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Abstract: Utilizing metabolomics, a tool for measuring and characterizing low-molecular-weight
substances (LMWs), to identify eventual changes in response to dietary intervention is novel in cats
with chronic kidney disease (CKD), a condition characterized by retention of uremic solutes. This
study aims to assess the serum metabolomic profile of cats in early stages of CKD and to compare
the serum metabolomic of CKD cats after 60 days of a renal diet to evaluate the effect of dietary
intervention on these metabolites. Twenty-five domestic cats were included in the study. Fifteen
cats with CKD stages 1 (n = 6) and 2 (n = 9) according to the International Renal Interest Society
(IRIS) were included in the renal groups, and a control group consisting of 10 cats was included.
All animals were enrolled on a maintenance diet for 30 days before the experimental period. The
metabolomics analysis was performed by gas chromatography-mass spectrometry (GC-MS). Partial
least squares discriminant analysis (PLS-DA) was performed on Metaboanalyst 4.0 software. Forty-
three metabolites were identified. Citric acid and monostearin were altered in the CKD2 group when
compared to CKD1 and the control group at T0. A total of seven serum metabolites differed after
60 days of the renal diet: glycine, fructose, glutamic acid, arachidonic acid, stearic acid, creatinine,
and urea. Changes were seen in the serum metabolomic profile after 60 days of the renal diet, and
some of the metabolites that changed in response to the diet have beneficial effects on health. Overall,
metabolomics markers have the potential to identify early stages of CKD, providing insights into the
possible pathophysiologic processes that contribute to the development and progression of CKD.
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1. Introduction

Chronic kidney disease (CKD) is a highly prevalent ailment in domestic cats, and is
characterized by progressive loss of renal function that is associated with high mortality
and morbidity [1,2]. The etiology of CKD is heterogeneous, and usually the primary causes
are not identified due to the adaptive course of the disease’s evolution [3,4]. Furthermore,
the time course of CKD is variable in cats [5]. The clinical signs may be non-specific and
only observed in the most advanced stages, after at least 66% of nephrons have been injured
or have fully lost their functions [6,7]. Polyuria and polydipsia, dehydration, hyporexia
or anorexia, gastrointestinal signs, anemia, lethargy, and cachexia are some of the clinical
signs that occur because of the failure to excrete waste metabolites that lead to uremic
syndrome [3,8,9].

New strategies for early diagnosis of CKD are emerging in veterinary medicine which
can aid therapeutic interventions to decrease disease progression. One of the major chal-
lenges is the early identification of structural and functional disorders when the animal
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presents no clinical signs. The metabolomics approach is the study that involves the iden-
tification and quantification of small molecules present in biological samples. It aims to
show changes in individual metabolism under different conditions, as well as to elucidate
the pathophysiological mechanism of chronic diseases such as CKD [10,11].

The idea of utilizing metabolomics to identify molecular signatures, and eventual
changes in response to dietary intervention, is novel in cats with chronic kidney disease.
The use of therapeutic diets in CKD management is one of the recommendations to control
the disease’s progression attenuating the oxidative stress [12–15] and the inflammatory
course of the disease [15,16]. Therapeutical renal diets have reduced protein, phosphorus
and sodium content, are enriched withω-3 polyunsaturated fatty acids (PUFAs), antiox-
idants, potassium, vitamin B, antioxidants, and soluble fiber and the caloric density is
increased [3,17–19]. These nutritional characteristics are designed to reduce clinical signs
of uremia and improve the survival rate of cats with CKD [20–22].

This study aimed to assess the serum metabolomics of healthy cats and cats with
CKD stages 1 and 2. The serum metabolomics of CKD cats was compared after a period of
60 days of the renal diet to evaluate the effect of dietary intervention on these metabolites.

2. Materials and Methods
2.1. Animals and Study Design

This study was conducted at the PremieRpet® Nutritional Development Center
(Dourado, São Paulo, Brazil) and at the Pet Nutrology Research Center (CEPEN pet)
of the School of Veterinary Medicine and Animal Science of the University of São Paulo
(FMVZ/USP) (Pirassununga, São Paulo, Brazil). The study was approved by the Ethics
Committee of the Veterinary Medicine and Animal Science School of the University of
São Paulo (FMVZ/USP), protocol number 5433030719, and the PremieRpet® Nutritional
Development Center, protocol number 088-18.

Twenty-five domestic cats were included in the study. Fifteen cats with CKD stage
1 (n = 6, 5 males and 1 female) and 2 (n = 9, 4 males and 5 females) according to the
International Renal Interest Society (IRIS) [9] were included in the renal groups. The control
group was composed of 10 healthy cats (n = 10, 6 males and 4 females).

The first experimental group (CKD1) was composed of six cats of various breeds
(Exotic, British Shorthair, Bengal, Persian, Abyssinian and half-breed cats), with a mean
age of 10.83 ± 1.05 years, mean body weight of 5.29 ± 0.73 kg, mean body condition score
(BCS) of 6.15 ± 0.47 [23], and mean muscle mass score (MMS) of 3.00 ± 0.16 [24]. These
animals were diagnosed with CKD stage 1 based on the presence of persistent alteration
of renal morphology on ultrasound findings, and normal blood levels of creatinine and
symmetric dimethylarginine (SDMA) (creatinine < 1.6 mg/dL and SDMA < 18 µg/dL)
according to IRIS [9].

The second group was the CKD stage 2 (CKD2) and consisted of nine half-breed cats,
with a mean age of 10.22 ± 1.35 years, mean body weight of 4.72 ± 1.51 kg, mean BCS
of 5.75 ± 0.42 [23], and mean MMS of 2.30 ± 0.14 [24]. These animals were diagnosed
with CKD stage 2 based on persistent azotemia over at least three months, with creatinine
ranging from 1.6 to 2.8 mg/dL and/or SDMA levels of 18 to 25 µg/dL according to IRIS [9].

The third group was the control group (CG) and consisted of 10 healthy cats of
various breeds (Ragdoll, Bengal, Maine Coon and half-breed cats) with a mean age of
5.30 ± 1.07 years, mean body weight of 4.52 ± 0.65 kg, mean BCS of 5.59 ± 0.37 [23],
and mean MMS of 2.84 ± 0.13 [24]. Healthy cats were included in the study based on
normal findings from history, physical examination, complete blood count (CBC), serum
biochemical profile, urinalysis, and abdominal ultrasound.

2.2. Diet and Feeding Protocol

All observed groups (CKD and control groups) were enrolled on a complete and
balanced dry food designed for senior cats (Senior diet; PremieR Gatos Castrados Acima
dos 12 anos. PremieR pet, Brazil) for 30 days before the samples were first collected.
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Subsequently, every group received a Test diet formulated for cats with CKD for 60 days
(Renal test diet). To adapt the animals to the new experimental diet, there was a 5-day
period when the previous food and the experimental diet were mixed. Sample collections
were conducted in two periods, T0 and T60: T0 being collected immediately after 30 days
of the senior diet and T60, 60 days after T0 (Figure 1). Both were extruded at PremieRpet®

Factory Unit (Dourado, São Paulo, Brazil). The analyzed chemical composition of the diets,
expressed in g/100 kcal, is presented in Table 1.
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Table 1. Diet composition per 100 kcal of dry matter (DM) and ingredients 1 according to the
manufacturer.

Nutrients (g/100 kcal DM) Senior Diet Renal Test Diet

Protein 10.34 8.68
Fat 5.23 3.94

Crude fiber 0.62 0.41
Ash 1.87 1.08

Calcium 0.32 0.13
Phosphorus 0.29 0.12
Ca/P ratio 1.12 1.08
Potassium 0.17 0.22

Sodium 0.20 0.08
Omega-3 0.10 0.28

Metabolizable energy
(kcal/kg) 3.920 4.353

Essential amino acids

Arginine 0.70 0.48
Phenylalanine 0.49 0.36

Histidine 0.26 0.18
Isoleucine 0.42 0.37
Leucine 0.94 0.79
Lysine 0.59 0.49

Methionine 0.28 0.17
Taurine 0.07 0.05

Threonine 0.41 0.35
Tryptophan 0.08 0.09

Valine 0.52 0.46
1 Ingredients: Senior diet: poultry meal, pork protein isolate, corn gluten meal, egg product, broken rice,
beet pulp, oat groats, chicken fat, soy oil, fish oil, hydrolyzed poultry and pork, sodium chloride, potassium
chloride, antioxidants butylated hydroxyanisole and butylated hydroxytoluene, betaine, L-carnitine, L-lysine, fruc-
tooligosaccharide, mannooligosaccharide, sugarcane fiber, acidifying additive, chondroitin sulfate, glucosamine
sulfate, taurine, Yucca schidigera extract, dried brewer’s yeast, vitamin and mineral premix; Renal test diet:
albumine, hydrolyzed chicken meal, poultry meal, pork protein isolate, corn gluten meal, egg product, soy
protein isolate, barley, cassava flour, ground whole corn, soy lecithin, broken rice, beet pulp, poultry fat, pork fat,
fish oil, calcium carbonate, potassium chloride, potassium citrate, fructooligosaccharide, galactooligosaccharide,
mannooligosaccharide, sugarcane fiber, acidifying additive, antioxidants butylated hydroxyanisole and butylated
hydroxytoluene, DL-methionine, L-lysine, magnesium oxide, calcium sulfate, vitamin and mineral premix.

The diet’s metabolizable energy (ME) content was estimated from the expected chem-
ical composition, and the maintenance energy requirements (MER) were estimated ac-
cording to the equation MER = 75 × BW0.67. Diets were prescribed on gram unit, and
the amount of food for each animal was calculated using MER and the diet’s ME. Fresh
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water was offered ad libitum. Cats were housed individually and had opportunities to
access an outdoor area to exercise and to access toys, and they interacted with staff from
the research centers.

2.3. Sample Collection and Preparation

All blood samples were collected by venipuncture in the morning period after 8 h of
fasting, and were transferred into red top vacutainer tubes containing a clot activator.

For gas chromatography-mass spectrometry (GC-MS) analysis, serum was separated
by centrifugation (3000 rpm for 10 min) within 30 min of collection and frozen immediately
at −80 ◦C for further analysis at the Metabolomics Laboratory at the Federal University of
São Paulo (UNIFESP), São Paulo, São Paulo, Brazil.

2.4. GC-MS, Acquisition, Processing Parameters, and Identification of Serum Metabolites

For GC-MS analysis, 100 µL aliquots of samples from each group were vortexed with
300 µL of acetonitrile at 4 ◦C for deproteinization to occur and centrifuged at high speed.
100 µL of the supernatant was transferred to GC-MS vials containing glass inserts for the
derivatization process. For the methoximation step, the solvent evaporated at 30 ◦C in a
SpeedVac and the O-methoxyamine hydrochloride (15 mg/mL) in pyridine added to the
vials, vortexed and incubated for 16 h in the dark at room temperature. After this period,
silylation started with 10 µL of BSTFA [1% TMCS (v/v)] and samples were incubated
at 70 ◦C for 1 h. Finally, 20 µL of pentadecanoic acid (20 ppm in heptane) were added
to each analysis vial. Blanks were prepared and analyzed to correct the baseline of the
chromatograms. These blanks were analyzed at the beginning, middle, and end of the
sequence [25,26].

The analyses were carried out in a quadrupole-type GCMS-QP2020NX system (Shimadzu
Co., Kyoto, Japan), with 1 µL of the sample loaded into a DB5-MS column
(30 m × 0.25 mm, 0.25 µm, Restek) and injected in splitless mode in a total flow of 20 mL/min
of helium gas. Carrier gas was conducted at a constant flow of 1.36 mL/min. The initial
column temperature was initially maintained at 80 ◦C and then gradually increased at a
rate of 15 ◦C/min, until reaching the final temperature of 300 ◦C and then maintained at
this temperature for 8 min before cooling. The temperatures of the injector, transfer line
and source filament and the quadrupole were maintained at 280 ◦C, 200 ◦C, and 150 ◦C,
respectively. The system was operated in full scan mode (m/z 40–650) at a rate of three
spectra/s, and with the EI set to 70 eV. Then, a closed retention time (TRF) method was
applied to reduce the retention time (TR) of the entire analysis [25,27]. Instrument control,
data acquisition and data processing were performed by LabSolutions software (GCMS ver-
sion 4.5, Shimadzu Co., Kyoto, Japan), which allows the real-time control of each analyzed
analyte for the identification of metabolites in SIM and Scan.

The identification of metabolites was performed by comparing the spectra obtained
through the analyzed samples with reference spectra acquired under the same experimental
conditions. That is, the peaks of the analytes and external standards were integrated by the
same software, using the same settings and normalized by the addition and detection of
internal standards added to each sample prior to analysis. Thus, an analytical calibration
curve was constructed to determine the linearity, and with the use of internal standards,
the concentration for each metabolite generated quantification values in micro molar (uM)
with greater reliability. The data were finally exported to Excel software (Microsoft Office)
for subsequent statistical analysis of the molecules identified and quantified in SIM mode.

For the analysis in Scan mode, the detected metabolites were processed to create
a unified matrix of variables from the different states of charge, adducts and groups of
the same analytes across all samples using the GCMS Solution software (v.3.30), NIST
17 MASS (v.1.00.1) and GCMS Smart Metabolite (v.3.01), all developed by Shimadzu Co.
The software was configured as efficiently as possible to process all detected peaks, sepa-
rating them from the equipment noise. After identifying the molecules by the NIST [26]
and Smart Metabolite libraries, the samples were exported to Excel software (Microsoft
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Office) for statistical treatment. If necessary, public databases available on the inter-
net [(www.metlin.scripps.edu, https://www.genome.jp/kegg/, www.lipidmaps.org or
http://www.hmdb.ca (accessed on 12 January 2022)] can also be used for the identification
and/or conformation of GC-MS spectra.

2.5. Statistical Analysis

Data analysis was performed on Metaboanalyst 4.0 software [http://www.metaboanalyst.ca/
(accessed on 23 January 2022)] following parametric and non-parametric algorithms such
as T-test, parametric ANOVA and its non-parametric version (Kruskal-Wallis) creating
multivariate models with logarithmic transformation for data normalization. Supervised
models such as partial least squares regression (PLS) were used.

The Interactome analysis of metabolic pathways of the molecules that were analyzed
and considered significant for the proposed experimental model were conducted in the
Cytoscape software ware [(https://cytoscape.org/ (accessed on 25 January 2022)]. The
level of significance was set to p-value ≤ 0.05.

3. Results

All cats had a stable renal function, without symptoms such as anorexia or lack of
appetite, nausea/vomiting or associated conditions, and underwent a complete physical
examination, complete blood count, and biochemical serum profile [total protein, albumin,
glucose, creatinine, blood urea nitrogen (BUN), total phosphorus (P), total calcium (Ca),
sodium (Na), potassium (K), chloride (Cl), cholesterol, triglycerides, alkaline phosphatase
(ALP), and alanine aminotransferase (ALT), urinalysis, and abdominal ultrasound]. A
descriptive analysis of the biochemical serum profile is presented in Table 2.

Table 2. Description of age, body weight and biochemical serum profile at T0 and T60.

Variables Control Group
(n = 10)

CKD1 Group
(n = 6)

CKD2 Group
(n = 9)

T0 T60 T0 T60 T0 T60

Age (years) 5.30 ± 1.07 - 10.83 ± 1.05 - 10.22 ± 1.35 -
Body weight (kg) 4.52 ± 0.65 4.53 ± 0.58 5.29 ± 0.73 5.28 ± 0.67 4.72 ± 1.51 4.60 ± 1.58

Total protein (g/dL) 7.90 ± 0.57 7.68 ± 0.82 8.10 ± 0.60 7.87 ± 0.75 8.14 ± 0.42 7.92 ± 0.43
Albumin (g/dL) 3.30 ± 0.19 3.29 ± 0.41 3.60 ± 0.24 3.53 ± 0.14 3.50 ± 0.21 3.51 ± 0.28
Glucose (mg/dL) 79.40 ± 9.74 109 ± 34.98 81.67 ± 13.41 83 ± 6.87 79.67 ± 5.29 95.22 ± 37.65

Creatinine (mg/dL) 1.35 ± 0.21 1.16 ± 0.24 1.32 ± 0.12 1.29 ± 0.10 2.03 ± 0.32 1.94 ± 0.81
BUN (mg/dL) 24.67 ± 2.98 23.08 ± 2.43 23.42 ± 1.53 23.02 ± 2.08 35.06 ± 5.28 35.81 ± 11.81

SDMA (µg/dL) 9.56 ± 4.10 9.5 ± 3.37 10.60 ± 3.36 7.50 ± 1.05 14.44 ± 3.88 11.33 ± 5.94
Phosphorus (mg/dL) 5.58 ± 0.65 5.97 ± 0.84 4.83 ± 0.51 4.97 ± 0.57 5.08 ± 0.48 5.96 ± 1.01

Total calcium (mg/dL) 9.96 ± 0.51 9.43 ± 0.85 10.40 ± 0.32 10.22 ± 0.50 10.49 ± 0.31 10.02 ± 0.56
Sodium (mEq/L) 152 ± 2.11 156.40 ± 1.17 154 ± 2.53 156.17 ± 2.14 152.67 ± 2.00 157.33 ± 3.39

Potassium (mEq/L) 4.84 ± 0.31 5.01 ± 0.48 5.15 ± 0.57 4.68 ± 0.49 4.88 ± 0.50 5.13 ± 0.57
Chloride (mEq/L) 115.30 ± 3.74 120.20 ± 2.90 118 ± 2.28 121.33 ± 1.37 117.67 ± 1.32 122.67 ± 3.67

Cholesterol (mg/dL) 153.60 ± 44.82 129.20 ± 45.16 221.83 ± 40.48 200 ± 46.38 206.33 ± 58.19 163.56 ± 51.10
Tryglicerides (mg/dL) 46.50 ± 22.42 47 ± 15.96 61.50 ± 31.16 60.83 ± 12.12 52.78 ± 13.98 68.67 ± 36.53

ALP (mg/dL) 29.90 ± 7.00 26.50 ± 5.10 33.67 ± 8.04 32 ± 8.76 38.33 ± 24.35 37.33 ± 27.80
ALT (mg/dL) 65.60 ± 20.32 56.80 ± 18.96 65.17 ± 19.34 57 ± 14.39 82.67 ± 61.80 76.56 ± 50.94

BUN, blood urea nitrogen; SDMA, symmetric dimethylarginine; ALP, alkaline phosphatase; ALT, alanine
aminotransferase.

A total of 43 metabolites of different biochemical classes were detected at baseline
from both healthy and CKD cats (Table 3). These metabolites were separated according to
their classification, identification code, identification level, identification key in the Human
Metabolome Database and relative standard deviation (RSD). They were calculated from
Quality Control samples (QCs), prepared and analyzed with the animal samples to validate
the repeatability and robustness of the method, the injection precision, and the analytical

www.metlin.scripps.edu
https://www.genome.jp/kegg/
www.lipidmaps.org
http://www.hmdb.ca
http://www.metaboanalyst.ca/
https://cytoscape.org/
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variation of the samples. Metabolites found with a relative standard deviation above 30.9%
were removed from the analysis.

Table 3. Description of all metabolites identified in the serum, grouped by their biochemical classes.

Biochemical Class Compound Names Code Identification
Level

Identification in the
Human Metabolome

Database (HMDB)

Relative
Standard

Deviation (%)

Amino acids
and derivatives

L-Alanine ALA 2 0000161 7.3
L-Valine VAL 2 0000883 7.1

L-Isoleucine ILE 2 0000172 7.0
L-Proline PRO 2 0000162 11.0
L-Glycine GLY 2 0000123 10.1
L-Serine SER 2 0000187 14.2

L-Threonine THR 2 0000167 4.8
L-Homoserine hSER 2 0000719 23.3
5-Oxoproline PYR 2 0000267 19.7

Creatinine CRE 2 0000562 23.2
L-Glutamic acid GLU 2 0000148 6.5
L-Phenylalanine PHE 2 0000159 10.1

L-Arginine ARG 2 0000517 9.8
L-Tyrosine TYR 2 0000158 22.7

L-Tryptophan TRP 2 0000929 25.3

Carbohydrates
and conjugates

D-Fructose FRU 2 0000660 25.3
D-Ribose RIB 2 0000283 16.2

D-Mannose MAN 2 000169 10.5
D-Allose ALLO 2 0001151 10.5

Inositol-Phosphate INO 2 0000213 23.4
Lactose LAC 2 0000186 27.3

Fatty acids

Palmitoleic acid C16:1 2 0003229 24.5
Palmitic acid C16:0 2 0000220 11.9

Heptadecanoic acid HEP 2 0002259 18.3
Linoleic acid LNL 2 0000673 25.3

Oleic acid OLC 2 0000207 19.4
Stearic acic STE 2 0000827 13.5

Arachidonic acid ARA 2 0001043 15.0
Docosahexaenoic acid DHA 2 0002183 7.0

Arachidic acid C20:0 2 0002212 22.1
1-Monopalmitin MG16:0 2 0011564 13.6

Monostearin MG18:0 2 0011131 15.3

Prenol Lipids Alpha-Tocopherol αTOC 2 0001893 14.7

Steroids Cholesterol CHO 2 0000067 13.5

Carboxilic acid
Citric acid CIT 2 0000094 29.4
Sarcosine SAR 2 0000271 21.3

Hydroxy acids 3-Hydroxybutyric acid 3HBT 2 0000011 11.0

Organic Carbonic acids Urea URE 2 0000294 15.8

Imidazopyrimidines Uric acid URI 2 0000289 24.3

Purine nucleosides Guanosine GUA 2 0000133 18.1

Indoles Serotonin 5HTA 2 0000259 12.6

Glycerophospholipids Glycerol-3-Phosphate G3P 2 0000126 22.5

Benzene 3-Hydroxyanthranilic
acid 3OHAA 2 0001476 28.9
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3.1. Partial Least Squares (PLS) for Serum Metabolomics Data at Baseline (T0) and after Sixty
Days of Renal Diet (T60) between CKD Cats (Stages 1 and 2) and Control Group

A multivariate analysis of the CKD1, CKD2, and control groups was performed at T0
and T60 using the Partial Least Squares (PLS), which demonstrated the disposition of the
animals classified according to the metabolomics of each animal (Figure 2).
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3.2. Univariate Analysis for Serum Metabolomics Data at Baseline (T0) and after Sixty Days of
Renal Diet (T60) between CKD Cats (Stages 1 and 2) and Control Group

Citric acid and monostearin were the metabolites that were altered in the CKD2 group
when compared to CKD1 and the control group in T0. A total of 7 serum metabolites
differed after consumption of the renal diet compared with the maintenance diet (T60):
glycine, fructose, glutamic acid, arachidonic acid, stearic acid, creatinine, and urea (Table 4).
Figures 3 and 4 show which groups differed between the two periods.

Table 4. Results obtained by univariate analysis of serum metabolites at T0 and T60.

Metabolites p Value FDR Tukey’s HSD

Citric acid 0.0010 0.0440 CKD II T0-CKD I T0; Control T0-CKD II T0
Monostearin 0.0021 0.0444 Control T0-CKD II T0

Glycine 0.0003 0.0055 Control T60-CKD I T60; Control T60-CKD II T60
Fructose 0.0007 0.0107 CKD II T60-CKD I T60; Control T60-CKD II T60

Glutamic acid 0.0013 0.0144 Control T60-CKD II T60
Arachidonic acid 0.0042 0.0269 Control T60-CKD II T60

Stearic acid 0.0044 0.0269 Control T60-CKD II T60
Creatinine 0.0358 0.0002 CKD II T60-CKD I T60; Control T60-CKD II T60

Urea 0.0031 0.0265 Control T60-CKD II T60
FDR = False Discovery Rate; HDS = Tukey’s Honest Significant Difference Test; CKD I T0 = CKD cats stage
1 before being fed a renal diet; CKD II T0 = CKD cats stage 2 before being fed a renal diet; Control T0 = control
group (healthy animals) before being fed a renal diet; CKD I T60 = CKD cats stage 1 after being fed a renal diet;
CKD II T60 = CKD cats stage 2 after being fed a renal diet; Control T60 = control group (healthy animals) after
being fed a renal diet.



Metabolites 2023, 13, 43 8 of 13Metabolites 2023, 13, x FOR PEER REVIEW  9  of  14 
 

 

 

Figure 3. Metabolites that significantly differed among groups before of consumption of the renal 

diet. CKD I = CKD cats stage 1; CKD II = CKD cats stage 2; Control = control group (healthy animals). 

 

Figure 4. Metabolites that significantly differed among groups after 60 days of consumption of the 

renal diet. CKD I = CKD cats stage 1; CKD II = CKD cats stage 2; Control = control group (healthy 

animals). 

4. Discussion 

Using an untargeted metabolomics approach, a total of 43 metabolites of different 

biochemical classes were detected in serum at baseline from both healthy cats and cats 

with CKD. Citric acid and monostearin were the metabolites that differed in T0. 

Citric acid is an intermediate metabolite from the tricarboxylic acid (TCA) cycle being 

synthesized  from acetyl‐CoA and oxaloacetate. These metabolic pathways occur  in  the 

mitochondrial matrix, which is responsible for cellular energy production due to the aden‐

osine triphosphate (ATP) generation [28]. Kidney cells are rich in mitochondria and are 

highly dependent on this organelle’s function due to their high energy demand [28,29]. 

Figure 3. Metabolites that significantly differed among groups before of consumption of the renal
diet. CKD I = CKD cats stage 1; CKD II = CKD cats stage 2; Control = control group (healthy animals).

Metabolites 2023, 13, x FOR PEER REVIEW  9  of  14 
 

 

 

Figure 3. Metabolites that significantly differed among groups before of consumption of the renal 

diet. CKD I = CKD cats stage 1; CKD II = CKD cats stage 2; Control = control group (healthy animals). 

 

Figure 4. Metabolites that significantly differed among groups after 60 days of consumption of the 

renal diet. CKD I = CKD cats stage 1; CKD II = CKD cats stage 2; Control = control group (healthy 

animals). 

4. Discussion 

Using an untargeted metabolomics approach, a total of 43 metabolites of different 

biochemical classes were detected in serum at baseline from both healthy cats and cats 

with CKD. Citric acid and monostearin were the metabolites that differed in T0. 

Citric acid is an intermediate metabolite from the tricarboxylic acid (TCA) cycle being 

synthesized  from acetyl‐CoA and oxaloacetate. These metabolic pathways occur  in  the 

mitochondrial matrix, which is responsible for cellular energy production due to the aden‐

osine triphosphate (ATP) generation [28]. Kidney cells are rich in mitochondria and are 

highly dependent on this organelle’s function due to their high energy demand [28,29]. 

Figure 4. Metabolites that significantly differed among groups after 60 days of consumption of
the renal diet. CKD I = CKD cats stage 1; CKD II = CKD cats stage 2; Control = control group
(healthy animals).

4. Discussion

Using an untargeted metabolomics approach, a total of 43 metabolites of different
biochemical classes were detected in serum at baseline from both healthy cats and cats with
CKD. Citric acid and monostearin were the metabolites that differed in T0.

Citric acid is an intermediate metabolite from the tricarboxylic acid (TCA) cycle being
synthesized from acetyl-CoA and oxaloacetate. These metabolic pathways occur in the
mitochondrial matrix, which is responsible for cellular energy production due to the
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adenosine triphosphate (ATP) generation [28]. Kidney cells are rich in mitochondria and
are highly dependent on this organelle’s function due to their high energy demand [28,29].

In humans, some studies revealed that the severity and progression of CKD is associ-
ated with mitochondrial dysfunction and markers of oxidative stress [29,30]. If mitochon-
drial activity is unbalanced, there is an increase in oxidative stress and the inflammatory
state, which may be more pronounced in CKD2 patients [28–30]. Hence, mitochondrial and
TCA cycle alterations can be associated with an accumulation of serum citric acid, which is
a precursor of several other metabolites [31].

In addition, the stimulation of another pathway to compensate the lack of ATP from
glucose sources may occur [32]. An adaptation of the metabolism in relation to the energy
source (shifting from glucose to lipids) may be responsible for the increase in monostearin,
which is a fatty acid (monoglyceride) and was the second metabolite that increased in
CKD2 compared to healthy patients [32,33]. This information corroborates with a study
performed by Wei et al. [34], who observed changes in metabolic profiles during periods
of renal ischemia. The kidney and plasma showed evidence of altered energy metabolism
affecting glycolysis, the TCA cycle and lipid metabolism, and there was a notable switch
of energy source from glucose to lipids [34]. Huang et al. [32] also demonstrated through
an integrated proteomic and metabolomic approach, that there is an activation of another
pathway of energy source in cases of kidney injury to compensate for the function of
injured kidneys. In both studies, monostearin showed an increase in concentration which
corroborates our findings [32,34].

Another possibility for this result is that the fatty acids oxidation is decreased in CKD
patients. Lipidic disorders are common in human patients with kidney disease. A study
conducted by Vaziri [35] demonstrated that during the progression of CKD in humans,
it is common that the patients present hypercholesterolemia and elevated low-density
lipoprotein (LDL) levels. In veterinary medicine, dyslipidemia has already been reported
in CKD dogs [36]. However, the cats from our study did not show any difference between
groups in relation to the concentrations of cholesterol and triglycerides.

A total of 7 serum metabolites differed after 60 days of the renal diet compared with the
maintenance diet: glycine, fructose, glutamic acid, arachidonic acid, stearic acid, creatinine,
and urea. All of them were increased in the CKD stage 2 group, except for urea which was
lower in the CKD2 when compared to the other groups.

The kidneys play an important role in the synthesis of glycine and the conversion of
this amino acid into another metabolite, serine [37]. Increased levels of glycine in CKD
patients, especially those on stage 2, suggested that the loss of kidney function contributes
to the accumulation of glycine in the circulation. Circulating concentrations of glycine have
been found to be higher in people and rats with kidney dysfunction [38]. Lower levels
of serine in CKD patients are also expected due to the association with a low conversion
rate. Summers et al. [39] observed a reduction in serine in the plasma of CKD cats when
compared to healthy animals. This corroborates with Brunetto et al. [40], who found a
reduction in serine circulation in dogs with CKD stages 3 and 4 in a comparison with a
control group. In the present study, we confirmed the association between increased levels
of glycine in patients with reduced kidney function.

Another serum metabolite that showed accumulation in T60 of CKD2 patients when
compared to the other two groups was fructose. The mechanism supporting this result may
be attributed to the fact that this metabolite can be generated in the kidney during glucose
reabsorption, as well as from intra-renal hypoxia that occurs in CKD [41,42]. Even though
fructose may provide renal protection in cases of ischemia or high osmolarity, for example,
high levels of this metabolite can induce intrarenal inflammation and fibrosis [41]. In addi-
tion, high serum fructose in human patients with CKD was associated with abnormalities
in the TCA cycle [42].

The kidneys have a vital role in homeostasis, metabolism, and regulation of the serum
concentration of amino acids. Glutamic acid is one of them, and it is correlated with kidney
production as well as the accumulation as a result of decreased renal uptake [43–45]. In
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human medicine it was increased in patients with normal serum creatinine, but with some
early impairment of renal function. The authors suggested that this metabolite may be
utilized as a future biomarker for early stages of CKD [44]. We observed a strong correlation
between glutamic acid accumulation and the second stage of CKD in this study. However,
cats on stage 1 showed no difference compared to other groups, probably because the initial
stage in this species did not show loss of renal function that compromises the uptake of
this amino acid.

Arachidonic acid is a major component of cell membrane lipids, and is mainly metabo-
lized by three enzymes: cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450
(CYP450) [46]. Based on these metabolic pathways, this metabolite is a precursor of several
pro-inflammatory mediators. When cells are under stress, arachidonic acid is released from
phospholipids by phospholipase enzymes [46,47]. Hence, arachidonic acid metabolism and
kidney inflammation are correlated in several ways [46,48]. Similar results have been found
in the present study, as the CKD2 group showed a higher concentration of this metabolite.

Stearic acid is linked to the fact that, in CKD patients, the fatty acids oxidation is
decreased [35]. This metabolite also showed a negative correlation when associated with a
glomerular filtration rate (GFR), with high serum accumulation in the CKD2 group when
compared to healthy animals. In humans and mouse models with tubulointerstitial fibrosis,
Kang et al. [49] found that they had a lower expression of key enzymes and regulators of
fatty acid oxidation (FAO) and a higher intracellular lipid deposition, including stearic acid,
when compared to controls.

Creatinine is the most common metabolite studied in nephology, and as expected,
higher creatinine was also observed in CKD2 patients when compared to CKD1 and control
groups. It is an amino acid from muscular catabolism, derived from the metabolism of
phosphocreatine, freely filtered by the glomerulus, and secreted to a small degree by
proximal tubular cells, being a more specific biomarker used to estimate renal function
due to the association with GFR [50–53]. Creatinine production is directly related to the
body muscle mass and can also be influenced by dietary intake [54], variation in tubular
secretion, and extrarenal creatinine excretion [50,55,56].

Increases in urea levels in CKD2 cats were also expected in this study. However,
60 days after the renal diet, urea had a higher concentration in the control group when
compared to CKD2. This result may be linked to the composition of the diet used in
this study and its metabolism according to each group, since all animals received the
same diet at the same time. Previous studies with CKD cats have shown that blood urea
decreased when they were feed with fermentable fiber from fructooligosaccharides when
compared to the control cats, mainly because the health status of the cats influences the
effects of fermentable fibers in the plasma metabolome and in the fecal microbiome [57].
The inclusion of galactooligosaccharides and beta-glucans on the renal diet suggested that
these prebiotics may have influenced the urea metabolism due to the possible modulation
of the microbiota, as mentioned before. Although microbiota analysis is necessary to affirm
that, it is possible that the growth of bacteria that utilize ammonia from protein metabolism
in the intestine may have resulted in lower intestinal absorption of this metabolite, which
in turn reduced urea formation in the liver of CKD2 cats [58–60].

The limitations of the present study include a reduced sample size and the lack of a
negative control group for comparison.

5. Conclusions

Healthy and CKD cats 1 and 2 showed differences in the serum metabolomics profile
when evaluated at time zero and after 60 days of the renal diet. Metabolomics markers
have the potential use as possible early diagnostic biomarkers of chronic kidney disease,
identifying early stages of CKD, and providing insights into the possible pathophysiologic
processes that contribute to the development and progression of CKD.
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