
In 19 patients treated, the authors reported the generation of immune response to the PSA
target protein in 13 patients, suggesting the feasibility of this approach, but there was no
report of clinical efficacy [122].
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Table 2. Clinical trials using targeted radiation therapy in combination with immune-based treatments for prostate cancer.

Combination Immunotherapy Phase Number
Enrolled Study Title NCT Trial No. Results/

Comments Reference

External Beam Radiation Therapy

Aglatimagene besadenovec +
valacyclovir III 711

Phase III study of Prostatak® immunotherapy with
standard radiation therapy for localized prostate
cancer

NCT01436968

Dendritic cells I 5
Serial assessment of lymphocytes and apoptosis in the
prostate during coordinated intraprostatic dendritic
cell injection and radiotherapy

N/A [123]

Dendritic cell-loaded vaccine (DCVAC) II 62
Phase II study of DCVAC/PCA after primary
radiotherapy for patients with high- risk localized
prostate cancer

NCT02107430

PSA-based vaccine + cryotherapy I 45

A phase I feasibility study of an intraprostatic PSA-
based vaccine in men with prostate cancer with local
failure following radiotherapy or cryotherapy or
clinical progression on androgen deprivation therapy
in the absence of local definitive therapy

NCT00096551

rvPSA vaccine II 48 PSA-based vaccine and radiotherapy to treat localized
prostate cancer NCT00005916 [122]

Pembrolizumab and SD-101 (TLR9
antagonist), and androgen deprivation II 42 Pembrolizumab +/− SD-101 in hormone-naïve

oligometastatic prostate cancer with rt and iADT NCT03007732

Sipuleucel-T II 51
Sipuleucel-t with or without radiation therapy in
treating patients with hormone-resistant metastatic
prostate cancer

NCT01807065

RT did not enhance the
humoral and cellular
responses associated with
sipuleucel-T therapy

[121]

Avelumab, utomilumab, and anti-OX40
antibody PF-04518600 I/II 173

Avelumab, utomilumab, anti-ox40 antibody
PF-04518600, and radiation therapy in treating patients
with advanced malignancies

NCT03217747

Sipuleucel-T Observational 20
A multicenter trial enrolling men with advanced
prostate cancer who are to receive combination
radiation and sipuleucel-T

NCT02232230



Pharmaceutics 2023, 15, 252 10 of 20

Table 2. Cont.

Stereotactic radiation therapy

NKTR-214 (CD122- based
immuunocytokine) and nivolumab I 21

Platform study for prostate researching translational
endpoints correlated to response to inform use of
novel combinations

NCT03835533

Durvalumab II 96
Prostate cancer with oligometastatic relapse:
combining stereotactic ablative radiotherapy and
durvalumab (MEDI4736)

NCT03795207

M9241 (IL-12-based immunocytokine) II 65

T-cell clonality after stereotactic body radiation
therapy alone and in combination with the
immunocytokine m9241 in localized high- and
intermediate-risk prostate cancer treated with
androgen deprivation therapy

NCT05361798

Sipuleucel-T II 20
Sipuleucel-T and stereotactic ablative body radiation
(SABR) for metastatic castrate-resistant prostate cancer
(mCRPC)

NCT01818986

Brachytherapy

Nivolumab I/II 44 Combination of nivolumab immunotherapy with
radiation therapy and androgen deprivation therapy NCT03543189

Targeted radionuclide therapy

Combination
Immunothe-rapy

Targeted
radio-therapy Phase Number

enrolled Study title NCT trial no. Results/Comments Reference

Avelumab Ra-223 I/II 24

Radiation medication (radium-223 dichloride) versus
radium-223 dichloride plus radiation enhancing
medication (M3814) versus radium-223 dichloride plus
M3814 plus avelumab (a type of immunotherapy) for
advanced prostate cancer not responsive to hormonal
therapy

NCT04071236

Atezolizumab Ra-223 Ib 45

Safety and tolerability of atezolizumab (ATZ) in
combination with radium-223 dichloride (Ra-223) in
metastatic castrate-resistant prostate cancer (CRPC)
progressed following treatment with an androgen
pathway inhibitor

NCT02814669 [124]



Pharmaceutics 2023, 15, 252 11 of 20

Table 2. Cont.

Pembrolizu-mab Ra-223 II 45

A randomized, phase II study evaluating the addition
of pembrolizumab (MK-3475) to radium-223 in
metastatic castration-resistant prostate cancer
(mCRPC)

NCT03093428

Nivolumab Ra-223 I/II 36
Study of nivolumab in combination with radium-223
in men with metastatic castration-resistant prostate
cancer

NCT04109729

Sipuleucel-T Ra-223 II 36
Study of sipuleucel-T with or without radium-223 in
men with asymptomatic or minimally symptomatic
bone-mCRPC

NCT02463799

Possibility of greater
clinical activity with the
combination of
sipuleucel-T and
radium-223; warranted
further larger trial to
confirm

[125]

PSA/TRICOM
vaccine 153-Sm II 44

153Sm-EDTMP with or without a PSA/TRICOM
vaccine to treat men with androgen-insensitive
prostate cancer

NCT00450619

153Sm-EDTMP in
combination with
PSA-TRICOM appears to
lead to clinically
meaningful improvement
in PFS and is associated
with trends to improved
PSA declines and
PSA-specific T-cell
responses compared with
153Sm-EDTMP alone

[126]

Pembrolizumab 225Ac-J591 I/II 76 Maximizing responses to anti-PD1 immunotherapy
with PSMA-targeted alpha therapy in mCRPC NCT04946370

Pembrolizumab 177Lu-PSMA I/II 37 PRINCE (PSMA-lutetium radionuclide therapy and
immunotherapy in prostate cancer) NCT03658447

Pembrolizumab
177Lu-PSMA-
617 I 43

177Lu-PSMA-617 and pembrolizumab in treating
patients with metastatic castration-resistant
prostate cancer

NCT03805594
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EBRT has also been evaluated in combination with intratumoral delivery of immune-
modulating treatments. In a small pilot trial of five HLAA2+ subjects with high-risk,
localized prostate cancer, patients received a combination of androgen deprivation, 45 Gy
of EBRT treatment, intraprostatic injection of autologous dendritic cells, and brachytherapy
boost using either 125I or 103Pd seeds [123]. The EBRT was delivered in 25 fractions over
five weeks, with 5 − 10 × 106 dendritic cells injected after fractions 5, 15, and 25. Before
and during treatment, serial prostate biopsies showed increased apoptotic cells and a
parenchymal distribution of CD8+ cells. These findings, with the identification of IFNg-
secreting ELISPOT response to defined prostate cancer antigens detected systemically,
suggested this approach might be further developed to elicit therapeutic immune responses
to prostate tumor antigens [123]. A phase III randomized, placebo-controlled trial is also
currently underway testing intratumoral delivery of an oncolytic virus (ProstAtak, an
adenoviral vector encoding thymidine kinase, given with oral valacyclovir), in patients
with localized disease being treated with EBRT (NCT01436968) [127]. The primary endpoint
for that trial is time to disease recurrence.

EBRT has also been explored in combination with immune checkpoint blockade. In a
phase I/II dose-escalation trial by Slovin and colleagues, ipilimumab was given with or
without EBRT to 75 patients with mCRPC; 8 Gy EBRT was delivered to 1–3 bone metastatic
lesions 24–48 h prior to the first dose of ipilimumab. In that trial, the authors reported
feasibility of this approach, and observed PSA reductions of ≥50% in 8/50 patients treated
at the highest dose of ipilimumab, with one patient experiencing a complete response. This
approach was further evaluated by Kwon et al. in a multicenter, randomized, double-blind
phase III trial in which men with mCRPC and at least one bone metastasis received bone-
directed EBRT followed by either ipilimumab or placebo. Although this study trended
towards improvement in the combination arm, it did not reach statistical significance with
a median OS 11.2 vs. 10.0 months (HR = 0.85; p = 0.053) [72].

8.2. TRT

It is conceivable that the studies described above using EBRT in patients with mCRPC
were largely unsuccessful because only a small number of sites received radiation treatment,
leaving other sites more resistant to the immune-based treatment. This has made the use
of TRT to irradiate all metastatic sites simultaneously an appealing approach. In one
of the first trials, 44 patients with mCRPC were randomized to receive 153Sm-EDTMP, a
bone-targeting TRT agent, with or without PSA-TRICOM (Prostvac) vaccine [126]. The
investigators reported that median PFS was longer in patients treated with the combination
(3.7 months versus 1.7 months, p = 0.046), with no PSA declines in the 153Sm-EDTMP-alone
arm, while 4 out of 21 (19%) had a 30% PSA decline in the combination group [126].

Two trials have been conducted using immunotherapy in combination with Ra-223. In
a small, randomized phase II trial, 32 patients with mCRPC were randomized to receive
sipuleucel-T treatment with or without six doses of monthly Ra-223, with sipuleucel-T
intercalated between the second and fourth doses of Ra-223. The patients in the combination
arm developed lower immune response to the vaccine antigen but experienced more PSA
declines > 50% (31% vs. 0%, p = 0.04) and also demonstrated longer PFS (39 vs. 12 weeks)
and OS (not reached vs. 2.6 years) [125]. Unfortunately, in the absence of a control group
receiving radium-223, it is not clear if the clinical responses observed were improved
with the addition of sipuleucel-T over Ra-223 alone. A separate phase Ib study evaluated
atezolizumab and Ra-223 in 45 patients randomized to concurrent dosing or one of two
staggered dosing schedules in which atezolizumab was started 28 or 56 days after the
first dose of Ra-223. The median radiographic PFS was 3.0 months and median overall
survival was 16.3 months. Overall, it was found that the combination elicited greater
toxicity, regardless of the schedule of administration, with no clear evidence of additional
clinical benefits for patients with mCRPC [124]. A separate phase II trial, randomizing
patients with mCRPC to Ra-223 treatment with or without pembrolizumab, is currently
underway (NCT03093428).
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Since the approval of 177Lu-PSMA-617 in early 2022, several trials are underway using
this agent in combination with immune checkpoint blockade, including pembrolizumab
(NCT03658447, NCT03805594), or ipilimumab and nivolumab (NCT05150236).

9. Challenges and Opportunities

New insights into radiation biology are opening up new opportunities to better
control cancer through rational combinations with biological therapies, including immune-
based therapies. In recent years, the approval of several TRT approaches provides an
opportunity to use radiation to treat metastatic disease, an approach that can be tailored
to the individual patient and might thus be optimally combined with immune-based
treatments. However, TRT approaches present challenges, including that there have been a
limited number of dedicated high-energy accelerators to produce radionuclides. In addition,
there have been hurdles in the development of good manufacturing practice guidelines for
radiopharmaceutical production. Related to this, is that there are no guidelines on the use
of individualized patient dosimetry. Currently, TRT is given with a fixed dosing regimen
regardless of an individual patient’s tumor burden or tumor uptake as measured by a
companion pretherapy PET tracer. This is despite evidence that more tailored therapy may
improve outcomes. In murine prostate cancer models, Current et al. recently reported that
intrasubject variability in PSMA expression, and the frequency of PSMA high-, medium-
, or low-expressing cells, caused disparities in therapeutic effectiveness [128]. Further,
this pretherapy dosimetry could be used to choose doses to reliably treat tumors and
potentially spare organs at risk for toxicity [128]. Similar observations were made in
patients as reported by Mannweiler and colleagues in which PSMA expression was highly
heterogeneous in many primary prostate tumors (7/51) and metastases (6/51), and was
absent in 2 primary and 8 metastatic tumors (<10%) [129]. In addition, the development
of agents/schedules that result in synergistic anti-tumor activity without significantly
increasing toxicity needs to be further investigated. For instance, in a recent retrospective
study reported by Rosar et al., 15 patients with mCRPC treated with a combination of 225Ac-
PSMA-617 and 177Lu-PSMA-617 experienced a prolonged PFS (9.1 months) and overall
survival (14.8 months) with few adverse events [130]. The authors conclude that the use of
different radionuclides with different half-lives and energy may limit toxicity and lead to
greater efficacy. The incorporation of different radionuclides, dosing, and patient selection
using companion diagnostics, will undoubtedly play a major role in treating specific tumor
types. This may be particularly important if low doses of TRT treatment of human tumors
can spare immunosuppressive regulatory T cells, or other immunosuppressive populations,
and compromise the effects of immune-targeted therapy, as was observed in a preclinical
study [120].

Combining targeted radiation and immunotherapy approaches is also still in early
stages, and we lack adequate knowledge in several domains. For example, it is unclear
if different radionuclide emitters have different effects on immunogenicity and if differ-
ent radioisotopes affect immune populations within tumors in different ways. It thus
remains to be determined which radioisotopes, or types of radiation, are best to combine
with immunotherapy. There is also still much to learn about the role of immunotherapy
sequencing and timing with respect to radiation. For example, if T-cell populations are
eradicated within tumors shortly after radiation treatment, it may not be optimal to com-
bine T-cell checkpoint blockade or T-cell activating therapies on the same days, but rather
sequence these agents. This was demonstrated in a preclinical study in murine prostate
tumors in which delivery of PD-L1 blockade with concurrent EBRT did not delay tumor
growth despite an increase in PD-L1 expression on tumors following EBRT [131]. Similarly,
it may be preferable to use radiation therapy after immune-based treatments to specifi-
cally ablate immunoregulatory populations such as Treg or MDSC that might be recruited
by these immunotherapies.
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10. Conclusions and Future Directions

Radiation therapy is a safe, effective, and commonly used treatment for prostate
cancer. Through advancements in EBRT planning and delivery, the side effects of radiation
treatment have been reduced and radiation doses to normal tissues have been decreased.
The development of these technologies has enabled radiation dose escalation without
causing an increase in toxicity. While these therapies have a clear role in localized prostate
cancer, their use in metastatic disease has been for palliation only since they cannot be
delivered to all sites of tumor. The use of TRT, however, provides an opportunity to
treat all sites of disease, and the approvals of Ra-223 and 177Lu-PSMA-617 for mCRPC
provide evidence that these approaches have a role in the treatment of metastatic disease.
The ability of radiation to modulate the tumor immune microenvironment suggests that
these therapies are well poised to be used in combination with immune-based therapies.
Preclinical studies suggest this is a feasible approach, and in some cases have highlighted
potential obstacles. Clinical trials are just beginning, but we expect over the next five
years that there will be multiple clinical trials using different TRT agents, with different
radionuclides that may confer different effects on the tumor immune microenvironment.
We further expect these to be used in combination with different immune targeted therapies,
including tumor vaccines, T-cell checkpoint blockade therapies, bispecific T-cell engagers,
and adoptive cell therapies, all of which have demonstrated less clinical activity when
used as monotherapies for prostate cancer. Finally, we anticipate that the sequence of these
therapies will be important, timing the use of immune therapies to complement the effects
of radiation therapy on the tumor immune microenvironment, to significantly improve the
treatment and outcome for patients with advanced prostate cancer.
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