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Abstract: Chikungunya virus, the causative agent of chikungunya fever, is generally characterized
by the sudden onset of symptoms, including fever, rash, myalgia, and headache. In some patients,
acute chikungunya virus infection progresses to severe and chronic arthralgia that persists for years.
Chikungunya infection is more commonly identified in tropical and subtropical regions. However,
recent expansions and epidemics in the temperate regions have raised concerns about the future
public health impact of chikungunya diseases. Several underlying factors have likely contributed
to the recent re-emergence of chikungunya infection, including urbanization, human travel, viral
adaptation to mosquito vectors, lack of effective control measures, and the spread of mosquito
vectors to new regions. However, the true burden of chikungunya disease is most likely to be
underestimated, particularly in developing countries, due to the lack of standard diagnostic assays
and clinical manifestations overlapping with those of other endemic viral infections in the regions.
Additionally, there have been no chikungunya vaccines available to prevent the infection. Thus, it is
important to update our understanding of the immunopathogenesis of chikungunya infection, its
clinical manifestations, the diagnosis, and the development of chikungunya vaccines.
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1. Introduction

Chikungunya virus (CHIKV) is the responsible agent of chikungunya fever, a debili-
tating arthritic disease in humans. Acute infection of CHIKV is generally characterized by
sudden onset of fever, rash, myalgia, and headache, which in some patients, progresses
to severe and chronic arthralgia that persists for years [1]. Acute CHIKV infection symp-
tomatically resembles the dengue virus (DENV) infection. Among differential diagnoses, a
notable proportion of CHIKV disease is inaccurately diagnosed as dengue fever (DF) and
other diagnoses, including leptospirosis, typhoid fever, enteritis, and non-specific viral
infections [2].

CHIKV belongs to the Alphavirus genus within the Togaviridae family. Alphavirus
causing inflammatory musculoskeletal diseases in humans is known as an “arthritogenic
alphavirus”, which includes CHIKV, O’nyong-nyong virus (ONNV), Ross River virus
(RRV), and among others [3]. CHIKV was initially isolated from an acute febrile patient
during the Tanzanian outbreaks in 1952–1953 [4]. The viral genome consists of a positive-
sense single-stranded RNA molecule measuring approximately 11.8 kb in length with a
5′-methylguanylate cap and a 3′-polyadenylate tail [5] (Figure 1). The CHIKV has spread
globally and has been classified into four clades: East, Central, and South African (ECSA),
West African (WA), Asian (AL), and Indian Ocean Lineages (IOL) [6,7].
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guanylate cap (M7GTP) and a 3′-polyadenylate tail. The genome is divided into two ORFs, ORF1 

and ORF2. ORF1 and ORF2 encode for the nonstructural and structural proteins, respectively. The 

expression of ORF1 is controlled by the genomic promoter located in the 5′-untranslated region (5′-

UTR), while the expression of ORF2 is regulated by an internal subgenomic promoter. The genomic 

RNA is employed as template for synthesis of new viral genome for chikungunya virion assembly. 

The subgenomic RNA is used as a template for production (translation) of viral structural proteins. 

The known functions of individual CHIKV proteins are also depicted.  

The CHIKV disease is more frequently reported in tropical and subtropical regions. 
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measures, and spread of new vectors likely have contributed to the recent re-emergence 

of CHIKV infection [9]. In Indonesia, a recent study of children and adult patients pre-

senting acute fever in eight hospitals confirmed CHIKV infection in 40 of 1089 screened 

subjects (3.7%) [2]. 
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Figure 1. The genome organization and viral proteins of CHIKV. The CHIKV genome consists
of a positive-sense single-stranded RNA molecule, approximately 11.8 kb in length with a 5′-
methylguanylate cap (M7GTP) and a 3′-polyadenylate tail. The genome is divided into two ORFs,
ORF1 and ORF2. ORF1 and ORF2 encode for the nonstructural and structural proteins, respectively.
The expression of ORF1 is controlled by the genomic promoter located in the 5′-untranslated re-
gion (5′-UTR), while the expression of ORF2 is regulated by an internal subgenomic promoter. The
genomic RNA is employed as template for synthesis of new viral genome for chikungunya virion
assembly. The subgenomic RNA is used as a template for production (translation) of viral structural
proteins. The known functions of individual CHIKV proteins are also depicted.

The CHIKV disease is more frequently reported in tropical and subtropical regions.
Recent outbreaks raise concerns about the future public health impact of CHIKV in tem-
perate regions [8]. Urbanization, human travel, viral adaptation, lack of effective control
measures, and spread of new vectors likely have contributed to the recent re-emergence of
CHIKV infection [9]. In Indonesia, a recent study of children and adult patients presenting
acute fever in eight hospitals confirmed CHIKV infection in 40 of 1089 screened subjects
(3.7%) [2].

However, due to the lack of standard diagnostic assays, absence of typical signs and
symptoms, and clinical manifestations overlapping with those of other infections, the true
burden of CHIKV is most likely underestimated, particularly in developing countries [2].
CHIKV infection is normally a self-limiting disease with a low fatality rate (~0.1%). How-
ever, the frequent joint complications that lead to persistent disability have significant
implications on public health in general, including a substantial impact on the quality of
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life (QOL) for infected patients as well as a burden in terms of economic and community
perspectives [10]. Here, we discuss the recent understanding of the immune pathogene-
sis of CHIKV infection, its clinical manifestation, the diagnosis, and the development of
CHIKV vaccines.

2. The Life Cycle of CHIKV
2.1. The Host Cell Receptors for CHIKV

Available evidence suggests that multiple pathways are employed for CHIKV entry in
a cell-type specific manner [11]. One of the best characterized human receptors for CHIKV
is the cell-adhesion molecule, matrix-remodeling-associated protein 8 (Mxra8), which is
widely expressed in epithelial and mesenchymal cells [12–14]. Mxra8 is involved in the
entry process of multiple arthritogenic alphaviruses, including CHIKV, ONNV, RRV, and
Mayaro virus (MAYV) [15,16]. By creating various deletion variants, it has been shown that
the stalk region of Mxra8 is crucial for facilitating CHIKV entry [12]. Another recent study
showed that an insertion of 15 amino acids in the ectodomain of Mxra8 conferred resistance
of Bovinae to CHIKV infection. Conversely, removal of this insertion resulted in enhanced
susceptibility of Bovinae to CHIKV invasion [17]. In vitro, cell lines with low expression
levels of Mxra8 were less susceptible to CHIKV infection [18]. In Mxra8-deficient mice,
decreased CHIKV infection and CHIKV-induced joint swelling were observed [15]. In line
with these findings, ectopic expression of Mxra8 in vitro in various cell lines and in vivo in
Drosophila led to enhanced CHIKV invasion [15,16,18].

Studies elucidating the host cell receptors for CHIKV play an essential role in creating
a path for the development of novel vaccines and entry inhibitors. Indeed, administra-
tion of Mxra8-Fc fusion protein and anti-Mxra8 monoclonal antibodies inhibited CHIKV
infection both in vitro (in various cell lines) and in vivo (in mice) [16]. Similarly, mAb
RRV-12 targeting the B domain of E2 glycoprotein blocked the infection of multiple al-
phaviruses, including CHIKV, MAYV, and RRV [19]. This domain is responsible for binding
to Mxra8 [16,19]. Additionally, various in silico approaches have been employed to identify
a potential inhibitor of Mxra8 [20,21]. Although many studies have shown that Mxra8
serves as a receptor for CHIKV, the absence or decreased expression of Mxra8 in several
types does not completely block CHIKV infection. This finding suggests that CHIKV may
employ other alternative cell receptors to invade the hosts.

Another host protein that has been demonstrated to be the cell receptor for CHIKV
is CD147, also called basigin or extracellular matrix metalloproteinase inducer (EMM-
PRIN). CD147 is widely expressed in various human cell types, including fibroblast and
endothelial cells. Similar to Mxra8, CD147 is involved in the replication process of multiple
alphaviruses, including CHIKV, ONNV, RRV, MAYV, and Western equine encephalitis
virus (WEEV), among others [22]. Remarkably, CD147 has a high structural homology with
Mxra8, although further studies are needed to elucidate the precise molecular interactions
between the CHIKV protein and CD147 [22].

Glycosaminoglycans (GAGs) were shown to be host molecules involved in the binding
of CHIKV, particularly heparin/heparan sulfate (HS) [23,24]. Various CHIKV strains
differ in their GAG utilization in the presence or absence of the Mxra8 receptor [23,25].
Interestingly, a single passage of CHIKV to mosquito (CHIKVmos) cell lines resulted in an
attenuated phenotype, characterized by reduced replication and pathogenicity both in vitro
and in vivo [26]. This phenotype was associated with a loss of binding to GAGs during
passage in the mosquito cell lines and can be regained by passaging back in mammalian
cells [26]. The B domain of the E2 glycoprotein was shown to be the receptor binding
site and thus, responsible for binding to GAG-expressing cells [11]. Mutagenesis studies
showed that the E2 residue 82 was a primary determinant of GAG utilization and influenced
infectivity, viral dissemination, and immune-mediated joint pathology [25,27]. In addition
to the E2 glycoprotein, polymorphisms in the E1 residue 156 and 211 glycoproteins also
influenced binding to HS and modulated CHIKV-induced joint pathology [28]. Various
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other molecules, including prohibitin (PHB), T-cell immunoglobulin, and mucin domain 1
(TIM-1), have been demonstrated to be involved in the interactions with CHIKV [29–31].

2.2. The Entry Process of CHIKV

After binding to a receptor present on the cell surface, CHIKV enters the target cells by
clathrin-mediated endocytosis [32]. This event is followed by membrane fusion, particularly
via interaction with Rab5-positive endosomes. This fusion process is notably enhanced
by the presence of cholesterol in the target membrane and is mediated by acidification of
the pH in endosomes that eventually triggers penetration and uncoating of CHIKV [32].
Consistently, methyl β-cyclodextrin, a potent cholesterol depleting agent, was shown to
significantly inhibit the infection of CHIKV. Similar results were obtained by treatment
with lysomotropic agents inhibiting endosomal acidification, including chloroquine and
bafilomycine [33]. Thus, clathrin-coated endocytic vesicles are able to penetrate the cell
membrane and deliver the containing “cargo” of the CHIKV genome into the cytoplasm.

Clathrin-independent pathways have been reported to mediate CHIKV entry to the
target cells [33,34]. Recently, macropinocytosis was demonstrated to be another entry
pathway for CHIKV into human muscle cells [34,35]. Macropinocytosis is mediated by
the formation of macropinosomes, which are large and uncoated vesicles involved in the
unspecific uptake of extracellular material into the cytoplasm. Collectively, all of these
studies indicate that CHIKV employs multiple host receptors and multiple host entry
processes, enabling it to invade diverse cell types in multiple tissues.

2.3. CHIKV Replication within the Target Cells

A brief overview of CHIKV replication is depicted in Figure 2. Endosome acidification
leads to membrane fusion between the E1 protein and the endosomal membrane. This
event is followed by the disassembly of the viral nucleocapsid, releasing the positive-sense
genomic RNA (gRNA) into the cytoplasm. The positive-strand genomic RNA serves as
messenger RNA (mRNA) for the immediate translation of nonstructural proteins (nsP),
generating the polyprotein precursor, P1234. The P1234 is an inactive precursor of the viral
replicase complex. It is self-cleaved by the C-terminal cysteine protease region of nsP2,
producing nsP4 that acts as RNA-dependent RNA polymerase (RdRp) and viral replicase
complex consisting of individual non-structural proteins [36]. The nsP4 will synthesize
the negative-strand RNA intermediate as a template for the synthesis of the positive-
strand gRNA [37]. The viral replicase complex is also responsible for the production of
the subgenomic viral RNAs (sgRNA) to direct the synthesis of the structural proteins
(Figure 1) [38].

Four nsPs, along with the viral gRNA, and presumably host proteins, integrate at the
plasma membrane (PM) to form viral replication compartments (spherules) containing viral
double-strand RNA intermediate (viral dsRNA). In this spherule, nsP1-4 functions to gen-
erate gRNA, antigenomic (negative-strand RNA intermediate), and sgRNA. It is believed
that the replication process in this spherule will protect the viral dsRNA from intracellular
RNA sensors [39]. The sgRNA is then translated into a structural polyprotein precursor,
C-p62-6K-E1. The capsid (C) protein has a serine protease domain capable of self-cleavage
from the rest of the structural polyproteins, releasing the C protein to the cytoplasm. Thus,
its cleavage does not depend on the host cell machinery [40,41]. Once produced, the C
protein assembles with the gRNA to form the icosahedral nucleocapsid core. Multiple
capsid binding sites have been identified in the gRNA of CHIKV to facilitate selective
gRNA packaging. This event is the determinant step of the new viral production [42].
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Figure 2. The life cycle of CHIKV infection. There are several potential receptors for CHIKV,
including Mxra8, CD147, GAGs, and TIM [1]. CHIKV enters the target cells via clathrin-mediated
endocytosis pathway [2]. Other entry pathways, such as micropinocytosis, are not depicted. Upon
formation of the early endosome, clathrin molecules dissociate from the endocytic vesicle [3]. The
pH acidification of endosome (endocytic vesicles) triggers the fusion of the endosomal membrane
with the viral membranes (the E1 protein), releasing the genomic RNA, followed by an immediate
translation of the non-structural polyproteins (P1234 precursor) by the ribosome [4]. The P1234
polyprotein is then cleaved by the nsP2, releasing the individual non-structural proteins, to form the
viral replicase complex. The complex mediates the synthesis of the negative-strand RNA [5] that
serves as templates for the synthesis of new positive-strand RNA [6] as well as for the synthesis of 26S
subgenomic RNA [7]. The synthesis of negative-strand RNA intermediate, genomic, and subgenomic
RNA occurs in the specialized replication compartments termed spherules (not depicted). The
subgenomic RNA is subsequently translated into the structural polyprotein precursor C-pE2-6K-E1
in the rough endoplasmic reticulum (RER). The C protein contains a protease domain responsible
for its self-cleavage. It dissociates from the polyprotein [8b] and assembles with the genomic RNA
to form the icosahedral nucleocapsid core in the cytoplasm [9]. The pE2-6K-E1 precursor will be
addressed to the lumen of the RER [8a] for maturation process [10], culminating in the formation
of E1-E2 heterodimers [11]. E1-E2 heterodimers will be inserted in the cell membrane forming the
“virus budding microdomain” [12]. The assembled icosahedral nucleocapsid core migrates to this
domain, and new viral particles will be extracellularly released by budding process [13]. See the main
text for further details. The drawing is a modification of a figure that was previously published by
Constant et al. [43].

The structural polyprotein processing and post-translational modification, including
glycosylation, are conducted within the endoplasmic reticulum and Golgi apparatus [44].
The host proteases, such as furin protease, will cleave the p62-6K-E1 precursor to produce
individual structural proteins, including E1, E2, E3, and 6K to build up the new viral
particles [45]. The nucleocapsid core migrates to the plasma membrane regions containing
the E1 and E2 proteins. The E1 and E2 assemble into trimers of heterodimers embedded in
the viral membrane. Mature virions are released by the budding process from the infected
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cells [46]. Although not fully understood, this process is influenced by temperature, pH,
and some of the host factors including cholesterol, actin, and tetherin [47].

3. The Viral and Host Factors Involved in the Pathogenesis of CHIKV Infection

Acute infection of CHIKV begins with viral transmission from the infected mosquito
bite to the skin. After the skin bite, the CHIKV enters subcutaneous capillaries and replicates
in susceptible cells, including macrophages, epithelial, and endothelial cells [48]. The virus
subsequently spreads through the lymphatic system and bloodstream, leading to viremia,
and reaches the sites of primary replication [39]. It has been demonstrated that human
osteoblasts and human synovial fibroblasts were susceptible and permissive to CHIKV
infection [49,50]. Following CHIKV-infected mosquito bites in humanized mice models,
viral RNA was detected in bone marrow, liver, and lung, indicating viral dissemination
in multiple organs [51]. In another mice model of CHIKV infection, a high inoculum
dose resulted in viral persistence and chronic tissue damages [52]. It has been shown
that in nonhuman primates (NHPs), macrophages were the main cellular reservoirs of
CHIKV during the chronic phase of the disease [53]. Meanwhile in mice, CHIKV RNA was
mainly detected in splenic B cells and follicular dendritic cells during the chronic phase of
infection [54], suggesting their roles in maintaining viral persistence in the spleen.

During the acute phase of infection in children, the median viral copy number was
1.3 × 108 copies/mL and could reach a maximum of 9.9 × 109 copies/mL [55]. Meanwhile,
in adult patients, the viral load was 3.85 × 106 copies/mL, although some patients had
a lower viral load (3.1 × 103 copies/mL) [56]. The viral load could serve as a predicting
factor of clinical severity. A higher viral load was associated with fever and arthralgia
in adult patients [57]. Similarly in children, viral load was positively associated with
fever [58]. Adult patients with higher viral loads tend to have more involvement of
large and small joints and myalgia compared to those with lower viral load [57]. In
contrast, pediatric patients with myalgia had lower viral load compared to those without
myalgia [55]. Noteworthily, patients with high levels of viremia were more prevalent in
hospitalized cases [59]. The levels of interleukin 6 (IL-6) and monocyte chemoattractant
protein-1 (MCP-1) in the patient’s plasma could serve as reliable biomarkers of high viral
load in patients with CHIKV [56].

Differences in CHIKV genotypes infecting the patients may influence the host immune
responses and thus, could influence the disease pathogenesis. In one study, the Asian
genotype had less replication capacity compared to the IOL genotype in in vitro infection
employing primary mouse tail fibroblasts. Consistently, the viremia level was higher in
the IOL genotype compared to the Asian genotype in experimental infection in mice [60].
The Asian genotype also induced weaker systemic proinflammatory responses, including
interferon-α (IFN-α), interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and IL-6, as
well as lower levels of natural killer (NK) cell activity compared to the IOL genotype, and
these were associated with lesser joint pathology [60]. Another study assessed whether the
Asian and the ECSA genotypes differed in neuroinvasiveness [61]. Intracerebral inoculation
of both genotypes resulted in similar viral titers in the brains, although the Asian genotype
had higher mortality rates compared to the ECSA. Remarkably, the gene expression profiles
showed that the Asian genotype induced higher levels of proapoptotic genes, while the
ECSA caused higher upregulation of antiapoptotic and antiviral genes as well as genes
involved in the central nervous system protection [61]. Experimental infection of the
WA, ECSA, IOL, and Asian strains in IFNaR−/− mouse (A129) models demonstrated that
different strains led to differential mortality rates in these mice [62]. In addition, the WA
strain had higher viremia levels compared to the ECSA and IOL strains at one day post-
infection [62]. In rhesus macaques, the IOL strain induced more robust antibody and T
cell responses compared to the WA strain [63]. All of these findings suggest that various
CHIKV genotypes may differ in virulence characteristics that may influence the disease
progression and outcome.
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The host genetic factors also contribute to the susceptibility and progression of viral
infections and their clinical outcome. A previous study in rhesus macaque showed that
aged animals mounted reduced B and T cell responses, leading to viral persistence [63].
In humans, it has been shown that polymorphism in Toll-like receptors 7 (TLR7) and TLR8
genes were significantly associated with susceptibility to CHIKV infection [64,65]. OAS,
DC-SIGN (CD209), and TLR3 gene polymorphisms were associated with the development
of clinical symptoms in patients infected with CHIKV [66–68]. In addition, TNFα gene
polymorphism was associated with chronic joint pain [67]. A recent systematic review
revealed that DRB1*14 was associated with the susceptibility of symptomatic CHIKV
infection [69]. Since these genes are involved in viral recognition and subsequent antiviral
IFN and adaptive immune responses, these associations highlight the importance of the
host immune responses in human susceptibility to CHIKV infection and in modulating the
disease pathogenesis, as described below.

4. The Antiviral IFN Responses against CHIKV Infection

The acute infection induces inflammatory responses and infiltration of monocytes,
macrophages, neutrophils, and NK cells [70]. The infection of CHIKV induces systemic
innate responses which primarily involved antiviral IFN-α, pro-inflammatory cytokines,
and chemokines. The process is followed by the activation of the adaptive immune re-
sponses [71].

4.1. Stimulation of IFN Responses

Specific pattern recognition receptors (PRRs) for RNA viruses will recognize the
presence of CHIKV infection within the target cells. RIG-I-like receptors (RLRs), including
RIG-I and MDA5, sense the presence of viral RNA in the cytoplasm. In the endosomal
compartment, viral RNA will be recognized by TLRs, including TLR3, TLR7, and TLR8.
Following viral recognition by TLRs and RLRs, interferon regulatory factor 3 (IRF3), IRF7,
and nuclear factor kappa-B (NF-κB) will be activated, leading to the induction of type I
IFNs and various proinflammatory chemokines and cytokines [72].

TLR3 is involved in the antiviral IFN response against CHIKV [68]. Lack of TLR3 sig-
naling in both human and mouse fibroblasts led to a notable increase in CHIKV replication
in vitro. Similarly, Tlr3−/− mice had a 100-fold higher viral load compared to wild-type
mice and exhibited uncontrolled viral dissemination [68]. Consistently, the absence of TRIF,
IRF3, and IRF7, among key downstream signaling pathways of TLRs, markedly increased
CHIKV replication [68,73,74]. In plasmacytoid DCs, IRF7-mediated signaling was essential
to protect mice against the lethal challenge of CHIKV via induced production of type I
and II IFNs [75]. In addition to TLRs, RIG-I is also involved in antiviral responses against
CHIKV. 5′pppRNA, a RIG-I agonist, was shown to inhibit CHIKV replication in human
fibroblast MRC-5 cells [76]. Interestingly, this RIG-I-mediated protection was independent
of the type I IFNs [76].

It has been shown that CHIKV infection triggers the induction of type I IFNs (IFN-
α and IFN-β) and IFN-γ [74,77]. In several cell lines infected with CHIKV, including
Vero, HFF-1, HT-1080, and SK-N-MC cell lines, IFN-α dose-dependently inhibited CHIKV
replication [78,79]. However, although IFN-α and IFN-β share an identical receptor, they
have distinct mechanisms for protecting against severe CHIKV diseases [73]. Early CHIKV
replication and dissemination to multiple tissues during the acute stage were mainly
inhibited by IFN-α, while IFN-β was predominantly involved in limiting neutrophil-
induced inflammation [73]. IFN-α, but not IFN-β, was pivotal to controlling the progression
of CHIKV into the chronic stage [80]. The primary roles of type I IFNs in protection against
CHIKV-induced mortality were shown in mice deficient in IRF3 and IRF7 (IRF3/7−/−).
CHIKV infection in this mouse model was lethal, and this was associated with the failure to
induce IFN-α and IFN-β production [74]. Consistently, severe and lethal CHIKV infection
was observed in mice lacking IFN-α/β receptors (IFNAR−/−) [74,81]. A closely related
study showed that this type I IFN signaling acted via non-hematopoietic cells rather than on



Viruses 2023, 15, 48 8 of 29

immune cells [82]. In another mouse model, nasal administration of adenovirus-vectored
IFN-α both as a prophylactic and a therapeutic agent conferred effective protection against
the lethal challenge of CHIKV infection [83]. Notably, it has been reported that excessive
production of IFN-α was associated with poor clinical outcomes in patients infected with
CHIKV [84]. While extensive studies have been performed to delineate the role of type
I IFNs, type III IFNs (IFN-λ) were also shown to have antiviral effects against CHIKV
replication [85]. Further studies are required to describe the precise role of type III IFNs
during CHIKV infection, particularly in humans.

The increased production of type I IFNs will signal in an autocrine or paracrine
manner to intensify the signal or to induce an antiviral state in neighboring uninfected
cells, respectively. Type I IFNs will bind to IFN-α/β receptors and ultimately result in the
induction of hundreds of IFN-stimulated genes (ISGs) via JAK-STAT signaling pathways.
Subsequently, those ISGs cooperatively establish an antiviral state within the infected
and adjacent cells, including inhibition of viral replication and virion maturation [72]. In
human skin fibroblasts and in mice models infected with CHIKV, several ISGs were notably
upregulated, including IFIT1, STAT1, IFIT3, and ISG15, among others [86,87], suggesting
their functional roles in defending against CHIKV infection. Indeed, several studies have
characterized the role of individual ISGs in restricting CHIKV replication. IFI16 was
upregulated upon CHIKV infection, and its overexpression led to marked inhibition of
CHIKV replication [88]. Other ISGs that have been demonstrated to exert anti-CHIKV
effects were IFITM3 [89,90], DDX56 [91], IFIT1, IFIT2, IFIT3 [86], IRF1 [92], and ISG20 [93].
The essential roles of ISG expression were also shown in microbiome-depleted mice [94]. In
these mice, microbiome depletion led to uncontrolled CHIKV dissemination due to altered
TLR-MyD88 signaling that resulted in a striking reduction of type I IFN production by
plasmacytoid DCs and ISG expression by monocytes [94].

4.2. Antagonism of IFN Responses by CHIKV

To survive within the infected host cells, CHIKV has evolved multiple strategies
to evade the IFN responses, similar to many other viruses. CHIKV-encoded proteins,
including nsP2, E1, and E2, strongly inhibited the activation of the IFN-β promoters
by MDA5/RIG-I and MAVS signaling pathways [95]. Additionally, nsP2 suppressed
IRF3-mediated activation of the IFN-β promoter [95] as well as MDA5/RIG-I and MAVS-
mediated activation of NF-κB promoters [96]. In addition to nsP2, E1 and E2 proteins had
similar inhibitory activities of the NF-κB promoter [96]. Thus, CHIKV-encoded proteins
may evade viral recognition that leads to the dampening of IFN responses [97].

In Vero cells infected with CHIKV and treated with IFN-α, IFN-β, and IFN-γ at four
hours post-infection, CHIKV replication was not inhibited [98]. This finding suggests
that CHIKV was potentially resistant to IFN treatment in some cell lines in vitro. Further
studies showed that this IFN resistance involved inhibition of the JAK-STAT signaling
pathway. CHIKV-nsP2 was shown to inhibit the induction of ISGs. Mechanistically, nsP2
efficiently blocked the nuclear translocation of STAT1 [98,99]. nsP2 also promoted the
nuclear export of STAT1 [100]. Interestingly, the presence of mosquito saliva also supported
CHIKV replication by dampening the JAK-STAT signaling pathways that led to decreased
expression levels of ISGs [101].

5. The Host Adaptive Immune Responses against CHIKV Infection
5.1. The T Cell-Mediated Immune Responses against CHIKV

An essential role of CD4 T cells in controlling CHIKV infection was shown in CD4-
deficient mice. In these mice, the development of anti-CHIKV antibodies was suboptimal
and exhibited reduced neutralizing capacities [102]. This finding indicates the requirement
of CD4 T cells in mediating humoral immunity against CHIKV. The functionality of T cell
responses was also studied in chronic and recovered CHIKV patients at 12 to 24 months
post-infection. IFNγ-producing CD4 and CD8 T cells were detectable in the majority (85%)
of the patients (Figure 3). This IFN-γ response was mainly directed against the nsP1 and
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E2 peptides, although the intensity was mainly induced by E2 [103]. More specifically,
the C-terminal half of the E2 protein induced a high frequency of T cell response and the
highest level of IFN-γ release [103].

However, the pathogenic roles of CD4 T cells were also shown. CHIKV infection
in CD4−/− and CD8−/− mice resulted in similar viremia levels with the wild-type mice.
Interestingly, joint swelling was significantly reduced in CD4−/− mice. Characterization of
the immune cells demonstrated that the numbers of CD4 T cells were significantly increased
in the infected joints and partially controlled the infiltration of CD8 T cells, although the
exact mechanism remained elusive [104]. This finding indicates that CD4, and not CD8 T
cells, are responsible for the joint inflammation induced by CHIKV infection.

In patients with acute CHIKV, it was shown that CD8 T cells were activated, as
demonstrated by increased expression of CD69 (an early activation marker), CD107a,
perforin, granzyme, among others [105]. This pattern suggests that CD8 T cells are activated
during the acute phase and functionally mediate cytotoxic activities. In the mice model,
increased numbers of CHIKV-specific CD8+ T cells accumulated in the spleen and joint-
associated tissues. These CHIKV-specific CD8 T cells were capable of producing IFN-γ
upon ex vivo stimulation, indicating their functionality as effector T cells [106]. Interestingly,
the presence of these functional effector T cells did not result in the reduction of viremia
levels in CHIKV-infected mice. However, the presence of functional effector CD8 T cells
prior to CHIKV infection resulted in CHIKV clearance, although this effect was more
predominant in the spleen than in the joint-associated tissues [106]. Altogether, these
data suggest that CHIKV has developed strategies to evade recognition of CD8 T cells to
establish chronic infection in the joints.

It has been shown that manipulation of T cell responses could hold promise for future
therapeutic intervention strategies. In a chronic CHIKV mouse model, administration of
anti-CD137 resulted in viral clearance [54]. CD137 is a costimulatory molecule found on the
surface of T cells, NK cells, and B cells. The therapeutic effect of anti-CD137 was partially
CD4 and CD8 T cell-dependent and associated with the elimination of the CHIKV reservoir
in B cells and follicular dendritic cells in secondary lymphoid tissues during the chronic
phase [54].

Several studies investigated the function of regulatory T cells (Treg) in the CHIKV
disease pathogenesis [107,108]. The frequency of Treg was lower in acute and chronic
CHIKV compared to recovered cases. In line, the IL-10 level was higher in recovered than
in acute and chronic cases [107]. In addition, impaired functions of Treg were reported,
which were characterized by lower expression PD-1, CTLA-4, and TGF-β [108]. This finding
suggests that during acute and chronic CHIKV disease, Treg frequency and function are
impaired and that normalization of Treg is associated with disease resolution. In mice,
Treg expansion led to the resolution of CHIKV-induced joint inflammation. Treg expansion
induced energy of CHIKV-specific CD4 T cells and subsequent infiltration of CD4 effector
T cells [109].
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Figure 3. The kinetics of immune responses against CHIKV infection. The level of IFN peaks
at between 0 and 5 after symptom onset [110]. The activation of CD8 and CD4 T cells peaks at
day 1 and 4 after symptom onset, respectively. The functional CD4 and CD8 T cell responses are
detectable at 12 to 24 months post-infection [71]. Anti-CHIKV IgM gradually increased from as early
as day 2–4 after symptom onset and then remained stable until 4-10 months [111–114]. Anti-CHIKV
IgG is detected after the first week of infection and remains positive for several years [115]. Since
the drawing is based on limited number of studies, further comprehensive studies are required to
delineate the precise kinetics and durability of immune responses against CHIKV infection.

5.2. The Humoral Immune Responses against CHIKV

An early study in mice showed the pivotal roles of antibodies to control CHIKV infec-
tion [102]. In B cell-deficient mice, CHIKV infection led to more severe diseases and viral
persistence for more than one year. This finding indicates the essential role of antibody-
producing B cells in mediating viral clearance [102]. Administration of monoclonal anti-
bodies obtained from patients infected with CHIKV protected the mice against the lethal
challenge of CHIKV [116]. Another study employed lipid-encapsulated mRNA encoding
potent human-derived monoclonal antibodies (CHKV-24 mAb). Infusion of CHKV-24
successfully reduced viremia levels and protected the mice from clinical disease and lethal-
ity [117]. Similarly, the administration of monoclonal antibodies to CHIKV-infected rhesus
macaques led to viral elimination and reduced joint pathology [118]. Remarkably, CHIKV
antibodies generated against a particular genotype conferred protection against other
genotypes [62,119]. All of these findings emphasized the importance of antibodies for the
clearance of CHIKV infection.
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In CHIKV infection, anti-CHIKV IgM gradually increased from as early as day 2–4 after
symptom onset [112,113], and then remained stable until 4 months [114]. Anti-CHIKV IgG,
dominated by the IgG3 subtype, can be detected in the early convalescent stage at 10 days
post-symptom onset in a group of patients and remained detectable after 2–3 months post-
symptom onset (Figure 3) [120]. Another group of patients developed anti-CHIKV later
at 4–6 weeks post-symptom onset. The early IgG3 antibody formation (at day 10) was
associated with reduced viremia levels and prevention of chronic and severe diseases [120].
Similarly, early production of IgM antibodies with neutralizing capacities was associated
with reduced viremia levels [113]. The neutralizing activity of IgM was complementary
to the early IgG antibodies but played an important role in days 4 to 10 post-symptom
onset [113]. The presence of IgM and IgG was also associated with cytokine and chemokine
levels, suggesting the role of antibodies in modulating the overall immune responses in
CHIKV-infected patients [56,120].

The E2 glycoprotein is the main target of antibody responses, both in mice and hu-
mans [102,121–123]. In mice, epitopes located in the C terminus of the E2 glycoprotein
are the main target of antibodies [102]. Characterization of antibody responses in patients
infected with CHIKV found multiple monoclonal neutralizing antibodies targeting distinct
epitopes in the E1 and E2 glycoproteins. However, only E2-specific antibodies protected the
mice against the lethal challenge of CHIKV infection [116]. CHIKV-E2-specific antibodies
can block viral fusion and release from the infected cells [123].

Several other studies investigated associations between the quality of antibody re-
sponses and disease pathogenesis. Longitudinal analyses of CHIKV-infected patients
demonstrated that CHIKV-specific IgG binding avidity was increased over time, in line
with enhanced neutralizing capacities [121]. A significantly higher antibody avidity against
E1 and E2 proteins was found in acute patients compared to chronic patients [119]. This
finding suggests that the quality of the CHIKV-neutralizing antibodies plays an important
role in protection against chronicity, although it is not clear the required threshold for
protection against chronic progression.

The possible roles of anti-CHIKV antibodies in immunopathology have been ad-
dressed by several studies. In vitro, CHIKV infection in the presence of anti-CHIKV
antibodies resulted in enhanced attachment and viral replication. Consistently in mice,
experimental CHIKV infection in the presence of sub-neutralizing concentrations of anti-
CHIKV antibodies worsened the progression of the diseases [124]. These findings highlight
that antibody-dependent enhancement (ADE) should be further investigated, particularly
during the development of CHIKV vaccines. Other studies focused on molecular mimicry
between CHIKV and human proteins. Two epitopes within the E1 protein had notable simi-
larities with human protein. Administration of these peptides into mice led to inflammation
in the muscle to a similar extent to CHIKV-injected mice [125]. Another study reported
the development of Sjogren’s Syndrome (SS) associated with CHIKV infection. This was
possibly due to molecular similarity between CHIKV proteome and SS autoantigens [126].
Further studies are highly required to dissect the role of CHIKV-specific antibodies in
immune-mediated pathology.

6. The Clinical Manifestations of CHIKV Infection
6.1. Acute Phase of Infection

In the past centuries, dengue and chikungunya fever were often misdiagnosed despite
the fact that the clinical symptoms are distinguishable on the basis of differences in the
disease onset and sequelae following recovery from the acute infection [127]. CHIKV
infection can be categorized into three stages: the acute stage (from day 1 to day 21), the
post-acute stage (day 21 to 3 months), and the chronic stage (more than 3 months) [128].
During the acute stage, the infected patients may experience a viremic phase (5–10 days)
and a post-viremic phase (6–21 days) [128,129].

The clinical manifestations of CHIKV infection have a wide variety, ranging from
asymptomatic, mild symptoms, to severe disabling disease (Table 1) [129]. A study showed
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that the asymptomatic infection ranged from 3%-47% of all infected cases [130]. The
median incubation period of CHIKV infection is 3 days, ranging from 2 to 12 days [131].
The acute viremic stage of CHIKV infection is characterized by abrupt onset of high-
grade fever (often >39 ◦C), arthralgia, myalgia, headache, fatigue, nausea, vomiting, and
arthritis [129,132–134]. Other symptoms, including conjunctivitis, exanthema, and edema
may also occur. The exanthema can present as diffuse or focal skin rash [10,135,136]. This
disease is self-limiting and, in most patients, will resolve in 7–10 days [129].

Table 1. The clinical manifestation of chikungunya fever.

Signs and Symptoms Proportion Reference

Fever 91% [132]

Myalgia 64.9% [133]
61.0% [132]

Arthralgia 100% [133]
86% [132]

Arthralgia and myalgia 82% [134]

Arthritis
58% [134]
56% [132]

Back pain 55.0% [132]

Rash
54% [134]

70.05% [133]

Pruritus
61.9% [133]
12% [132]

Conjunctivitis 4.2% [136]
21% [132]

Non-severe hemorrhage 5% [135]

Headache
47.1% [135]
74% [134]
69% [133]

Fatigue 66% [134]

Nausea
62% [134]
47% [132]

Vomiting 60% [134]
21.0% [132]

Diarrhea 12.0% [132]

Retroorbital pain 18.0% [132]

Abdominal pain 19.0% [132]

Photophobia 9.0% [132]

In the post-acute phase, symptoms are characterized by varied manifestations resulting
from persisting initial acute symptoms [137]. During this phase, some symptoms including
articular symptoms and fatigue persist, but fever will diminish [10]. Polyarthritis is usually
symmetrical and involves small and large joints, including knees, ankles, hands, and
wrist [138]. Moreover, periarticular involvement, including enthesitis, tenosynovitis, and
bursitis can also occur [128]. Acute CHIKV infection may also trigger an exacerbation of
the previous autoimmune arthritis history [139].

Severe symptoms, involving vital organs, may develop during CHIKV infection.
Individuals with comorbidities, elderly populations, and infants have a higher risk to expe-
rience these severe symptoms [134,140–142]. These severe complications include encephali-
tis, encephalopathy, neuro-ocular disease (uveitis, retinitis, optic neuritis), myelopathy
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and myelitis, Guillain-Barré syndrome, myocarditis, hepatitis, acute interstitial nephri-
tis, severe sepsis, septic shock, and multi-organ failure [141,143,144]. Perinatal CHIKV
infection can cause sequelae such as microcephaly, cerebral palsy, and neurocognitive
impairment [145,146].

The clinical manifestations of CHIKV infection showed different characteristics be-
tween children, adults, and older adults [134]. Arthritis, joint swelling, and joint stiffness
are present more frequently in adults than in children [134]. On the other hand, arthralgia
is common in children and adults [134]. Older adults tend to have an atypical or severe
presentation due to their comorbidities, and the disease could induce acute decompensation
of comorbid conditions [140]. In children, recurrent CHIKV infections, associated with
fever and viremia, are commonly found [147].

6.2. Chronic or Persistent Phase of Infection

The chronic stage of CHIKV virus infection is characterized by persisting symptoms
of more than three months after the initial diagnosis of acute infection. Chronic CHIKV
disease is often limited to more distal joints due to persistent viral replication and inflam-
mation. CHIKV persistence is found in some organs, including endothelial cells in the liver,
mononuclear cells in the spleen, macrophages within the synovial fluid and surrounding
tissues, and satellite cells within the muscles [39]. The mechanism of this persistence is
not fully understood. Some persistent symptoms such as arthralgia, myalgia, and arthritis
have been described and suggest the persistence of viral infection in the target organ or
deleterious inflammatory mechanisms which cause tissue damage [70].

Some studies have been performed to examine the chronic symptoms of CHIKV virus
infection. The joint symptoms usually resolve within 1–3 weeks. However, a study in
Singapore showed 13% of the patients had chronic arthralgia 3 months after infection [148].
A study from La Réunion showed that arthritis was experienced by half of the patients 1
year after inclusion [149]. Another study showed arthritis appeared for 4 months in 33% of
the patients, 20 months in 15%, and 3–5 years in 12% [150]. During this stage, patients could
experience unpredictable relapses of fever, asthenia, arthralgia, and stiffness [150,151]. The
older patients and those who had previous rheumatic or traumatic joint disorder were
more susceptible to developing this chronic stage [150].

Researchers have studied the predictor factors for infected patients to develop chronic
symptoms. A cohort study in the French West Indies (La Martinique) investigated the
predictors for the occurrence of chronic CHIKV arthritis in 193 patients and found that
age, female sex, and dehydration state during the acute phase as important factors [152].
Another study found that a high baseline viral load was detected in patients with chronic
diseases [149]. However, this result was not in accordance with a study in Singapore [148].
The stronger inflammation in the acute phase is thought to be one predictor of the devel-
opment of chronic symptoms. One study showed that a stronger inflammation, which
was characterized by higher levels of C-reactive protein (CRP), was associated with higher
levels of TNF-α, IL-8, IL-6, and IL-12, and did not significantly predict the development of
chronic symptoms [149].

7. Diagnosis of CHIKV Infection

The diagnosis of CHIKV infection based on laboratory examination is very important
due to its unspecific and overlapping signs and symptoms. The diagnosis of CHIKV
merely based on clinical symptoms is highly challenging, particularly in endemic areas
where other arboviruses, including DENV and Zika virus (ZIKV), are also co-circulating.
CHIKV infection should be taken into consideration in patients presenting with acute
febrile illness and polyarthralgia, especially travelers who recently returned from areas
with known endemicity of CHIKV transmission [153]. A clinical study showed that fever
and polyarthralgia had 84% sensitivity, 71% positive predictive value (PPV), and 83%
negative predictive value (NPV) [154].
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Laboratory examination of CHIKV infection can be performed using various meth-
ods, including viral isolation, serological methods, and RNA detection using real-time
quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) [155]. In the past,
the diagnosis was mainly based on serological methods to detect the presence of specific
antibodies against CHIKV. With the advance of molecular techniques, qRT-PCR is more
commonly used to detect the presence of viral RNA, particularly in the acute phase of
infection. Most importantly, the testing method should be carefully selected by considering
the purpose of the examination and the timing of specimen collection [155]. Accordingly,
the interpretation of laboratory findings should be based on the kinetics of viral replication
(viremia) and antibody responses in humans (Figure 4).
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nose CHIKV infection. The RT-PCR and virus isolation are best performed near the onset of febrile
illness where viremia reaches its highest level. The serological tests to detect the presence of IgM and
IgG are best performed after seven days of the symptom onset.

7.1. Virus Isolation

Virus isolation by using cell culture is the gold standard for viral detection and it
is highly specific [150]. The isolation of infectious viral particles is commonly used in
research settings, such as for pathogenesis study and molecular characterization. The
major limitation of viral culture is its low sensitivity, and the results require at least 48 h.
Other limitations are that it requires an expensive cost, extended time, high-containment
laboratory equipment (biosafety level 3), and skilled laboratory personnel [156,157]. Thus,
virus culture is rarely performed in clinical (diagnostic) settings [157]. The isolation could be
performed in the acute viremia stage, before the eight days of infection [157]. Noteworthily,
the sensitivity could be increased when the viral culture is performed on the day or near
the acute febrile onset where viremia reaches its highest level [158].

To isolate CHIKV, some cell lines from humans, monkeys, and mosquitos have been
employed [159]. Several studies showed that Vero (African green monkey kidney epithelial
cells), BHK-21 (baby hamster kidney fibroblast), C6/36 (Aedes albopictus cells), and BEAS-
2B (bronchial epithelial) cell lines produced high titers of CHIKV, while low titers were
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found in RD (human rhabdomyosarcoma) and A549 (human alveolar basal epithelial)
cells [48,160]. In addition, while human primary CD4 T lymphocytes and Cd14 monocytes
do not support CHIKV replication, human primary macrophages productively support
CHIKV replication [48].

CHIKV induces a marked cytopathic effect (CPE) during the culture which can be
observed as early as 24 h post-infection [48]. A study that compared the diploid human
embryonic lung (HEL) and Vero cell cultures to isolate CHIKV showed that CPE appeared
earlier in the HEL than in Vero [161]. In HeLa cells, CHIKV generates extensive cell death
by apoptosis which can be seen by using immunofluorescence assay and can be measured
by using colorimetric MTT assay [48].

7.2. Nucleic Acid Detection

Nucleic acid detection is a rapid and highly sensitive assay to diagnose CHIKV
infection. The qRT-PCR is a common method to detect the genome of CHIKV [162]. It
can be used as multiplex PCR to simultaneously detect the presence of other arboviruses,
including ZIKV [163]. Recently, loop-mediated isothermal amplification (LAMP) has been
developed that enables rapid amplification of the viral genome under isothermal conditions
without the need for expensive facilities such as thermocycler [164,165]. Thus, the major
advantages of LAMP are it is simpler, cheaper (compared to qRT-PCR), sensitive, and rapid
which enables its routine application in remote areas [164,165].

After primary CHIKV infection, the virus is replicating rapidly resulting in a high
level of viremia. A systematic review estimated that the median incubation period is
around 3 days (range 2–12 days) [131]. The viral RNA of CHIKV can be detected by the
qRT-PCR method from 0 to 7 days of infection, after which qRT-PCR detection becomes
unreliable [155,166]. A study examining the viremia profile of laboratory-confirmed CHIKV
cases demonstrated that the virus RNA can be detected as early as 6 days prior and extend
to 13 days post-acute fever onset. Viral RNA reaches its highest level at or near the onset of
febrile illness (up to 6.1 × 108 pfu/mL) [158]. In asymptomatic individuals, the viral load
can be as high as 2.9 × 105 pfu/mL, with a median of 3.4 × 103 pfu/mL [166].

A conserved region of the envelope E1 and E2 genes is the most common target for
qRT-PCR [2,167]. Other targets include nsP1 and nsP4 genes [168,169]. To diagnose CHIKV
infection, plasma and serum have become the most commonly used clinical samples [170].
However, other body fluids, such as saliva, urine, vaginal secretion, and semen can also
contain CHIKV during the acute phase of the disease [171].

7.3. Serology Tests
7.3.1. IgM and IgG Antibodies-Based Serological Tests

Serology testing is a simpler testing than qRT-PCR and can be conducted to detect
anti-CHIKV immunoglobulin M (IgM) and immunoglobulin G (IgG). These antibodies can
be detected by enzyme-linked immunosorbent assay (ELISA), immunofluorescence assays
(IFA), and plaque reduction neutralization tests (PRNT) [172]. The IgM ELISA is the most
commonly used method to establish the diagnosis of CHIKV infection [173].

As mentioned, IgM can be detected in 2–10 days after the onset of infection and
it remains detectable up to 4–10 months post-infection [111–114]. Meanwhile, IgG is
detected after the first week of infection and remains positive for several years [115].
However, if the arthritis persists for >3 months after CHIKV infection, it is recommended
to check rheumatoid factor (RF), anti-citrullinated peptide antibody (anti-CCP), and human
leukocyte antigen (HLA) B27 to find possibilities underlying rheumatoid arthritis and
spondyloarthritis [128].

There are various commercially available kits for IgM and IgG detections developed
by Euroimmun (Lubeck, Germany), Standard Diagnostics (SD) Inc. (Yongin-si, Republic of
Korea), Abcam (UK), and InBios (Seattle, WA, USA), either as ELISA-based, immunofluores-
cence assays (IFA)-based, and rapid tests. The overall sensitivity and specificity of ELISA-
and IFA-based tests are high (more than 90%), although the sensitivity of SD Chikungunya
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IgM ELISA (Standard Diagnostics Inc., Yongin-si, Republic of Korea) is relatively low
(65.3%) [174]. For rapid tests, the sensitivity is very low (27.9% for On-site CHIKM IgM
Combo Rapid test (CTK Biotech Inc., San Diego, CA, USA) and 19.1% for SD BIOLINE
Chikungunya IgM (Standard Diagnostics Inc., Yongin-si, Republic of Korea)) [174].

A systematic review and meta-analysis showed that IgM detection test had more
than 90% diagnostic accuracy for the ELISA-based test, IFA, in-house developed tests, and
samples collected after seven days of the symptom onset [174]. However, the sensitivity
of IgM detection tests was lower for rapid tests (42.3%), commercial tests (78.6%), and
samples collected seven days before the symptom onset (26.2%) [174]. Therefore, IgM
detection tests are highly recommended for samples taken during the convalescent phase
of CHIKV infection. The specificity of IgM detection tests was more than 90%, regardless
of the test formats and time of sample collection [174]. Additionally, the diagnostic perfor-
mance of the IgG test was more than 93% [174]. While many commercial ELISA kits are
based on the whole-inactivated CHIKV, recombinant E2-based ELISA tests have also been
developed [175,176].

Serology diagnosis is limited by cross-reactivities with other arboviruses [177]. CHIKV
is antigenically similar to other viruses within the Alphavirus genus, including Semliki
Forest Virus (SFV), MAYV, and ONNV [3,178]. In South America where CHIKV and
MAYV cocirculate, the interpretation of serological tests was problematic due to high false
positives [179]. Cross reactivities with DENV, which belongs to the Flavivirus genus, have
also been reported, with an overall sensitivity of 100% and a very low specificity of only
25.3% [180]. Thus, reliable serology diagnostic tools should be more carefully evaluated in
both acute and convalescent patient sera, particularly in regions where multiple viruses
co-circulate [181].

7.3.2. Antigen-Based Serological Tests

Serological tests for CHIKV E1/E2 antigen detection have also been developed, includ-
ing rapid [112,182,183], ELISA-based test [184,185], and fluorescent-linked immunosorbent
assay (FLISA)-based tests [186]. A meta-analysis study of rapid and ELISA-based tests
showed that they have a good performance for clinical samples collected during the acute
phase of infection [174]. The sensitivity and specificity of rapid-based tests were 85.8% and
96.1%, while the ELISA-based test was 82.2% and 96.0%, respectively [174]. Notably, a
study reported that FLISA had higher sensitivity compared to ELISA [186].

The main challenge for developing antigen-based serological tests is the performance
heterogeneity due to different CHIKV genotypes [187]. An initial evaluation of diagnos-
tic accuracy of immunochromatographic-based rapid test with limited samples showed
a higher sensitivity for the ECSA genotype (88.9%) compared to the Asian genotype
(33.3%) [182]. However, the development of new monoclonal antibodies against the E1
protein has improved its sensitivity against the Asian genotype [185]. Thus, the identifi-
cation of antibodies that specifically recognize conserved epitopes across CHIKV geno-
types is necessary for further development of antigen-based test against CHIKV. These
newly developed tests should be evaluated in different geographical settings to cover all
circulating genotypes.

8. The Current Development of Vaccine Candidates against CHIKV

Since the first isolation of CHIKV, significant efforts have been invested to develop
CHIKV vaccines. However, until recently, there are no CHIKV vaccines that have been
approved to prevent the infection. Along with the progress of molecular techniques,
new-generation platforms of CHIKV vaccine candidates have been developed with promis-
ing safety and efficacy profiles. Various vaccine platforms or delivery strategies can be
employed to construct CHIKV vaccines, including classical approaches (inactivated, live-
attenuated vaccine, and protein subunit vaccines) and novel approaches (recombinant
virus-vectored vaccines, virus-like particles, and nucleic acid DNA or RNA vaccines) [188].
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Importantly, some studies for the development of CHIKV vaccine candidates have entered
phase II and/or phase III clinical trials (Table 2).

A previous study examined the potentiality of an E2 protein-based recombinant
vaccine and a whole virus-inactivated vaccine [189]. Both vaccines induced an anti-CHIKV
antibody response in a dose-dependent manner. Furthermore, both vaccines conferred
protection to CHIKV-infected mice. Upon challenge, vaccinated mice had undetectable
levels of viral load in blood and tissues [189]. E2CHIKV recombinant protein formulated with
an adjuvant Poly (I:C) induced efficient E2CHIKV-specific humoral and cellular immune
responses [190]. However, the excellent safety profiles of inactivated and protein subunit
vaccines come at the expense of their efficacy, since both vaccine platforms require good
and immunogenic adjuvants [189–191].

Table 2. The summary of the recent CHIKV vaccine candidates in phase II/III clinical trials.

Vaccine Platform
Background

CHIKV
Strain

Number of
Doses

The Last Stage
of Development Developer References

VLA1553 Live-attenuated LR2006-OPY1
(ECSA-IOL) Single dose Phase III

(completed)
Valneva, Austria

GmbH

NCT04786444,
NCT04838444,
NCT04546724,
NCT04650399

VRC-
CHKVLP059-

00-VP
Virus-like particle

37997 strain
of the WA
genotype

Two doses Phase II

The US National
Institute of
Allergy and
Infectious

Disease (US
NIAID)

NCT02562482,
NCT01489358,
and [192,193]

PXVX0317 Virus-like particle
(adjuvanted)

37997 strain
of the WA
genotype

Single dose Phase III

Emergent
BioSolutions

(Gaithersburg,
MD, USA)

NCT03483961,
NCT05072080,
NCT05349617,

and [194]

MV-CHIK-
202

Recombinant
measles

virus-vectored
vaccine

pTM-
MVSchw-

CE3E26KE1

Single or two
doses Phase II Themis

Bioscience GmbH

NCT02861586,
NCT03101111,
and [195,196]

BBV87 Whole
virus-inactivated ECSA Two doses Phase II and III International

Vaccine Institute NCT04566484

8.1. Live-Attenuated Viral Vaccines (LAV)

LAV is highly immunogenic compared to the other platforms since the attenuated
strain retains a weakened replicating capacity and thus, can induce stronger immune re-
sponses. The attenuated phenotype can be achieved by recombination technology and site-
directed mutagenesis in both structural and non-structural proteins of CHIKV [197–199].
An attenuated phenotype of CHIKV was successfully achieved by site-directed mutage-
nesis of a nucleolar localization sequence (NoLS) in the N-terminal region of the capsid
protein [198]. The resulting attenuated strain, termed CHIKV-NoLS, led to minimal inflam-
mation and tissue damage in inoculated mice. The stability of the attenuated phenotype
was confirmed by examining growth kinetics and plaque size following extended in vitro
passage in Vero cells and long storage at −20 ◦C and −80 ◦C [200].

Another LAV candidate manipulated the nsP3 gene by deleting 60 amino acid residues
in the P1234 polyprotein (∆5nsP3) in the background of the CHIKV LR2006-OPY1 strain
of the ECSA-IOL genotype [199,201]. Preclinical data showed that this ∆5nsP3 was highly
immunogenic and conferred protection against CHIKV disease in mice and cynomolgus
macaques [199,201]. A phase I clinical trial showed that one dose of ∆5nsP3 (VLA1553) was
well-tolerated and induced high and sustained seroconversion rates after a one-year follow-
up [202]. Recently, VLA1553 (Valneva, Austria GmbH) has been reported to complete the
phase 3 trial. Seroprotection of CHIKV-neutralizing antibodies was confirmed in 98.9% of
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participants after one month of receiving the single-shot dose [203]. In line, the passive
transfer of sera from VLA1553-vaccinated volunteers to NHP conferred complete protection
from CHIKV viremia following the challenge with wild-type (WT) CHIKV [204].

The previous production of LAV employs traditional culture methods in the cell
culture systems [205]. There are several limitations of this “traditional” LAV, including
variability of the characteristics of the vaccine products depending on the culture conditions
used, contamination of vaccine materials, limited scalable production, and safety issue
related to the continuous passages that lead to genetic changes (genetic drift). In addition,
a safety concern of LAV formulation is the reversion to the pathogenic phenotype that may
occur during the production process and post-administration in the vaccinees [205,206].
A considerable number of arthralgia in vaccinees was reported during a previous phase
II trial of LAV CHIKV strain 181/25 (TSI-GSD-218), raising concern about this safety
issue [205]. The attenuated phenotype of CHIKV strain 181/25 was largely attributed to a
glycine-to-arginine 80 mutation at residue 82 (G82R mutation). To improve the safety of
this vaccine candidate, muscle-specific miR-206 target sequences were incorporated into
CHIKV strain 181/25 containing the G82R mutation [207]. Preclinical data demonstrated
that the combined mutations led to enhanced safety in inoculated mice [207].

8.2. Nucleic Acid-Based (RNA) Vaccines

Recent advances in RNA vaccine technology have driven rapid development of many
vaccine candidates targeting emerging viral diseases, such as Pfizer and Moderna vaccines
which have been approved for the novel coronavirus disease 2019 (COVID-19) and they
are now widely available for mass vaccination [208]. Additionally, it can be combined
with another vaccine platform to improve its efficacy. For instance, recently developed
candidates for CHIKV vaccines combine the advantages of contemporary RNA vaccine tech-
nology with the more established LAV. Administration of a full-length in vitro-transcribed
live-attenuated CHIKV genome by employing nanostructured lipid carrier (NLC) via intra-
muscular injection in C57BL/6 mice led to induction of high titers of neutralizing antibodies
and protection to the subsequent lethal challenge of CHIKV [209]. Similarly, a liposome
RNA delivery system was employed to directly deliver the self-replicating RNA genome of
CHIKV-NoLS into mice [210]

8.3. Virus-like Particle (VLPs)

Another CHIKV vaccine candidate employed virus-like particles (VLPs) as the main
strategy to elicit protective immunity in humans. VLPs are generated by the expression
of CHIKV structural genes by using a DNA expression plasmid transfected into human
cells. The expressed proteins subsequently form viral particles that are similar to intact
virions because of their self-assembly capacity. However, VLPs are replication-incompetent
because of the absence of genomic RNA and thus, have a better safety profile compared to
LAV [211].

A VLP vaccine, the VRC-CHKVLP059-00-VP (CHIKV VLP), has been developed
by selective expression of viral structural proteins of the 37997 CHIKV strain of the WA
genotype [212]. Preclinical data from nonhuman primate experiments showed that CHIKV
VLP stimulated a high titer of neutralizing antibodies that conferred protection against the
heterologous CHIKV challenge [212]. The vaccine was safe, well-tolerated, and elicited
neutralizing antibody responses comparable with natural infection titers in a phase I
trial in healthy individuals. It was also capable of neutralizing CHIKV strains of distinct
genotypes [193,213]. A phase II clinical trial has been completed to assess the safety
and tolerability of the CHIKV VLP vaccine candidate [192]. The data showed a good
safety profile with no serious adverse events related to the investigational product. The
vaccine candidate elicited a durable neutralizing antibody response during a follow-up of
72 weeks after vaccination [192]. Another phase II trial has been conducted to evaluate the
immunogenicity and safety of PXVX0317, an aluminum hydroxide-adjuvanted formulation
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of the CHIKV VLP vaccine. It was shown that PXVX0317 induced a durable neutralizing
antibody response against CHIKV after 2 years of follow-up [194].

8.4. Recombinant Virus-Vectored Vaccines

Recombinant virus-vectored vaccines are developed by manipulating the vector virus
genome to contain the gene of interest encoding potential antigen derived from a specific
virus [214]. The vector itself could be replication-incompetent (including modified vaccinia
Ankara (MVA), influenza virus, and adenovirus (AdV)) or replication-competent viruses
(including measles virus, influenza virus, vesicular stomatitis virus (VSV), and Newcastle
disease virus (NDV)) [208]. One limitation of this approach is that its effectivity is influenced
by the pre-existing host (human) immunity against the vector itself. However, this challenge
can be circumvented by employing vectors that are rarely found in humans, vectors derived
from animal viruses, or vectors that weakly induce immunity in humans [208].

A measles virus-vectored vaccine has been developed by inserting structural genes of
CHIKV in the measles virus genome to express CHIKV VLPs [215]. In immunized mice,
this vaccine elicited high titers of antibodies and protected the mice from the lethal CHIKV
challenge [215]. This vaccine was further evaluated in cynomolgus macaques. High neutral-
izing antibody titers were induced in vaccinated animals that conferred protection against
viremia and CHIKV-associated diseases [216]. Importantly, good safety and immunogenic-
ity profiles were demonstrated during the phase I and II clinical trials and warrant its
efficacy investigation in a phase III trial [195,196]. Other CHIKV vaccine candidates used
AdV type 5 (AdV-5) and chimpanzee AdV (ChAdOx1) [217,218]. AdV-5-based vaccines
expressing various combinations of CHIKV structural genes were administered intranasally
in C57BL/6 mice and effectively stimulated neutralizing antibodies that protect the mice
from viremia and CHIKV-associated pathology [218]. Similarly, ChAdOx1-based vaccines
capable of expressing CHIKV VLP efficiently induced both T cell and antibody responses
against CHIKV [217].

9. Conclusions and Future Perspectives

There is recently significant progress in scientific studies of various aspects of CHIKV.
However, the remaining gaps need to be extensively addressed. For example, the true
burden of CHIKV-associated diseases, particularly in developing countries, should be given
more attention since there are overlapping clinical manifestations with other endemic viral
infections in these regions. Thus, the development of standard diagnostic assays that are
simple, inexpensive, and accurate would be important in these resource-limited settings.
An improved understanding of the immunopathogenesis of chronic CHIKV disease is
necessary to develop therapeutic interventions. In addition, there is no CHIKV vaccine
available that has been used to prevent the infection. We believe that the availability of
safe and effective CHIKV vaccines would significantly reduce the burden of chikungunya
disease in the future.
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