
Chemokines orchestrate tumor cells and the microenvironment 
to achieve metastatic heterogeneity

Sugandha Saxena1, Rakesh K. Singh1

1Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 
Nebraska Medical Center, Omaha, NE 68198-5900, USA

Abstract

Chemokines, a subfamily of the cell cytokines, are low molecular weight proteins known to 

induce chemotaxis in leukocytes in response to inflammatory and pathogenic signals. A plethora 

of literature demonstrates that chemokines and their receptors regulate tumor progression and 

metastasis. With these diverse functionalities, chemokines act as a fundamental link between 

the tumor cells and their microenvironment. Recent studies demonstrate that the biology of 

chemokines and their receptor in metastasis is complex as numerous chemokines are involved in 

regulating site-specific tumor growth and metastasis. Successful treatment of disseminated cancer 

is a significant challenge. The most crucial problem for treating metastatic cancer is developing 

therapy regimes capable of overcoming heterogeneity problems within primary tumors and among 

metastases and within metastases (intralesional). This heterogeneity of malignant tumor cells 

can be related to metastatic potential, response to chemotherapy or specific immunotherapy, and 

many other factors. In this review, we have emphasized the role of chemokines in the process of 

metastasis and metastatic heterogeneity. Individual chemokines may not express the full potential 

to address metastatic heterogeneity, but chemokine networks need exploration. Understanding the 

interplay between chemokine-chemokine receptor networks between the tumor cells and their 

microenvironment is a novel approach to overcome the problem of metastatic heterogeneity. 

Recent advances in the understanding of chemokine networks pave the way for developing a 

potential targeted therapeutic strategy to treat metastatic cancer.
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1 Introduction

Metastasis, defined as secondary cancer that spreads from its site of origin to another part of 

the body, is the primary cause of cancer-related deaths. Although the successful eradication 
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of primary tumors is possible with surgery and the continuous improvements in adjuvant 

chemotherapy and radiotherapy, treating secondary cancer or metastases still presents itself 

as a significant challenge.

Improvements in cancer therapy require a rational understanding of every step of metastasis. 

One of the essential aspects of treating metastasis is to answer whether metastases result 

from random survivors of tumor cells or a representative of a selective subpopulation of 

tumor cells existing within the primary tumor population [1]. Only with the condition that 

metastasis is a selective process, the metastasized cells represent a group of tumor cells with 

specialized properties. The uniquely acquired properties by tumor cells during metastasis 

allow us to design therapies directed against it. The primary tumors and metastases are 

heterogeneous regarding response to different therapy regimes such as chemotherapy, 

specific immunotherapy, or radiotherapy. Hence, to develop novel anticancer agents, the 

response of both the primary tumor and secondary tumors should determine the efficacy of 

the anticancer agent.

In light of the recent metastasis studies, both tumor cell properties and host-tumor cell 

interactions can influence the metastatic process. Chemokines are among several factors 

that facilitate the interplay between tumor cells, the host cells in their proximity, and 

at metastatic sites [2–7]. Interactions between chemokine receptors and their respective 

chemokines can regulate different processes affecting the metastatic cascade, such as 

invasion and migration of malignant cells to distinct organs, proliferation, survival, and 

angiogenesis, and control of leukocyte infiltration [2, 7–14]. An elaborative understanding 

of chemokines-chemokine receptor biology and the mechanisms of their actions in the 

metastatic processes will open additional avenues for therapeutic interventions. This review 

highlights the role of chemokines and their receptors on distant metastasis and metastatic 

heterogeneity.

2 Metastasis and metastatic heterogeneity

Metastasis is a process in which tumor cells disseminate from their primary site to distant 

organs and establish themselves as secondary tumors or metastases in that distant organ. 

The metastatic process is a cascade of rate-limiting interrelated steps [15]. The development 

of metastatic tumor foci is the most feared and catastrophic aspect of cancer. Metastasis 

accounts for most cancer deaths despite advances in primary tumors’ surgical resection 

and vigorous adjuvant therapies. There are many reasons for the failure in the treatment 

of metastases. Like, even before the diagnosis of primary cancer, metastases may already 

be present in the patient’s organs. In such cases, surgical resection, radiotherapy, or 

chemotherapy treatment is highly unlikely due to difficulties in treating metastases because 

of their location and undue toxic effects of the therapeutic agent in the metastatic site. Tumor 

heterogeneity and therapy-resistant variants within the primary tumor and metastases are 

essential factors responsible for tumor therapy’s refractory response.

Furthermore, interactions between tumor subpopulations and surrounding normal cells, 

such as metabolic cooperation, alter the sensitivity of whole tumor and metastases [16–

19], compounding the problem of effective therapy for heterogeneous primary tumors and 
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metastatic lesions. A single anticancer drug or treatment alone offers less probability of 

killing a malignant tumor and its metastases. Taken together, the successful treatment of 

cancer patients requires the development of new approaches capable of overcoming the 

problem of the heterogeneous response of a primary tumor and metastases to drug treatment 

[20]. In the next section, we will elaborate on the factors affecting metastatic heterogeneity.

2.1 Metastatic heterogeneity

The primary tumor consists of different subpopulations of tumor cells that can differ in 

expression of cell surface receptors [21], such as receptors for lectins [22], hormone, 

synthesis of cell products [23], specialized biosynthetic enzymes [24], and metabolic 

characteristics [25]. These subpopulations also differ with regard to their in vitro and in 
vivo growth rate, based on DNA content, karyotype, and marker chromosomes [1]. Tsuruo 

and colleagues, in their extensive study [26], reported that this heterogeneity extends in 

regard to drug sensitivity among cells populating parent tumors (in vitro clones) and 

their metastatic subpopulations. As discussed earlier, the primary and secondary tumors’ 

heterogeneous nature regarding cytotoxic drug sensitivity has profound implications on 

metastases’ treatment.

2.2 Clonal cooperation

In 1939, Koch [27] isolated a metastatic subline from the Ehrlich carcinoma tumor cells, 

suggesting that tumors may consist of cells with differing metastatic capabilities. However, 

in 1977, Fidler and Kripke [28] used B16 melanoma cells to demonstrate metastatic 

heterogeneity within a primary tumor. Their experimental results suggested that metastatic 

heterogeneity is not entirely dependent on the longevity of neoplasms. Later, many studies 

reported that the invasive and metastatic properties of clones from the B16 melanoma 

tumor are highly unstable during serial passage both in vitro and in vivo [29–31]. Later, 

Fidler’s group demonstrated that mixing and cocultivation of B16 clones dramatically 

reduce this metastatic instability [32]. Overall, the experimental results suggested that 

there is some form of “interaction” between tumor subpopulations that stabilize the 

subpopulations’ invasive-metastatic properties and maintain their relative proportions within 

the tumor, preventing dominance by a few or one subpopulation. However, this “stabi1izing 

interaction” between subpopulations is specific for cells from the same tumor [32]. The 

heterogeneity in metastatic properties and metastatic instability of clones were confirmed in 

diverse tumors [1].

The “stabi1izing interaction” or clonal cooperation between subpopulations can also define 

tumors as ecosystems of interactive subpopulations [33–37]. In 1983, Miller reported that 

the coinjection of nonmetastatic cells with metastatic cells could increase the former’s 

metastasis [38]. Similar cooperative heterotypic interactions were reported among EMT and 

non-EMT cells in prostate cancer metastasis [39] and studies proposing a leading invasive 

cell followed by “opportunistic” cells [40, 41].

2.3 Clonal/polyclonal origin of metastases

Metastases are the selected growth of specialized malignant cells that pre-exist as 

subpopulations within the parent tumor and are not a result of random survival of cells. 
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However, this does not answer many fundamental questions, such as whether embolus 

released from the primary tumor originated from a single cell or a cellular aggregate 

comprising of tumor cells and host cells? Whether such cellular aggregate are homotypic 

or heterotypic? Do metastases originate from a single progenitor or multiple progenitor 

tumor cells? Fidler and Hart reported that metastases result from the proliferation of a 

single viable cell or a single cell within a homogenous/heterogeneous aggregate. Their study 

further demonstrated that the circulating embolus of tumor cells is likely to be homogeneous 

because of a clonal zone of a primary neoplasm [42]. Also, collective migration of tumor 

cells into the lymphatics or vasculature plays a significant role [40, 41, 43]. Circulating 

cellular aggregates, whether homotypic or heterotypic, are arrested more frequently in the 

encountered capillary beds and demonstrate a better survival rate [44]. Circulating cell 

emboli consisting of tumor cells, leukocytes, and platelets offer protection against host 

effector cells, turbulence within the circulation. They enable to complete the metastatic 

cascade to the tumor progenitor cells.

In 1982, using a metastatic variant of the K-1735 melanoma cells, Talmadge et al. 

demonstrated that different metastases could originate from different progenitor cells. Still, 

most metastases appear to be clonal in origin [45]. The multiple progenitors could explain 

the existence of biological heterogeneity among various metastases [42]. Although not 

definitive, literature dominates with studies suggesting the clonal nature of metastases 

using different approaches to address this question. [1]. However, in 1981, Poste et al. 

demonstrated that metastasis cells demonstrate a high spontaneously mutation rate [32] 

compared to non-metastatic tumorigenic cells; thus, clonal metastases may rapidly become 

heterogeneous. Recent studies utilizing next-generation sequencing analysis of primary and 

metastatic lesions show considerable diverse results in the mutational profile sustained in 

metastasis, showing both high and low complexity of mutational profile. Yet, analysis of 

genetic mutations through large-scale genomic sequencing efforts cannot explain the basic 

of metastatic growths [46, 47]. In the current view, the accumulation of somatic mutation in 

metastasis does not drive the development of metastasis beyond the driver mutations selected 

for primary tumor formation [43].

Recent studies examining circulating tumor cells (CTCs) report heterogeneous cell 

population [48–50], suggesting polyclonal seeding of metastases. In addition, CTC clusters 

have a higher metastatic potential comparison with single CTCs [51]. Moreover, recent 

studies using lineage tracing using fluorescence markers, barcode sequencing, and whole-

genome sequencing have demonstrated a mostly polyclonal nature of metastasis [52–54]. 

In summary, CTCs are heterogeneous with the interaction between subclones, resulting in 

metastatic outgrowth (polyclonal or monoclonal). However, polyclonal metastasis suggests 

that different heterotypic interactions among clonal subpopulations initiate metastasis.

3 Chemokines and their receptors

The word chemokine originates from the Greek word “kinos,” meaning movement. As their 

name suggests, they can induce directed movement in the responsive cells. Chemokines, a 

family of low molecular weight cytokines, were discovered in the late 1980s and early 1990s 

based on leukocyte chemoattractant activity upon stimulation with proinflammatory agents 

Saxena and Singh Page 4

Cancer Metastasis Rev. Author manuscript; available in PMC 2023 January 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[55]. Yoshimura discovered chemokine CCL2, one of the initially characterized chemokines, 

potent in the accumulation and activation of monocytes/macrophages during inflammation 

and cancer, which follows the identification of CXCL8 chemokine endowed with a potent 

chemotactic activity for neutrophils towards acute inflammatory responses.

Generally, chemokines are 8–15 kDa in size and structurally classified into four subfamilies 

(CXC, CC, C, and CX3C) [56, 57]. This structural classification’s foundation is the number 

and location of four conserved cysteine amino acid residues linked by disulfide bonds at the 

N-terminus of the chemokine ligands. Biologically, chemokines function by binding to G 

protein–coupled receptors (GPCR) [56, 58, 59], with their N-terminus outside the cell and 

C-terminus with serine and threonine phosphorylation sites in the cytoplasm. GPCRs have 

seven-transmembrane structural loops coupled to G protein for signal transduction. Upon 

specific ligand binding, chemokine receptors trigger a flux in intracellular calcium ions 

(calcium signaling), leading to chemotaxis and the onset of cell trafficking to the desired 

location. Each chemokine receptor binds to one of the four chemokine subfamilies. Thus, 

there is a similar classification of four subfamilies of the chemokine receptors as of their 

respective ligands. The classical family of chemokine receptors currently has four members 

[60]. Apart from the above-described conventional chemokine receptors, there are atypical 

chemokine receptors (ACKRs), the new and emerging class of regulators of the chemokine 

system. Although structurally related to conventional chemokine receptors, ACKRs fail 

to trigger classical chemokine receptor signaling upon chemokine binding. They can also 

regulate the activity of canonical chemokine receptors by sharing the ligands and forming 

heterodimers. ACKRs can also control the bioavailability of chemokines by scavenging, 

transportation, or storage. ACKRs have an anti-inflammatory role and regulate growth, 

survival, and metastatic processes in tumor cells [61, 62].

Functionally, chemokines and their receptors can be homeostatic and inflammatory. 

However, some chemokines and their receptors have both homeostatic and inflammatory 

functionalities. One of the remarkable features of chemokines or GPCRs is their overlapping 

activities or one chemokine’s ability to bind and activate more than one GPCR. Similarly, 

one GPCR may recognize more than one chemokine. This feature of “promiscuity 

of chemokine and their receptors” [63] endows them with an ability to compensate 

for another ligand during complex responses. Thus, chemokines and their GPCRs are 

redundant in activity, and the regulation of chemokine activities is complex. However, 

recent studies indicate that each chemokine or receptor has unique functionality under 

different physiological conditions [55]. The expression of chemokine receptors is not limited 

to leukocytes, but many non-leukocytic cell types express them. Similarly, chemokines/

chemokine receptors can trigger diverse cellular migratory responses such as directed and 

undirected motility, such as haptokinesis, haptotaxis, and chemokinesis, including inducing 

cell adhesion and cell arrest [64].

Another essential feature of chemokines biology is their ability to undergo post-translational 

modification by interaction with the extracellular matrix (ECM) or tethering to “ACKR” 

[64]. Before we discuss chemokine’ functional role in cancer biology in detail, let us discuss 

some salient features of different chemokine families. The CXC subfamily or α-chemokine 

comprises members containing one non-conserved amino acid (denoted as X) between the 
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first and second cysteine residues. Some CXC family chemokines have Glu-Leu-Arg (ELR) 

motif located at the N-terminus before the first cysteine amino acid residue [65]. This ELR 

motif is associated with whether the chemokine is angiogenic or angiostatic [66, 67] in 

nature. Thus, this family is further subdivided into two groups based on the presence or 

absence of an ELR motif [57, 58, 68]. The ELR+ chemokines are potent promoters of 

angiogenesis, display chemotaxis for endothelial cells, and recruit neutrophils, known for 

their synthesis and storage of angiogenic molecules [67, 69–72]. However, ELR− members 

potent inhibitors of angiogenesis [66, 72] and are known to recruit T and B cells. The CXC 

chemokines bind to the CXC receptor family comprising of six members.

The CC chemokine subfamily or β-chemokines comprise members with adjacent cysteine 

residues. The CC subfamily represents the largest sub-family of chemokines. Their family 

members display a diverse range of target cell specificities such as T cells, B cells, 

basophils, eosinophils, dendritic cells, mast cells, natural killer cells, monocytes, and 

macrophages [73–81]. The CC chemokines bind to the CC receptor family comprising of ten 

members. The majority of discovered chemokines and their respective receptors belong to 

the CC and CXC chemokine subfamilies.

The third group of chemokine family is the C chemokines or γ chemokines comprising 

of only two members with one cysteine residues on the N-terminus. These chemokines 

were initially described as lymphocyte-specific with XCL1 (lymphotactin-α) [82] and XCL2 

(lymphotactin-β) as members. Their only chemokine receptor XCR1 was recently expressed 

on subsets of dendritic cells with the function of antigen cross-presentation [83].

The CX3C chemokine (δ-chemokines) subfamily contains a member CX3CL1 (Fractalkine) 

with three non-conserved amino acids between the first two cysteines [84]. CX3CL1 is a 

membrane-bound chemokine [85] shown to induce both the migration and the adhesion of 

leukocytes [64, 86, 87]. Table 1 summarizes the list of chemokine receptors along with their 

interacting ligands in humans and mice. The table also contains their expression summary in 

different tumor types, stromal, and immune cells.

Apart from the chemokine family mentioned above, leukotrienes, the biologically active 

eicosanoid lipid mediators, can act similarly to chemokines by critically modulating 

leukocyte migration. Leukotrienes are primarily synthesized by myeloid cells and have 

recently been shown to contribute to the inflammatory tumor microenvironment, resistance 

to immunotherapy, and metastasis [157, 158].

The chemokine system plays a pivotal role in cancer biology. Chemokines and their 

receptors can affect both the tumor cells and tumor microenvironment to enhance the 

selection of metastatic cells and eventually metastasis from the primary tumor. Various 

studies delineate chemokines’ role in enhancing cancer cell properties, such as chemokines 

supporting tumor growth and proliferation, epithelial to mesenchymal transition, cancer 

stem cell properties, and chemotherapy resistance. Similarly, chemokines modify the 

tumor progression and metastasis through leukocyte recruitment, stromal interactions, 

angiogenesis, and creating metastatic niches. The following section will delineate the 
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general mechanisms (Fig. 1) by which these multifaceted chemokines intricately function 

and regulate metastatic progression.

3.1 Chemokines and organotropism

Organotropism or organ-specific metastasis, the non-random distribution of cancer cells 

among distant organs, is regulated by multiple factors, including the organ’s anatomical 

location, blood circulation pattern, and tumor-intrinsic factor organ-specific niches, and 

the interaction between tumor cells and the microenvironment of the metastatic sites. As 

discussed earlier, chemokines are equipped with chemo-attractive signaling that can regulate 

leukocyte trafficking to distant organ sites. Cancer cells and endothelial cells that express 

the chemokine receptor migrate towards their paired chemokine gradient at non-random 

organ-specific sites [87, 157–159]. Thus, it is logical to expect that chemokines would have 

been among the first genes shown to control metastasis’ molecular wheel [159]. Initial 

evidence showed that different cancer cells have aberrant expression of chemokine receptors, 

selective but not random. [160]. In 2001, Muller et al. were among the initial few groups to 

demonstrate chemokines’ role in organ-specific metastasis. The group revealed that CCR7 

and CXCR4 expression on breast cancer cells influences the invasion and organ specificity 

of breast cancer metastasis [160] to preferred sites positive for CCL21 (ligand for CCR7) 

and CXCL12 (ligand for CXCR4) expression such as the lung, liver, and bone. However, 

breast cancer cells’ tendency to metastasize to the lung and brain is primarily determined by 

the vascular anatomy. Similarly, vascular anatomy dictates colorectal cancer’s tendency to 

metastasize to the liver. Thus, some organs are more susceptible to tumor metastasis in the 

body, such as the lung, brain, liver, lymph nodes, and bone marrow, while other organs such 

as the kidneys, pancreas, and skin are less prone [161].

Studies show that chemokine receptors in cancer cells enhance invasion and metastasis and 

define the cancer cell’s metastatic destination. A non-metastatic B16 melanoma cell line 

with no endogenous expression of Ccr7 metastasized to the lymph nodes on transfection 

with Ccr7 [162]. Similarly, CCR7 expression on a lung metastatic cell line showed 

metastasis to the lymph node [163]. Similarly, Cxcr4 expression on B16 melanoma cells 

induced metastasis to the lung [164]. In addition, microarray studies showed a very small 

number of differentially expressed genes on comparing primary tumors with corresponding 

metastases obtained from the same patient. Chemokine receptor genes are part of those 

differentially expressed gene pools and determine different tumors’ metastatic destinations 

[165–167].

The characteristics of neoplastic cells and the specific microenvironment of the secondary 

organ can influence the site of metastasis [15]. Since chemokines can guide cells 

with appropriate receptors to particular locations, metastatic cancer cells can hijack the 

chemokine receptor system to facilitate cellular migration to trigger metastasis at distant 

sites [161]. Such as breast and prostate cancers are the primary cancers that metastasize 

to bone [168]. Multiple cancer type/subtype-specific mechanistic axes exist for bone 

metastasis. However, CXCL12/CXCR4-mediated chemotaxis is shared among different 

cancer types [161]. Along the same lines, various resident cells in the lungs secrete CXCL12 

and CCL21, directing breast cancer (CXCR4) and melanoma cells (CCR7) to the lung [160]. 

Saxena and Singh Page 7

Cancer Metastasis Rev. Author manuscript; available in PMC 2023 January 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



One specific axis is the CCR9 expression in a subset of patients with melanoma tumors 

that shows metastasis to a rare metastatic site—the intestine (positive for the paired CCL25 

expression) [149, 169].

3.2 Chemokines and their receptors on leukocyte recruitment and activation in malignant 
tumors

The tumor cells’ intrinsic properties and different cells constituting the tumor milieu 

determine chemokines’ expression pattern and their receptor in tissue and dictate the 

frequency and type of leukocyte infiltrates within the specific microenvironment [7, 170–

172]. These chemokine gradients and the recruited leukocytes infiltrate population changes 

under pathological and inflammatory stimuli and can critically modulate tumorigenesis and 

metastasis. In summary, firstly, the type of chemokine present in the microenvironment and 

secondly, the specific receptors expressed on the infiltrating cells are the deciding factor for 

the number and type of infiltrated leukocytes in primary tumors and secondary tumors.

A bilateral interaction occurs between tumor cells and infiltrating leukocytes at a different 

stage of tumor progression. The infiltrating leukocytes can synthesize cytokines, enzymes, 

and different growth inhibitory/stimulatory factors such as matrix metalloproteinases 

(MMPs), growth, and angiogenic factors [173–177] to initiate, maintain, or terminate 

tumor growth and metastasis [178, 179]. Apart from primary tumors, infiltrating 

leukocytes can also regulate metastatic secondary tumors by balancing stimulatory 

(immunosuppressive factors, tumor survival, or angiogenic factors) and inhibitory activities 

(potent cellular immune response) by interacting with different stromal cells in the 

metastatic microenvironment [180, 181].

To delineate one such chemokine network, CC chemokines is a well-known network for 

accumulating macrophages and lymphocytes at tumor sites [182, 183]. CC chemokines 

can preferentially recruit macrophages and T lymphocytes, NK cells, and dendritic cells 

into the tumors [7, 8]. Such stromal cells’ recruitment can promote tumor angiogenesis, 

cancer cell invasion, and/or disrupt immune surveillance and progression of the metastatic 

cascade [184–186]. Tumor-associated macrophages (TAMs) are one of the most abundant 

stromal cell types in solid tumors [187], and a high number of TAMs in the tumor correlates 

with poor overall survival in cancer patients [188–191]. Apart from TAM recruitment to 

primary tumors, such cells recruited to the metastatic sites are called metastasis-associated 

macrophages (MAMs) [138]. TAMs can protect cancer cells from antitumor immune 

reactions by directly suppressing T cell responses [192] and NK cell cytotoxicity [193, 

194] through the expression of regulatory molecules such as arginase-1(ARG1), IL-10, and 

transforming growth factor-β (TGF-β). Therefore, the strategy to block the recruitment of 

TAMs and MAMs can improve the outcome of metastatic disease [195].

CCL2, initially considered a monocyte-specific chemokine, is essential in 

phytohemagglutinin (PHA)-stimulated leukocyte culture responsible for chemotaxis of T 

cell with a memory phenotype (CD45RA+, CD45RO+, CD29+, L-selectin+) [196]. Although 

monocytes respond to CCL2 within an hour, it requires at least 4 h to initiate a significant 

T cell response to CCL2. These data signify CCL2 as the link between monocytes and 

lymphocytes infiltration in the inflammatory sites. CCL2 involvement in T cell recruitment 
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leads to further investigation of T cell analogous chemotactic response to other CC 

chemokines such as CCL7 [197–200]. Additionally, CCL2 receptor CCR2 can regulate the 

migration of IL-17-producing cells, promoting inflammation in autoimmune diseases [201] 

as well as cancer [202] that can suppress the adaptive immune response [203]. Recently, 

utilizing multiple murine tumors and metastasis models, Tu [204] et al. demonstrated that 

CCR2 inhibition combined with anti-PD-1 enhances tumor response to immune checkpoint 

therapy.

The chemokine ligands/receptor axes regulating spatiotemporal recruitment, retention, and 

MAM expression’s phenotype include CCL2-CCR2 [205] and CCL3- CCR1/CCR5 [138]. 

It is noteworthy to understand that upregulation of chemokines such as CCL2, CCL5, and 

CCL18 cannot only recruit monocytes/macrophages but also induce de novo synthesis 

of CCL3, CCL8, and CCL22 chemokines to reinforce the accumulation of metastasis-

promoting immune cells such Treg cells as well as MAMs [138]. Monocyte-derived 

macrophages can secrete CCL18 to promote the secretion of Treg cells’ chemokines, 

including CCL2, CCL3, and CCL22 [206]. Similarly, MAMs in the metastatic lung 

predominantly express CCL8 to recruit Treg cells mediated through receptor CCR5 [207]. 

Also, CCL3 was identified as the principal mediator of the communication between the 

neoplastic epithelium and the peripheral tissues such as lung and brain in breast cancer–

bearing mice. CCL3-induced monocyte chemoattractive protein chemokines cluster with 

CCL7, CCL8, CCL11, and CCL12 chemokines in the distant peripheral tissues [208].

Depletion of MAMs can reduce the metastatic tumor burden of breast cancer cells in mice 

[209, 210]. A few functional possibilities for these observations include a recent study 

demonstrating that similar to TAMs, MAMs can also protect cancer cells from tumoricidal 

immune reactions in the metastatic sites by suppressing cytotoxicity of CD8+ T cells [211]. 

CCL5 chemokine can prevent MAMs from becoming tumoricidal cells. Furthermore, a 

recent study suggests that monocytes’ recruitment and subsequent accumulation of MAMs 

are critical for circulating breast cancer cells to establish metastases [212].

Also, the CXC chemokine network deserves mention in the process of metastasis which 

is involved in the recruitment of neutrophils to primary and secondary tumors. Emerging 

evidence indicates that heterogeneous neutrophils with plastic sub-populations are actively 

involved in metastasis [91, 213, 214]. In brief, several studies now suggest that CXC 

chemokines/receptors mediate the accumulation of neutrophils in the pre-metastatic niche 

[98, 215–217].

Extensive studies on tumor-infiltrating leukocytes and lymphocytes suggest depressed 

functionalities of these immune cells against the tumor cells [173, 218, 219]. If these 

depressed functionalities of macrophages/lymphocytes or any other immune population are 

a cytokine defect, rather than an inherent defective immune population, then manipulating 

chemokines and their receptors may enhance antitumor responses [220, 221]. The extent of 

macrophage and lymphocyte infiltration into tumors of the same histological origin can vary 

widely. These cells are located predominantly at the tumor and host cellular interface and 

represent a potential target for therapy based on immune manipulation [222, 223].
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The mechanism(s) of leukocytic recruitment and activation and the significance of this 

process in tumor growth, heterogeneity, and metastasis are intensely investigated [5, 11]. 

Recent reports rationalize that tumor-infiltrating immune cells provide selection pressure 

that can shape tumor heterogeneity, and high heterogeneity tumors are associated with less 

immune response and cell infiltration [224, 225]. However, a better understanding of “cross-

talk” between the malignant tumor cell and different infiltrating leukocyte populations is 

essential before implementing therapeutic strategies. Similarly, the relationship between the 

type of therapy, patient prognosis, chemokine-receptor expression, and leukocyte infiltration 

remains poorly understood. Thus, the development of novel adjuvant therapies requires 

us to delineate the interrelations between the type of therapeutic approach resulting in 

leukocytic infiltration, their chemokine-receptor expression pattern, and the prognosis of 

cancer patients.

3.3 Chemokines and their receptor in tumor angiogenesis

Assembly of new vascular structures, neovascularization, is relatively quiescent under 

normal adult physiological conditions and is limited to wound healing and the female 

reproductive processes in adults [226–229]. However, a number of diseases, including 

cancer, can result in abnormal neovascularization. Angiogenesis is the primary process of 

adult pathological neovascularization [226–229], with vasculogenesis’ limited contribution 

[230]. Angiogenesis in tumors addresses sustenance from nutrients, oxygen supply, 

excretion of metabolic wastes, and carbon dioxide [231]. Angiogenesis is regulated by many 

angiogenic factors, metabolites such as carbohydrates, and lipids, enzymes, and members of 

the chemokine superfamily [67, 232].

Chemokine networks play essential roles in tumor angiogenesis [67] by the promotion or 

suppression of angiogenic factors such as VEGF and bFGF [67, 233, 234] in either a direct, 

parallel, or serial manner, proliferation [234–237], and migration [238, 239] of endothelial 

cells and through the recruitment of immune cells that support or inhibit angiogenesis to 

the tumor microenvironment [67, 238, 240, 241]. Specific chemokine members can act as 

pro-angiogenic molecules [67, 238], while others can be angiostatic [70, 232]. In addition, 

chemokines can also exert their angiogenic activity by upregulating metal metalloproteases 

such as MMP-2 and MMP-9 endothelial and tumor cells [242–244]. In turn, MMPs can 

degrade the extracellular matrix leading to endothelial cell migration, re-organization, and 

favoring angiogenesis [245].

The “angiogenic switch” or initiation of tumor angiogenesis is critical for tumor progression 

and metastasis [246]. Thus, tumor microvessel density is one of the most vital lines of 

evidence linking angiogenesis and metastasis. The correlation between tumor microvessel 

density and increased metastatic potential is present in all forms of cancers [247]. Notably, 

at the metastatic site, malignant tumor cells must proliferate and again undergo angiogenesis 

to result in a clinically relevant secondary tumor or macrometastases. Angiogenesis is 

essential for the growth of micrometastases. Thus, researchers propose that normal vessels’ 

cooption can be a mechanism for metastasis vascularization [248] or contribution of bone 

marrow–derived endothelial progenitor cells to early angiogenic stages metastatic growth 

[249].
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Hypoxia can serve as a link between angiogenesis and tumor heterogeneity [250]. Two 

prime reasons result in a hypoxic tumor microenvironment. Firstly, with cancer cells’ 

proliferation, the inner core cells get away from the blood supply and turn hypoxic [247]. 

In turn, hypoxia upregulates the expression of many angiogenic growth factors in cancer 

cells [251–253]. Secondly, unlike normal blood vessels, tumor-associated capillaries are 

notoriously abnormal, tortuous, malformed, hyperplastic, and misguided. High expression 

of factors such as VEGF, TAMS, and angiogenic chemokines renders tumor vessels highly 

permeable and leaky in the tumor and metastatic environment [254]. Such irregularities in 

the tumor vascular network with leaky and compressed vessels make the network inefficient 

with poor blood flow and oxygen delivery. Low oxygenation or hypoxia can mediate cancer 

progression and metastasis and immunosuppression, therapy resistance, and particularly 

tumor heterogeneity [250].

Other than hypoxia, spatial and temporal heterogeneity of angiogenic molecules present 

within a single tumor and even between different metastases in a single organ [255] 

can result in the generation of multiple cancer cell subpopulations within the tumor and 

metastatic microenvironment. To exemplify, small tumors (3–4 mm in diameter) express 

more basic fibroblast growth factor (bFGF) and CXCL8, whereas large tumors (>10 mm 

in diameter) express more vascular endothelial growth factor (VEGF). On the same lines, 

immunostaining revealed high expression of bFGF and CXCL8 on the periphery of a 

large tumor and increased VEGF expression in the tumor center [256]. Similarly, matrix 

metalloproteinase-9 was overexpressed at the periphery of the tumor, characterized by 

rapidly dividing cells with VEGF expression which was localized in the center of the lesions 

[257]. Gradient expression of such angiogenic molecules can influence the nearby tumor 

cells resulting in subpopulations with differences in angiogenic potential, invasiveness, and 

metastatic capabilities [256, 258].

Among all the chemokines, CXCL8 is extensively studied as a potent mediator of 

angiogenesis. The pro-angiogenic activity of CXCL8 in vivo was confirmed by using the rat 

mesenteric window assay, the rat and rabbit corneal assay, and a subcutaneous sponge model 

[259–261]. Human recombinant CXCL8 was angiogenic when implanted in the rat cornea 

and induced proliferation and chemotaxis of human umbilical vein endothelial cells. [259] 

In addition, the angiogenic properties of conditioned media from activated monocytes and 

macrophages were attenuated by CXCL8 anti-sense oligonucleotides [259]. Furthermore, it 

was shown that CXCL8 could act directly on vascular endothelial cells by promoting their 

survival [262]. Studies from our lab and other groups suggest that CXCL8 stimulates both 

endothelial proliferation and capillary tube formation in vitro in a dose-dependent manner. 

These effects can be blocked by monoclonal CXCL8 antibodies [263]. In addition, CXCL8 

was shown to inhibit apoptosis of endothelial cells [243]. Also, CXCL8 exerts its angiogenic 

activity by upregulating MMP-2 and MMP-9 in tumor and endothelial cells [242, 244]. 

Degradation of the extracellular matrix by MMPs is required for endothelial cell migration, 

organization, and, hence, angiogenesis [245]. Our group and others have demonstrated that 

CXCL8 directly enhances endothelial cell proliferation, survival, and MMP expression in 

CXCR1- and CXCR2-expressing endothelial cells, thus, may be an important player in the 

process of angiogenesis [74, 89, 264, 265].
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CXC chemokines also include angiostatic members known to inhibit neovascularization 

[70, 232, 264, 266, 267]. The following examples briefly describe the angiostatic role of 

CXC chemokines: CXCL10 has been demonstrated to inhibit CXCL8- and FGF-2-induced 

angiogenesis [258]. Delivery, injection, or genetic manipulation of CXCL9 or CXCL10 

expression into tumors has been shown to suppress tumor angiogenesis [268–270]. Also, 

intratumoral delivery of immunotherapeutic agents correlates with increased expression 

of CXCL9 and/or CXCL10 [271, 272]. Cell cycle–dependent expression of CXCR3 

on endothelial cells mediates the angiostatic activity of CXCL9–11 [273]. Intratumoral 

expression of CXCL9 and CXCL10 results in decreased renal carcinoma tumor size 

in patients enrolled in clinical studies [274]. Interestingly, the presence of angiogenic 

and angiostatic CXC chemokine suggests that different chemokines’ relative expression/

activities in the tumor microenvironment may affect tumor angiogenesis.

A plethora of recent studies now suggest that non ELR+ CXC chemokines and chemokine 

family other than CXC are also angiogenic. CC chemokines are now part of the growing 

list of angiogenic modulators and find implications in disease with inflammation-driven 

angiogenesis [237]. Initially, CC chemokines were shown to indirectly promote angiogenesis 

by first recruiting macrophages that release cytokines and growth factors necessary for 

forming a neovessel [275–277]. However, recent reports suggest CC chemokines’ direct 

action on endothelial cells leading to enhanced vascularity [278]. For example, CC 

chemokines can increase nitric oxide production and endothelial cell proliferation and 

migration, ultimately leading to increased angiogenesis [279, 280]. Stimulation of these 

can also increase VEGF production to further augment neovascularization [232, 266]. A 

wide variety of cells, including endothelial cells, smooth muscle cells, and inflammatory 

cells, can secrete CC chemokines under the inflammatory stimulus [281]. Additionally, 

CCL2 is associated with the increase of MMP14, essential for endothelial cell migration and 

neovessel formation [280]. CCL2 can also recruit endothelial progenitor cells to accelerate 

the endothelialization process [282]. Apart from CCL2 [279], CCL1 [283], CCL11 [237], 

CCL15 [284], and CCL16 [285] can initiate in vitro endothelial tubule formation.

Another interesting chemokine modulating angiogenesis is Fractalkine (FKN, CX3CL1), a 

CX3C chemokine family member. CX3CL1-CX3CR1 can regulate angiogenesis in primary 

tumors of the breast [286], liver [287], lung [288], melanoma [289], and multiple myeloma 

[290]. CX3CL1-CX3CR1 can also regulate angiogenesis in two ways, by recruitment of 

pro-angiogenic TAM [286, 291], and by directly acting on endothelial cells resulting in their 

proliferation, migration, and tube formation [292–294]. Apart from contributing to cancer 

angiogenesis, the CX3L1-CX3CR1 axis facilitates angiogenesis in inflammatory disease. 

CX3L1-CX3CR1 contributes to the pathogenesis of atherosclerosis [295, 296] by promoting 

leukocyte adhesion to endothelial cells [86, 87] and participates in rheumatoid arthritis 

through endothelial cell activation [297–299].

A biological imbalance in angiogenic and angiostatic chemokine production can contribute 

to several angiogenesis-dependent disorders such as cancer, rheumatoid arthritis, and 

psoriasis [89, 265, 300–304]. How a multitude of angiogenic and angiostatic chemokines 

function together, whether their functionality is gradient dependent and whether a 

synergistic effect exists of their action on different stromal players in primary tumor and 
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metastases in regulating the cancer cell heterogeneous subpopulations is not clear. More 

studies are needed to define the contribution of tumor angiogenesis towards metastatic 

heterogeneity clearly. With an understanding of current literature, one can suggest a shift 

in the balance of expression of these angiogenic and angiostatic chemokines in favor of 

angiostasis by the pharmacological intervention of the specific expression chemokine check 

tumor and metastatic heterogeneity.

3.4 Chemokines and their receptors in epithelial to mesenchymal plasticity

Epithelial to mesenchymal transition (EMT) is a well-studied process for the process of 

embryonic development. Cancer cells are known to hijack such embryonic development 

processes like EMT [305] to enhance their dynamic state that offers numerous advantages 

to these cells for undergoing successful metastasis [306–309]. Cancer cells can exist in 

partial or intermediate plasticity with the acquired property of stemness [310]. Thus, EMT 

converges two hallmark properties of metastatic cells—invasiveness and stemness. Apart 

from the known role in cell invasiveness, EMT is emerging to contribute to stemness, 

immune escape, and resistance to therapy, and, most importantly, cancer cell phenotypic 

heterogeneity in primary tumors and metastasis [311, 312]. Chemokines and their receptors 

are emerging players of cancer cell EMT.

The signals activated by ligand CXCL8 through CXCR1/2 receptors result in a few well-

investigated downstream signaling pathways that are linked to phenotypic plasticity [313, 

314]. With a direct mechanism of action, enhanced secretion of CXCL8 in cancer cells 

that underwent EMT plays a role in acquiring and maintaining this plasticity, acting in an 

autocrine manner [315]. CXCL8 can also act in a paracrine manner on adjacent cancer 

cells to induce a mesenchymal phenotype. While serving indirectly, CXCL8 can activate 

endothelial cells or create neutrophil infiltration into the tumor site. Activation of endothelial 

cells results in angiogenesis [316], while neutrophils in TME can secrete additional factors, 

furthermore promoting EMT in the cancer cells [317, 318]. Apart from independent 

mechanistic actions of CXCL8, Cheng et al. in 2014 demonstrated that chemokine CCL20 

could synergize with CXCL8 to bring collaborative induction of the epithelial-mesenchymal 

transition in colorectal cancer cells [319].

Another upcoming axis of chemokine/receptor player in EMT is CCR7/CCL21 that has 

implications of inducing EMT in different cancer cells such as breast [320], lung [321], oral 

squamous cell carcinoma [322], and pancreas [323]. This upregulation of EMT associated 

with the CCR7/CCL21 axis can also enhance stemness in cancers such as oral squamous cell 

carcinoma [322] and pancreatic carcinoma [323]. Lastly, chemokines such as CCL20 [319, 

324] and CXCL5 [325, 326], and receptors such as CXCR2 [325–327] and CXCR4 [328], 

have been associated with bringing EMT in different cancer cells.

3.5 Chemokines and their receptors in cancer stem cell concept

As described earlier, genetic and phenotypic heterogeneity is a significant challenge in 

cancer management. EMP and cancer stemness are two interlinked axes that can account 

for cancer cells’ non-genetic phenotypic plasticity [312]. Max Askanazy, a pathologist 

by profession, came forward with the cancer stem cell concept stating that differentiated 
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ovarian teratomas are derived from a single multipotent cell type [329]. With decades of 

research, scientists elucidated cancer cells’ ability to initiate heterogeneous tumors and a 

relevant explanation for metastasis mirroring heterogeneity of primary tumor with cancer 

stem cell concept (CSC) [310]. The current CSC models state that CSC needs not to be a 

rare minority of tumor cells with a fixed population but dynamic. Normal stem cells need 

not originate CSC; the reprogrammed somatic cell can give rise to a malignant CSC, and 

finally, these cells can be proliferative, not quiescent. With this redefinition, tumor-initiating 

cells (TICs) and metastasis initiating cells (MICs), cancer cells capable of giving rise to 

overt secondary growth in a distant organ, are CSCs by nature [306]. The origin of MICs 

is elusive, with the question of whether these cells arise in the primary tumor or during 

the metastatic journey or at a secondary site on interaction with stromal components. Still, 

importantly MICs must possess the ability to survive metastatic cascade.

As stated earlier, the role of chemokines and their receptors expands beyond cellular motility 

and also finds relevance in maintaining cancer stem cells [5]. The chemokine/receptor 

axis of CXCR4-CXCL12, one of the most well-defined chemokine/receptor players, is 

emerging as an important player in maintaining CSC. The evidence came from high 

levels of CXCR4 expression in CD44+/CD133+ prostate cancer stem cells (CSCs) [330]. 

In this study, Dubrovska et al. demonstrated that increased CXCR4 expression on CD44+/

CD133+ prostate cancer CSC promotes adhesion to the extracellular protein fibronectin and 

their proliferation with activation of the PI3K pathway in a CXCL12-dependent manner. 

The combined facilitated adhesion and proliferation by CXCR4/CXCL12 are essential for 

initiating secondary tumors in distant organs.

Moreover, both a CXCR4 receptor antagonist (AMD3100) and antibody could decrease 

tumor size and these prostate cancer progenitor cells’ population. Additional evidence 

supporting cancer stemness linked with CXCR4/CXCL12 axis in prostate cancer came 

from the reports of Jung et al. showing CXCL12 expression results in the development 

of aggressive metastatic castration-resistant prostate cancer through induction of cancer 

stemness and neuroendocrine phenotypes [331]. Similarly, in breast cancer, the co-culture 

of the cancer cells with breast cancer–associated fibroblasts enhanced CXCL12 secretion, 

resulting in high spheroid formation with an enriched population of CSCs [332]. Another 

supporting evidence came from a study showing that CXCR4 expression enhances breast 

cancer cells’ ability to form tumor mammospheres [122]. Lastly, elaborative research 

conducted in the luminal-A subtype of breast carcinoma showed that overexpression of 

CXCL12 elevated the proportion of CD44+/CD24− ALDH-expressing cells along with 

stemness markers such as sox2, Oct4, and Nanog [333].

Another chemokine receptor axis playing a significant role in promoting CSC enrichment 

is CXCR1/CXCR2 receptors in conjunction with CXCL1 and CXCL8 chemokines. One of 

the pioneer studies reported the role of CXCL8/CXCR1 in breast cancer CSCs by isolating 

and characterizing CSC populations in 33 cell lines using expression analysis of aldehyde 

dehydrogenase [334]. Gene expression profiling of these isolated aldehyde dehydrogenase 

positive CSCs identified a 413-gene signature that included CXCL8/CXCR1. Functionally, 

recombinant CXCL8 increased mammosphere formation and the ALDEFLUOR-positive 

population in breast cancer cell lines. Later, an elegant study from Ginestier et al. 
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demonstrated that blockade of CXCR1 using either a CXCR1-specific blocking antibody 

or repertaxin, a small-molecule CXCR1 inhibitor, selectively depleted the aldehyde 

dehydrogenase positive breast cancer CSC population. In their in vivo studies, CXCR1 

blockade induced massive apoptosis in the bulk tumor population via FASL/FAS signaling 

and decreased metastasis at distant organs [335]. In 2013, Singh et al. delineated that 

the mammosphere-promoting effect of CXCL8 is partly mediated through Src and EGFR/

HER2-dependent pathways. Thus, a combination of CXCR1/2 inhibitors and HER2-targeted 

therapies has the potential to reduce breast CSC activity [336]. In addition to the role of 

CXCL8 chemokine in CSCs, CXCL1-chemokine partner of CXCR2, secreted from TAMs, 

is reported to enhance tumor spheroids and CSC subpopulation in human TNBC cells [337]. 

Chen et al. observed similar results in pancreatic carcinoma that overexpression of CXCL8 

self-renews pancreatic CSC through CXCR1 [338]. Apart from the CXCR4/CXCL12 and 

CXCR1/2/-CXCL1/8 axes mentioned above, other chemokines are also shown to generate 

CSCs in breast cancer such as CCL2, [339], CCL5, [340], CCR5 [341], and CXCR7/

ACKR3 [342].

3.6 Chemokines and their receptors and therapy resistance

Cancer being a dynamic disease, tumors become more heterogeneous over time—

heterogeneity results in spatial or temporal distinct tumor-cell subpopulations within a tumor 

[343]. With high levels of heterogeneity in a tumor comes differential drug sensitivity 

levels to treatment and inferior therapeutic outcomes. Also, selective pressure of a drug 

treatment can expand pre-existing subclonal drug-tolerant populations, leading to drug 

treatment resistance. In summary, heterogeneity is the powerhouse for drug resistance; and 

an evaluation of tumor heterogeneity is required for effective drug treatment in primary and 

secondary tumors.

On the other hand, chemotherapy resistance is often intertwined with the metastasis process. 

Various clinical observations such as higher frequency of metastatic tumors observed in 

chemoresistant primary tumors, low chemotherapy response rate in metastatic settings, 

and a correlation between poor chemotherapy sensitivity and metastatic occurrence [344] 

supports this interlink. These observations also suggest that gain of chemoresistance in 

tumors may select MIC cells [306]. One possible mechanism for this interlink is that 

chemotherapeutic treatment’s toxicity results in the secretion of proinflammatory cytokines/

chemokines and bioactive lipids by tumor and cells of tumor microenvironment termed 

as cytokine storm [345]. This pool of secreted chemokines such as CXCL12, CCL2, 

CCL4, and others is related to the process of metastasis through inflammation [345]. Other 

important mechanisms benefiting both the gain of chemoresistance and generation of MICs 

are CSC-like features like enhanced DNA damage response [346], detoxifying enzymes 

such as ALDH [347], and effective drug efflux pumps [348] as well as EMP [349, 350].

Various in vitro and in vivo studies [351–355] provide evidence that CXCR1/CXCR2 

and their CXCL1/CXCL8 ligand axes can directly promote chemoresistance in breast 

cancer. This study also demonstrated that chemotherapy treatment, along with CXCR1/

CXCR2 inhibition, reduces primary tumor burden, metastasis, angiogenesis, and therapy 

resistance [351–356]. CXCL8/CXCR2 also connects chemoresistance to metastasis through 
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CSCs, EMP, or immune infiltration in breast tumor settings [357–359]. To delineate this 

axis, Samantha et al. showed that reactive oxygen species generated by chemotherapy 

treatment induce the production of CXCL8 through activation of the hypoxia-inducible 

factor. Induced CXCL8, in turn, elevated tumor spheroids and ALDH-expressing cells 

under the chemotherapy settings [360]. Later in support of these observations, a study 

showed that treatment of mice with CXCR1/2 inhibitor reparixin decreased the number 

of tumor-initiating cells elevated under chemotherapy administration [361]. We also 

demonstrated that doxorubicin- and paclitaxel-resistant breast cancer cells had upregulated 

CXCR2 ligands, stem cell, and mesenchymal markers with higher metastatic capability in 

comparison with parent cells [357]. Furthermore, tumors derived from these resistant cells 

had higher infiltration of neutrophils and T helper 17 cells with increased IL-17 receptor, 

CXCR2, and CXCR2 ligands within the metastatic lungs [358]. We also demonstrated that 

chemotherapy resistance induced IL-17 increased CXCR2 ligands cells’ expression and 

enhanced neutrophil chemotaxis in CXCR2-dependent manner. Lastly, the therapy-resistant 

breast cancer cells enhanced the secretion of pro-tumorigenic MMP9 in neutrophils [359].

In 2012, Massagués and colleagues uncovered a mechanistically defined molecular interlink 

between metastasis and chemoresistance in breast cancer [362]. The group demonstrated 

that paracrine signaling of CXCL1/2 interconnects cancer cells with stromal cells like 

endothelial and myeloid cells to drive both metastasis and chemoresistance processes. In 

brief, chemotherapeutic agents trigger TNF-α production by endothelial and other stromal 

cells to upregulate the CXCL1/2 expression in cancer cells. Secreted CXCL1/2 attracts 

CD11b+Gr1+ myeloid cells into the tumor and creates a proinflammatory environment in the 

lungs. Infiltrated myeloid cells produce S100A8/9 to enhance cancer cell survival in primary 

breast tumors and secondary lung tumors. Inhibition of CXCR2 can break the CXCL1/2-

S100A8/9 loop to improve chemotherapy response and decreases metastatic burden.

Another chemokine receptor family member shown to play a role in breast cancer’s 

chemoresistance is CXCR4 [363, 364] and CCR5 [341]. Importantly, CXCL12/CXCR4 

axis also offers resistance to endocrine therapy by activating both ERα [365] and ERβ 
estrogen receptors in the presence of tamoxifen treatment [364, 366]. Similarly, CXCR7/

ACKR3 can stabilize ERα estrogen receptor and render tamoxifen treatment in luminal-A 

breast cancer cells insensitive [367]. Apart from the delineated role of CXC-chemokine/

receptor in chemoresistance, recent reports suggest that the CC-chemokines subfamily offers 

chemoresistance to the platinum drugs cisplatin, carboplatin, and oxaliplatin treatments in 

different cancer [368].

3.7 Chemokines and their receptors in cell survival, proliferation, and senescence

For the successful establishment of metastases, cellular survival and proliferation signals 

are needed at various metastatic cascade stages. For example, during dissemination, 

detachment of cancer cells from ECM may induce anoikis. Also, cancer cells may encounter 

apoptotic death signals on entering the new environment present at the metastatic sites, and 

lastly, cancer cells need to proliferate to establish distant metastases. Another important 

phenomenon is exiting from metastatic dormancy characterized by growth arrest and 
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survival [369]. Furthermore, dormancy reactivation requires intrinsic and extrinsic signals, a 

specialized microenvironment, and an immune escape [186, 370, 371].

Evidence for chemokines and chemokine receptors regulating survival and proliferation 

comes from various reports demonstrating the regulation of tumor growth or inhibition 

by chemokines through activation of different signaling pathways. One of the first 

indications came from chemokines CXCL1 and CXCL8, enhancing the proliferation of 

different melanoma cells [372–375]. Other CXC families of chemokines are involved 

in many cancers, including CXCL12 [376–380], CXCL2, and CXCL3 [381]. Similarly, 

overexpression of CXC receptors such as CXCR4 [379, 382], CXCR2 [96, 383–385], and 

CXCR6 [386, 387] can enhance tumor growth and progression of many cancers. Altogether, 

numerous reports demonstrate that CXC chemokines derived from different cellular sources 

[388, 389], whether acting in an autocrine or paracrine manner or alone or in synchrony 

with other growth regulators such as IL-6 [390], can enhance cancer cell proliferation, 

colonization at metastatic sites, and anchorage-independent cell growth [391] and lowers 

cancer cell apoptosis [392] and dormancy [393] and cell cycle arrest [351]. Various reports 

demonstrate increased breast cancer cell proliferation under hormonal stimulation mediated 

through chemokines such as CXCL12 acting through either CXCR4 or CXCR7/ACKR3 

[366, 394–396].

Similarly, the CC family of chemokines and receptors can promote proliferation and provide 

growth-stimulating regulatory modes of tumor cells in different tumors [388, 397–402]. 

However, chemokine receptors in this family inhibit tumor cells’ proliferation, such as 

CCR1 expression in human hepatocellular carcinoma cells [403]. In contrast to cellular 

survival, chemokines can also regulate cellular senescence. Senescence can be defined as 

the process in which cells undergo permanent proliferation arrest and cannot enter the cell 

cycle [404, 405]. However, such senescent cells are not metabolically arrested and can 

secrete many pro-inflammatory factors, including CXCL8 [405, 406], termed as senescence-

associated secretory phenotype (SASP). Thus, senescent cells have two contradictory 

properties, growth arrest and proinflammatory SASP, leading to their dual role in tumor 

biology [407]. Senescence mediated through chemokines has been shown to promote 

metastasis by governing leukocytes entering the organ site [408, 409], creation of metastasis-

promoting TME [410], induction of EMT [411], promoting tumor cell invasiveness [412, 

413], and inducing collective invasion of the cancer cells enhancing the survival of non-

senescent cancer cells [414].

3.8 Chemokine network: the link between metastatic heterogeneity and metastatic niches

Distant organs are characterized by hostile environments for the CTCs that will eventually 

undergo anoikis, apoptosis, or cell death due to many factors such as the absence of 

survival signals, energy metabolites, or incompatible stromal interactions in the host tissue 

[186, 415]. So, does primary tumor reeducate, corrupt, or influence this distant hostile 

environment to initiate metastases? A growing body of literature suggested that cancer 

cells and the distant organ’s stroma evolve together to initiate metastasis [184, 416, 417]. 

Cancer cells in the primary tumor can systemically recruit stromal cells to a distant site 

to prepare the metastasis milieu even before the occurrence of metastatic colonization. The 
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conditioning continues even after the establishment of metastases [418]. This preparation 

leads to pre-metastatic niche formation that undergoes continuous cellular and molecular 

changes to prepare fertile soil for metastatic seeding.

In 2005, the group led by Dr. Lyden pioneered the research on a pre-metastatic niche 

[419]. By definition, a pre-metastatic niche is a supportive or receptive microenvironment 

for metastatic overgrowth of specialized cancer cells in a distant secondary organ, regulated 

by primary tumor factors such as secreted cytokines, exosomes, and mobilization of bone 

marrow–derived cells (BMDCs) [418–422]. Even after 15 years, this field still attracts 

more focus and attention [423–427]. Summarizing the understanding of current literature, 

we can assign specific characteristics to a pre-metastatic niche such as inflammation, 

organotropism, immune escape, angiogenesis, and the cascade of anchorage, survival, 

and proliferation [425, 426]. Chemokines are the well-established molecular hallmark of 

inflammation.

Additionally, we have already discussed organotropism, immune infiltration, angiogenesis, 

and interlink of anchorage, survival, and proliferation under the light of chemokines/

receptors. Thus, chemokines and their network can orchestrate each characteristic of the 

metastatic niche. Moreover, we have also discussed the role of chemokines in EMP, CSCs, 

and therapy resistance, significant processes contributing to metastatic heterogeneity. Thus, 

there is an overlap between metastatic niches’ characteristics and the chemokine-regulated 

processes contributing to metastatic heterogeneity (Fig. 2). Summarizing the overall idea, 

chemokine/receptor biology is the link between metastatic heterogeneity and metastatic 

niches. Thereby, the creation of metastatic niches at the distant organ site to support 

secondary tumors may also indirectly facilitate the seeding of different metastatically 

capable clones to survive in the new microenvironment resulting in the heterogeneous nature 

of metastases.

3.9 Challenges for clinical implications

Yet, there is no clinically available anti-metastatic therapy; thus, the community of cancer 

researchers is engaged on a current mission to find effective ways of treating and preventing 

metastatic tumor spread. Recent studies are unveiling the layers of a complex interaction 

between tumor cells and the host cell, the understanding required for effective inhibition of 

metastasis.

Several chemokine receptor inhibitors are under evaluation in preclinical studies and 

clinical trials to treat different primary tumors and metastasis (Table 2). In preclinical 

settings, chemokine receptor inhibitors showed promising results in reducing metastatic 

burden when used in combination with chemotherapy or immune checkpoint therapy. The 

following are brief details of clinical trials blocking chemokine/chemokine receptors in 

patients with a metastatic burden. Based on the preclinical evidence of a reduction in 

metastasis [469–471], blocking of both CCL2 and CCR2 was evaluated in clinical trials 

of metastatic castration–resistant prostate cancer patients (NCT00992186) and treatment 

of patients with bone metastasis (NCT01015560). With the concept of blocking MDSC 

recruitment to tumors and the pre-metastatic niche, CXCR2 antagonists are in clinical trials 

for metastatic castration–resistant prostate cancer (NCT03177187) and the combination 
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of CXCR2 antagonist with immune checkpoint inhibitor pembrolizumab for metastatic 

melanoma patients (NCT03161431). Additionally, CXCR4 antagonist BL-040 is in phase 

II clinical trial for metastatic pancreatic cancer (NCT02907099). The CXCR4 antagonist-

balixafortide, combined with eribulin chemotherapy, has completed phase I trials in HER2-

negative patients with heavily pretreated and relapsed metastatic breast cancer [437].

As discussed above, several clinical trials are utilizing chemokine antagonists and inhibitors; 

thus, targeting chemokines and their receptors for treating metastasis is not new [14, 472] 

but challenging for various reasons [14]. Firstly, both tumor cells and a wide range of host 

cells can express chemokines/receptors. Thus, blocking a chemokines/receptors pair can lead 

to potential side effects, such as normal immune cells expressing the same receptor will be 

affected. Immune cells are required to clear residual tumor cells and to prevent the residual 

disease-preventing relapse. Also, administration of homeostatic dosage is required to avoid 

unwanted immune reactions and allergies. Secondly, chemokines/receptors’ promiscuous 

nature increases their interaction’s complexity, and inhibition or inactivation of a chemokine/

receptor pair may lead to compensatory effects. Thirdly, blocking specific chemokine–

chemokine receptors may not serve as effective targets in the entire metastasis process 

and may have a restricted therapeutic window. Similarly, chemokines’ profile changes 

with different cancer stages, drug treatment, and chemotherapy resistance, again limiting 

the therapeutic window. Lastly, chemokines as therapeutic agents must target cancer cell 

dissemination and already-established metastases and overcome metastasis heterogeneity.

Apart from challenges associated with targeting chemokines/receptors, targeting metastatic 

heterogeneity is also demanding. Ideally, we should approach targeting genomic instability 

as a source of metastasis heterogeneity. With the multitude of genes involved and other 

potential heterogeneity problems involved during a clinical course, it is a more daunting task 

than targeting cellular heterogeneity, though targeting cellular heterogeneity has important 

implications for the treatment of metastases. Cells present in the primary tumor do not 

need to represent the tumor cells populating different metastases. The extraordinary level of 

cellular diversity limits a single anticancer drug’s success, or a single treatment, to eliminate 

all cancer cells present in a malignant tumor and metastases.

Thus, new therapeutic targets or modalities should focus on the characteristics that permit 

malignant cells to metastasize or somehow limit the number of different cancer cell 

subpopulations within a tumor or slow tumor cells’ potential to generate new variants. 

Notably, the primary tumor response towards a drug and the response of the metastatic 

subpopulations readout should determine the efficacy of a treatment. Using a combination 

of anticancer therapies, the type of combination used, the administration sequence, and 

the time interval between successive administrations may eliminate tumor cells’ different 

subpopulations.

4 Conclusion and future directions

Dysregulation of chemokines/chemokine receptors’ biology in various tumor progression 

stages and metastasis is a cancer hallmark. The gain of the expression of chemokine 

receptors by cancer cells promotes their “specific” metastasis to organs that are positive 
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for the expression of the respective ligand. In their literature review of homeostatic 

chemokine receptors [159], Zlotnik et al. suggested a model that chemokines/receptors 

present on normal or cancer cells constitute a cellular highway guiding these cells to 

specific organs and account for a non-random metastatic destination. Moreover, primary 

tumors and metastases should be viewed as multi-chemokine organs, with chemokine 

expression dependent on the factors such as temporal/spatial localization of the chemokine 

source, the amount of chemokine production, whether the source of chemokine is at the 

tumor site or metastatic organ, and the type of cell expressing the corresponding receptors 

such as cancer cell, leukocytes, endothelial cells, and stromal cells. All these factors will 

govern which chemokine/receptor will dominate the malignancy. Identifying the specific 

networks of chemokines/receptors present on tumor cells and their interaction with tumor 

milieu opens a broad avenue for the treatment of metastasis. Furthermore, deciphering 

molecular mechanisms of chemokines regulating tumor phenotypes affecting metastasis will 

identify the cellular and molecular targets helpful in designing effective molecular targeted 

therapeutics.

In the last three decades, chemokine/receptor biology has made extensive progress. New 

chemokines/chemokine receptors were identified, characterized, and delineated their role 

in different biological processes like angiogenesis, tumorigenesis, host defense, immune 

surveillance, and the creation of metastatic niches. Many antagonists of chemokine receptors 

are under investigation in various clinical trials for different cancer. However, it is crucial to 

understand that clinical trials on chronic inflammatory diseases such as rheumatoid arthritis, 

AIDS, and others have not yielded significant results by targeting a single chemokine/

receptor [13]. Hence, the current understanding of chemokine biology suggests exploration 

of chemokine/receptor antagonists in combination with currently used chemotherapeutic 

drugs or targeting multiple pairs of chemokine/receptors to treat metastasis. Besides, the 

expression of various chemokines and their receptors is associated with survival analysis of 

different cancer patients; thus, in the future, expression of chemokines/receptors can become 

a prognostic biomarker. Chemokine/receptor expression can also be included in “molecular 

signatures” that can determine tumor aggressiveness, select appropriate treatments for cancer 

patients, and respond to chemotherapy drugs.

Another future approach for treating cancer and metastasis is to take advantage of the 

“immune infiltration” property of chemokines. Induction of chemokines that mount an 

antitumor immune response in the tumor microenvironment through viral delivery of 

chemokines, nanoparticle delivery, or reactivating epigenetic blocks that lowers antitumor 

chemokines in the tumor milieu can be used as therapy [11]. However, to utilize 

chemokines/receptors as targets in cancer therapy, extensive research unraveling the 

interplay between metastatic heterogeneity and chemokine/receptor heterogeneity at the 

tumor and metastases is needed.
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Fig. 1. 
Different chemokine-regulated processes contributing to the tumor and metastatic 

heterogeneity. Summary of the general mechanisms by which multifaceted chemokines 

intricately function to regulate cancer cell properties and the tumor microenvironment to 

facilitate metastatic heterogeneity
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Fig. 2. 
Chemokine network-the link between metastatic heterogeneity and metastatic niches. List 

of different chemokine regulated properties contributing to metastatic heterogeneity and 

creation of metastatic niches. There is an overlap between the different properties shared by 

these two processes, indicating metastatic niches to metastatic heterogeneity

Saxena and Singh Page 48

Cancer Metastasis Rev. Author manuscript; available in PMC 2023 January 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Saxena and Singh Page 49

Ta
b

le
 1

L
is

t o
f 

ch
em

ok
in

e 
re

ce
pt

or
s 

an
d 

th
ei

r 
in

te
ra

ct
in

g 
lig

an
ds

 in
 h

um
an

s 
an

d 
m

ic
e,

 e
xp

re
ss

io
n 

in
 tu

m
or

 ty
pe

, a
nd

 d
if

fe
re

nt
 s

tr
om

al
/im

m
un

e 
ce

lls

S.
no

.
C

he
m

ok
in

e 
re

ce
pt

or
A

lt
er

na
te

 
na

m
e

In
te

ra
ct

in
g 

lig
an

d 
in

 
hu

m
an

s
In

te
ra

ct
in

g 
lig

an
d 

in
 

m
ic

e
T

yp
e 

of
 c

an
ce

r 
ce

ll
T

yp
e 

of
 s

to
m

al
/im

m
un

e 
ce

ll

1
C

X
C

R
1

IL
-8

R
A

, C
D

18
1

C
X

C
L

1,
 C

X
C

L
6,

 C
X

C
L

7,
 

C
X

C
L

8
C

X
C

L
1,

 C
X

C
L

7
B

re
as

t [
88

],
 p

ro
st

ra
te

 [
89

],
 lu

ng
 [

89
],

 c
ol

or
ec

ta
l 

[8
9]

, m
el

an
om

a 
[9

0]
N

eu
tr

op
hi

ls
 [

91
],

 M
D

SC
s 

[9
2]

, 
en

do
th

el
ia

l c
el

ls
 [

93
]

2
C

X
C

R
2

IL
-8

R
B

C
X

C
L

1,
 C

X
C

L
2,

 C
X

C
L

3,
 

C
X

C
L

5,
 C

X
C

L
6,

 C
X

C
L

7,
 

C
X

C
L

8

C
X

C
L

1,
 C

X
C

L
2,

 
C

X
C

L
3,

 C
X

C
L

5,
 

C
X

C
L

7

B
re

as
t [

94
],

 p
ro

st
ra

te
 [

95
],

 lu
ng

 [
89

],
 c

ol
or

ec
ta

l 
[8

9]
, m

el
an

om
a 

[9
0]

, p
an

cr
ea

tic
 [

96
],

 r
en

al
 [

97
]

N
eu

tr
op

hi
ls

 [
91

],
 M

D
SC

s 
[9

8]
, 

pl
at

el
et

s,
 [

99
],

 e
nd

ot
he

lia
l c

el
ls

 [
93

],
 

pa
nc

re
at

ic
 f

ib
ro

bl
as

ts
 [

10
0]

3
C

X
C

R
3

G
PR

9,
 C

D
18

3
C

X
C

L
4,

 C
X

C
L

9,
 C

X
C

L
10

, 
C

X
C

L
11

, C
X

C
L

13
 [

10
1]

C
X

C
L

4,
 C

X
C

L
9,

 
C

X
C

L
10

, C
X

C
L

11
B

re
as

t [
10

2]
, c

ol
or

ec
ta

l [
10

3]
, m

el
an

om
a 

[1
04

],
 

le
uk

em
ia

 [
10

5]
, r

en
al

 [
97

]
T

 c
el

ls
 [

10
6]

, N
K

T
 c

el
ls

 [
6]

, p
la

te
le

ts
 

[1
07

]

4
C

X
C

R
4

C
D

18
4

C
X

C
L

12
C

X
C

L
12

B
re

as
t [

10
8]

, p
ro

st
ra

te
 [

10
9]

, g
as

tr
ic

 [
11

0]
, o

va
ri

an
, 

[1
11

],
 e

so
ph

ag
ea

l [
11

2]
TA

M
s 

[1
13

],
 e

nd
ot

he
lia

l [
11

4]
, 

pr
ec

ur
so

rs
 o

f 
en

do
th

el
ia

l c
el

ls
 

12
41

48
10

 n
eu

tr
op

hi
ls

 [
11

5]
, M

D
SC

s 
[1

16
],

 p
la

te
le

ts
 [

11
7]

,

5
C

X
C

R
5

B
L

R
1,

 C
D

18
5

C
X

C
L

13
C

X
C

L
13

Ly
m

ph
om

as
 [

11
8]

, p
an

cr
ea

tic
 [

11
9]

, c
ol

on
 [

11
9]

, 
he

ad
 a

nd
 n

ec
k 

[6
]

B
 c

el
ls

 [
12

0]
 T

 c
el

ls
 [

12
1]

6
C

X
C

R
6

B
O

N
Z

O
, 

C
D

18
6

C
X

C
L

16
C

X
C

L
16

B
re

as
t [

12
2]

, p
ro

st
ra

te
 [

12
3]

, h
ep

at
oc

ar
ci

no
m

a 
[1

24
]

N
at

ur
al

 k
ill

er
 [

12
5]

, n
at

ur
al

 k
ill

er
 T

 
ce

lls
 [

12
4]

7
C

X
C

R
7

G
PR

15
9,

 
A

C
K

R
3

C
X

C
L

11
 [

12
6–

12
8]

, 
C

X
C

L
12

C
X

C
L

11
, C

X
C

L
12

B
re

as
t 2

92
57

35
1 

[1
27

],
 p

ro
st

ra
te

 3
09

52
63

2 
[1

29
]

E
nd

ot
he

lia
l 2

92
57

35
1 

[1
27

]

8
?

C
X

C
L

14
C

X
C

L
14

D
en

dr
iti

c 
ce

lls
 2

89
28

01
6 

[1
30

]

9
?

C
X

C
L

15

10
?

C
X

C
L

17
C

X
C

L
17

11
C

C
R

1
C

D
19

1
C

C
L

3,
 

C
C

L
4,

C
C

-L
5,

C
C

L
7,

-
C

C
L

8,
 C

C
L

13
,C

C
-L

14
,C

C
-

L
15

,C
C

-L
16

,C
C

L
23

C
C

L
3,

 C
C

L
4,

C
C

-
L

5,
C

C
L

6,
-C

C
L

7,
C

C
-

L
9

(B
re

as
t, 

pr
os

tr
at

e,
 lu

ng
, c

ol
or

ec
ta

l, 
m

el
an

om
a,

 
pa

nc
re

at
ic

, r
en

al
, c

er
vi

ca
l, 

he
pa

to
ce

llu
la

r, 
m

ul
tip

le
 

m
ye

lo
m

a,
 T

 c
el

l l
eu

ke
m

ia
, o

st
eo

sa
rc

om
a)

 [
13

1]

N
eu

tr
op

hi
ls

 [
13

2]
, p

la
te

le
ts

 [
13

3]

12
C

C
R

2
C

D
19

2
C

C
L

2,
C

C
-L

7,
C

C
L

8,
-

C
C

L
13

,C
C

-L
16

C
C

L
2,

C
C

-L
7,

C
C

L
12

(B
re

as
t, 

gl
io

m
a,

 lu
ng

, p
ro

st
ra

te
, m

el
an

om
a,

 
m

ul
tip

le
 m

ye
lo

m
a)

 [
13

1]
TA

M
s,

 [
13

4]
, M

D
SC

s,
 [

13
5]

, 
m

on
oc

yt
es

 [
13

6]
, p

la
te

le
ts

 [
13

3]

13
C

C
R

3
C

D
19

3
(B

re
as

t, 
ce

rv
ic

al
, r

en
al

) 
[1

31
]

Pl
at

el
et

s 
[1

33
]

14
C

C
R

4
C

D
19

4,
 C

N
O

T
6

C
C

L
3,

 C
C

L
5,

 C
C

L
17

, 
C

C
L

22
C

C
L

3,
 C

C
L

5,
 C

C
L

17
, 

C
C

L
22

(T
 c

el
l l

eu
ke

m
ia

, H
od

gk
in

 ly
m

ph
om

a,
 b

re
as

t, 
m

el
an

om
a,

 h
ep

at
oc

el
lu

la
r)

 [
13

1]
T

 c
el

ls
 [

13
7]

, T
A

M
s 

[1
38

],
 p

la
te

le
ts

 
[1

33
]

15
C

C
R

5
C

D
19

5
C

C
L

2,
 C

C
L

3,
 C

C
L

4,
 

C
C

L
5,

 C
C

L
8,

 C
C

L
11

, 
C

C
L

13
, C

C
L

14
, C

C
l1

6

C
C

L
2,

 C
C

L
3,

 C
C

L
4,

 
C

C
L

5
B

re
as

t, 
ce

rv
ic

al
, l

un
g,

 m
ul

tip
le

 m
ye

lo
m

a,
 

os
te

os
ar

co
m

a,
 p

an
cr

ea
tic

, p
ro

st
ra

te
 [

13
9]

TA
M

s 
[1

40
]

16
C

C
R

6
C

D
19

6
C

C
L

20
C

C
L

20
(C

ol
or

ec
ta

l, 
br

ea
st

, h
ep

at
oc

el
lu

la
r, 

th
yr

oi
d,

 o
va

ri
an

, 
cu

ta
ne

ou
s 

T
 c

el
l, 

la
ri

ng
ea

l)
 [

14
1]

T
hl

7 
[1

42
],

 d
en

dr
iti

c 
[1

43
]

17
C

C
R

7
C

D
19

7
C

C
L

19
, C

C
L

21
C

C
L

19
, C

C
L

21
(B

re
as

t, 
ga

st
ri

c,
 c

ol
or

ec
ta

l, 
lu

ng
, e

so
ph

ag
ea

l, 
le

uk
em

ia
) 

[1
44

]
T

h2
2,

 T
re

g,
 T

 c
el

ls
, [

14
5]

, d
en

dr
iti

c 
[1

46
],

 B
 c

el
ls

 [
14

7]

Cancer Metastasis Rev. Author manuscript; available in PMC 2023 January 21.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Saxena and Singh Page 50

S.
no

.
C

he
m

ok
in

e 
re

ce
pt

or
A

lt
er

na
te

 
na

m
e

In
te

ra
ct

in
g 

lig
an

d 
in

 
hu

m
an

s
In

te
ra

ct
in

g 
lig

an
d 

in
 

m
ic

e
T

yp
e 

of
 c

an
ce

r 
ce

ll
T

yp
e 

of
 s

to
m

al
/im

m
un

e 
ce

ll

18
C

C
R

8
C

D
19

8
C

C
L

1,
 C

C
L

4,
 C

C
L

16
, 

C
C

L
17

, C
C

L
18

C
C

L
1,

 C
C

L
8

C
ol

on
 [

14
8]

T
re

g 
[1

48
]

19
C

C
R

9
C

D
19

9
C

C
L

25
C

C
L

25
M

el
an

om
a 

[1
49

],
 p

ro
st

ra
te

 [
15

0]

20
C

C
R

 1
0

G
PR

2
C

C
L

27
, C

C
L

28
C

C
L

27
, C

C
L

28
M

el
an

om
a 

[1
51

]

21
X

C
R

1
G

PR
5

X
C

L
1,

 X
C

L
2

X
C

L
1

D
en

dr
iti

c 
ce

lls
 2

81
90

71
1 

[1
52

]

22
C

X
3C

R
1

G
PR

13
C

X
3C

L
1

C
X

3C
L

1
Pa

nc
re

at
ic

 [
15

3]
, p

ro
st

ra
te

 [
15

4]
, b

re
as

t 2
70

01
76

5 
[1

55
]

TA
M

s 
32

06
08

41
 [

15
6]

Cancer Metastasis Rev. Author manuscript; available in PMC 2023 January 21.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Saxena and Singh Page 51

Ta
b

le
 2

L
is

t o
f 

ch
em

ok
in

e/
ch

em
ok

in
e 

re
ce

pt
or

 in
hi

bi
to

rs
 te

st
ed

 in
 d

if
fe

re
nt

 tu
m

or
 ty

pe
s 

in
 p

re
cl

in
ic

al
 m

od
el

s 
an

d 
cl

in
ic

al
 tr

ia
ls

. G
E

M
 g

em
ci

ta
bi

ne
, P

T
X

 
pa

cl
ita

xe
l, 

FX
 F

O
L

FI
R

IN
O

X
; i

nh
ib

ito
rs

 in
 r

ed
 in

k 
ar

e 
us

ed
 f

or
 m

et
as

ta
tic

 o
r 

re
la

ps
e 

th
er

ap
y

Tu
m

or
 T

yp
e

R
ec

ep
to

r 
Ta

rg
et

In
hi

bi
to

rs
C

lin
ic

al
 T

ri
al

s

B
ra

in
 t

um
or

C
X

C
R

4
PR

X
17

75
61

 +
 B

ev
ac

iz
um

ab
 +

 S
un

tin
in

ib
 (

43
8)

PO
L

55
51

 +
 a

V
G

E
F 

(4
39

, 4
40

) 
A

M
D

34
65

 (
44

1)
U

SL
31

1 
+ 

L
om

us
ti

ne
 (

N
C

T
02

76
51

65
)

A
M

D
31

00
 (

N
C

I2
01

2–
00

14
9;

 N
C

I2
01

3–
02

01
2)

A
C

K
R

3
X

7A
b 

+
 T

em
oz

ol
om

id
e 

(4
42

)

B
re

as
t 

C
an

ce
r

C
C

R
1

C
C

X
95

88
 +

 A
nt

i-
PD

L
1 

(4
43

)

C
C

L
2

C
N

T
O

88
8 

+
 R

ad
io

th
er

ap
y 

(4
44

)

C
X

C
R

2
R

ep
ar

ix
in

 +
 P

T
X

N
C

T
02

37
03

8 
(4

45
)

C
X

C
R

4
LY

25
10

92
4 

(N
C

T
02

73
70

72
) 

(4
46

)
B

al
ix

af
or

ti
de

 +
 E

rb
ul

in
N

C
T

01
83

70
95

(3
74

)
U

SL
31

1 
+ 

L
om

us
ti

ne
 (

N
C

T
02

76
51

65
)

C
ol

on
 &

 G
as

tr
ic

 C
an

ce
r

C
C

R
1

B
L

59
23

 (
44

7)

C
C

R
4

A
F3

99
/4

20
/1

80
2 

(4
48

)

C
C

R
5

M
er

av
ir

oc
 +

 C
he

m
ot

he
ra

py
(N

C
T

01
36

81
3)

 (
44

9)

C
C

R
7

si
 R

N
A

 (
45

0)

C
X

C
R

2
R

ep
ar

ix
in

 +
 5

-f
lu

or
ou

ra
ci

l (
45

1)

C
X

C
R

4
LY

25
10

92
4N

C
T

02
73

70
72

 (
44

6)

H
em

at
ol

og
ic

 M
al

ig
na

nc
ie

s
C

C
R

1
C

C
X

72
1 

(4
52

, 4
53

)

C
C

R
4

A
nt

i-
C

C
R

4 
C

A
R

 T
-c

el
ls

 (
45

4)
M

og
am

ul
iz

um
ab

 (
N

C
T

01
72

88
05

) 
(4

55
)

C
C

R
7

M
SM

 R
70

7 
(4

56
)

C
X

C
R

4
A

M
D

31
00

 +
 A

ra
-C

 (
45

7)
B

K
T

14
0 

+
 R

itu
xi

m
ab

 (
45

8)
LY

25
10

92
4 

(4
59

),
(4

58
)

P
F

-0
67

47
14

3 
(N

C
T

02
95

46
53

) 
A

M
D

31
00

N
C

T
00

51
22

52
 (

46
0)

 B
M

S9
36

56
4N

C
T

01
12

04
57

 
(4

61
)

H
ep

at
oc

el
lu

la
rc

ar
ci

no
m

a
C

C
R

2
74

7 
+

 S
or

af
en

ib
 (

46
2)

R
D

C
01

8 
(4

17
)

L
un

g 
C

an
ce

r
C

C
R

4
A

F3
99

/4
20

/1
80

2 
(4

48
)

C
X

C
R

4
A

M
D

31
00

 +
 V

IC
-0

08
 (

46
3)

LY
25

10
92

4N
C

T
02

73
70

72
 (

44
6)

O
va

ri
an

 &
 P

ro
st

at
e 

ca
nc

er
C

C
R

2
iC

C
R

2 
(4

64
)

C
C

L
2

C
N

T
O

88
8N

C
T

00
99

21
86

 (
46

5,
 4

66
)

C
C

R
7

si
R

N
A

 (
45

0)

Cancer Metastasis Rev. Author manuscript; available in PMC 2023 January 21.

https://clinicaltrials.gov/ct2/show/NCT02765165
https://clinicaltrials.gov/ct2/show/NCT0237038
https://clinicaltrials.gov/ct2/show/NCT02737072
https://clinicaltrials.gov/ct2/show/NCT01837095
https://clinicaltrials.gov/ct2/show/NCT02765165
https://clinicaltrials.gov/ct2/show/NCT0136813
https://clinicaltrials.gov/ct2/show/NCT02737072
https://clinicaltrials.gov/ct2/show/NCT01728805
https://clinicaltrials.gov/ct2/show/NCT02954653
https://clinicaltrials.gov/ct2/show/NCT00512252
https://clinicaltrials.gov/ct2/show/NCT01120457
https://clinicaltrials.gov/ct2/show/NCT02737072
https://clinicaltrials.gov/ct2/show/NCT00992186


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Saxena and Singh Page 52

Tu
m

or
 T

yp
e

R
ec

ep
to

r 
Ta

rg
et

In
hi

bi
to

rs
C

lin
ic

al
 T

ri
al

s

C
X

C
R

2
SB

22
50

02
 +

 S
or

af
en

ib
 (

46
7)

N
C

T
03

17
71

87

SB
26

56
10

 +
 D

oc
et

ax
el

 (
46

8)

C
X

C
R

4
A

M
D

31
00

 (
46

9)
LY

25
10

92
4N

C
T

02
73

70
72

 (
44

6)

P
an

cr
ea

ti
c 

ca
nc

er
C

C
R

2
PF

-0
41

36
30

9 
+

 G
E

M
 (

47
0)

C
C

X
87

2 
+

 A
nt

i-
PD

1 
(4

71
)

P
F

-0
41

36
30

9 
+ 

na
b-

P
T

X
 +

 G
E

M
N

C
T

02
73

29
38

 (
47

2)
P

F
-0

41
36

30
9 

+ 
F

X
N

C
T

01
41

30
22

 (
47

3)
C

C
X

87
2 

+ 
F

X
N

C
T

02
34

54
08

 (
47

4)

C
X

C
R

2
C

X
C

R
2−

/−
 (

47
5)

C
X

C
R

2−
/−

 +
 A

nt
i-

PD
1 

(1
49

)
SB

22
50

02
 +

 R
S5

04
39

3 
+

 F
X

 (
47

5)

A
Z

D
50

69
N

C
T

02
58

34
77

C
X

C
R

4
A

M
D

31
00

 +
 A

nt
i-

PD
L

1 
(4

76
)

B
L

-0
40

 (
N

C
T

02
90

70
99

)

R
en

al
 C

ar
ci

no
m

a
C

C
R

4
A

ff
i5

 (
47

7)

Sk
in

 t
um

or
C

C
R

4
A

F3
99

/4
20

/1
80

2 
(4

48
)

C
X

C
R

2
N

av
ar

ix
in

 +
 A

nt
i-

M
E

K
 (

47
6)

N
C

T
03

16
14

31

Cancer Metastasis Rev. Author manuscript; available in PMC 2023 January 21.

https://clinicaltrials.gov/ct2/show/NCT03177187
https://clinicaltrials.gov/ct2/show/NCT02737072
https://clinicaltrials.gov/ct2/show/NCT02732938
https://clinicaltrials.gov/ct2/show/NCT01413022
https://clinicaltrials.gov/ct2/show/NCT02345408
https://clinicaltrials.gov/ct2/show/NCT02583477
https://clinicaltrials.gov/ct2/show/NCT02907099
https://clinicaltrials.gov/ct2/show/NCT03161431

	Abstract
	Introduction
	Metastasis and metastatic heterogeneity
	Metastatic heterogeneity
	Clonal cooperation
	Clonal/polyclonal origin of metastases

	Chemokines and their receptors
	Chemokines and organotropism
	Chemokines and their receptors on leukocyte recruitment and activation in malignant tumors
	Chemokines and their receptor in tumor angiogenesis
	Chemokines and their receptors in epithelial to mesenchymal plasticity
	Chemokines and their receptors in cancer stem cell concept
	Chemokines and their receptors and therapy resistance
	Chemokines and their receptors in cell survival, proliferation, and senescence
	Chemokine network: the link between metastatic heterogeneity and metastatic niches
	Challenges for clinical implications

	Conclusion and future directions
	References
	Fig. 1
	Fig. 2
	Table 1
	Table 2

