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Abstract: Diabetic retinopathy (DR) as a microangiopathy is the most common complication in
patients with diabetes mellitus (DM) and remains the leading cause of blindness among adult popu-
lation. DM in its complicated pathomechanism relates to chronic hyperglycemia, hypoinsulinemia,
dyslipidemia and hypertension—all these components in molecular pathways maintain oxidative
stress, formation of advanced glycation end-products, microvascular changes, inflammation, and
retinal neurodegeneration as one of the key players in diabetes-associated retinal perturbations. In
this current review, we discuss the natural history of DR with special emphasis on ongoing inflam-
mation and the key role of vascular endothelial growth factor (VEGF). Additionally, we provide an
overview of the principles of diabetic retinopathy treatments, i.e., in laser therapy, anti-VEGF and
steroid options.
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1. Introduction

Diabetes mellitus (DM) is a group of metabolic disorders characterized by a high blood
glucose level (hyperglycemia) over a prolonged period [1,2]. Classification of diabetes
in clinical work includes a division into type 1 diabetes and type 2 diabetes. It varies
in degree of heterogeneity in clinical manifestations, accurate diagnosis, comorbidities,
and treatment [3–5]. Diabetes can cause many health complications both acute (e.g., dia-
betic ketoacidosis, hyperosmolar hyperglycemic state) and long-term (e.g., cardiovascular
disease, stroke, chronic kidney disease, foot ulcers, and damage to the nerves or to the
eyes) [6–8]. Diabetic retinopathy (DR) is a major microvascular complication of diabetes
mellitus and remains the leading cause of visual loss in the adult population. It is estimated
that diabetes might affect up to 34% of the worldwide population aged 40 and older by
2035 [9,10]—according to this data, DR is growing into a worldwide health problem as well.
A study by Lin et al. [11] revealed that women with DM type 2 had a higher prevalence of
diabetic retinopathy than men, but men suffered from more severe retinopathy, poor vision,
or blindness. DR impacts not only the quality of life, but also predicted vascular and non-
cancer mortality, prolonged QT interval, or life-threatening arrhythmia [12,13]. Considering
clinical manifestations of vascular abnormalities in the retina, DR is divided into two stages:
non-proliferative diabetic retinopathy (NPDR) and proliferative diabetic retinopathy (PDR).
In the initial stage of NPDR, hyperglycemia and altered metabolic pathways lead to ox-
idative stress, leakage of multiple inflammatory cytokines and plasma proteins and then
to the development of neurodegeneration, disruption of the blood-retinal barrier (BRB)
and progressive retinal pathologies. Early hallmarks of NPDR, detected under fundus
photography include increased vascular permeability, capillary occlusion, microaneurysms,
dot intraretinal hemorrhage and hard exudates. As disease progresses, a more advanced
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stage of DR turns uncontrollably into PDR where severe hypoxia leads to neovasculariza-
tion, vitreous hemorrhage, and retinal detachment such as traction retinal detachments
(TRDs) and combined traction/rhegmatogenous retinal detachments (TRD/RRDs) which
remains the most common reason for vitrectomy in patients with proliferative diabetic
retinopathy [14,15]. There are four stages of diabetic retinopathy [16–18]:

1. Mild non-proliferative diabetic retinopathy (NPDR)—there may be no symptoms in
this stage; microaneurysms develop on the tiny vessels in the retina, the light-sensitive
back layer of the eyeball; leak fluid into the retina might be present.

2. Moderate NPDR—more vessels become weak and blocked; they begin to be swollen
and distorted in size and lose their ability to properly transport blood.

3. Severe NPDR—more blood vessels become blocked which disrupts blood supply
to areas in the retina with compensation by signaling the retina to grow up new
blood vessels.

4. Proliferative diabetic retinopathy (PDR)—the most advanced stage of retinopathy
where new, weak, and inefficient blood vessels grow along the inside surface of the
retina and into the vitreous gel; they are more likely to leak and bleed causing retinal
detachment.

The classification of DR according to ophthalmoscopic features is shown in Table 1.

Table 1. Classification of diabetic retinopathy—according with [18].

Type Ophthalmoscopic Features

Mild NPDR Microaneurysms

Moderate NPDR

At least two of the following features:
* Microaneurysms

* Retinal hemorrhages
* Hard exudates

Severe NPDR

Any one of the following features:
* 20 hemorrhages in each of the four quadrants

* Venous beading in two quadrants
* IrMAs in one quadrant

PDR
At least one of the following features:

* Neovascularization
* Vitreous hemorrhage

NPDR—non-proliferative diabetic retinopathy; PDR—proliferative diabetic retinopathy; IrMAs—Intraretinal
microvascular abnormalities.

The distortion of visual images, decrease in visual acuity and vision loss in patients
with DM can occur at any stage of DR. The most common cause of vision loss in patients
with DR is diabetic macular edema (DME) which is the result of swelling or thickening of
the macula due to sub- and intra-retinal accumulation of fluid in the macula triggered by the
breakdown of the BRB. Currently the mainstay of therapy for DR aim at managing the mi-
crovascular complications, including intravitreal administration of pharmacological agents
with steroids as one possible option, along with laser photocoagulation and vitreoretinal
surgery [11,17,19]. Here, we present a brief overview of insights into the pathophysiology
of DR and chosen therapeutic targets and potential pharmacological agents being used in
patients with DR. The present review aims to summarize the current knowledge concerning
the inflammatory processes playing a crucial role in the development of DR, with special
emphasis on vascular endothelial growth factor (VEGF) and focused on various aspects of
treatment of DR. Its contribution is related to the previous research conducted on VEGF
in various diseases and the treatment of patients with diabetic retinopathy using various
methods by the authors.
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2. Pathology in DR

Hyperglycemia is considered as an important factor in the pathogenesis of retinal
microvascular damage which leads to DR. Metabolic pathways that are considered dur-
ing hyperglycemia-induced vascular damage including advanced glycation end products
(AGEs) accumulation, the protein kinase C (PKC) pathway, and the polyol and the hex-
osamine pathway. Additionally, dilation of blood vessels and blood flow changes are
the earliest responses to hyperglycemia from retinal blood vessels in diabetic patients.
Other hallmarks of the early events of DR are pericytes loss triggered by high glucose
concentration with the following outpouching of capillary walls and microaneurysm for-
mation, apoptosis of endothelial cells, and thickening of the basement membrane. Next,
pronounced loss of pericytes and endothelial cells collectively contributes to the impair-
ment of the BRB and results in capillary occlusion and ischemia. Retinal ischemia/hypoxia
leads to activation of hypoxia-inducible factor 1 (HIF-1) and upregulation of angiogenic
factors such as angiopoietins (Ang-1, Ang-2) and most vascular endothelial growth factor
(VEGF) [9,20].

2.1. DR—An Inflammatory Disease

Originally, DR was considered a purely microvascular disease. Currently, chronic, low-
grade inflammation plays a key role in the pathogenesis of DR that leads to changes in the
retinal microcirculation and was detected widely in different stages of DR in both diabetic
animal models and in the retinas of diabetic patients. This pathology affects neuronal
and vascular components of the retina and what is more, it shows some similarities with
chronic inflammatory diseases like infiltration of inflammatory cells, expression of different
effectors such as cytokines responsible for damage to the retina, edema, neovascularization,
or destruction of tissues.

2.1.1. Role of Inflammatory Cells in DR

Leukostasis is an occlusion of retinal microvasculature by monocytes, macrophages
and granulocytes and was reported in an animal model of DM and in the early stage of DR in
patients [21–23]. Additionally, increased leukostasis might be correlated with endothelium
damage and BRB impairment through the Fas (CD95)/Fas-ligand pathway. Leukocyte-
endothelium adhesion occurs according to upregulation of leukocyte b2-integrins (CD11a,
CD11b, CD18) and expression of endothelial cell adhesion molecules such as intercellular
adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and selectins
(E-selectin). Additionally, the plasma expression of VCAM-1 and E-selectin is correlated
with the severity of DR. Retinal glial cells, consisted of astrocytes, Müller cells and mi-
croglia, are responsible for structural support and maintaining homeostasis in the retina.
Nevertheless, in the condition of hyperglycemia and oxidative stress, glial cells are dys-
functional and they enhance the production of proinflammatory cytokines (TNF-α, growth
factors, IL-1β, IL-6) which are involved in the onset and amplification of inflammation in
the diabetic retina. In addition, the secretion of proinflammatory cytokines by glial cells
plays a role in the infiltration of monocytes and T lymphocytes and on the other hand
chronic inflammation induces fibrotic processes which induce scar formation and then
retinal detachment [24,25].

2.1.2. Role of Inflammatory Chemokines in DR

Some chemokines have been shown to be involved in the pathogenesis of DR. In some
recent studies, monocyte chemotactic protein-1 (MCP-1) and macrophage inflammatory
protein-1 alpha (MIP-1a) have been reported to be elevated in diabetic patients [14,26,27].
Moreover, a level of other inflammatory cytokines such as interleukin 1 (IL-1), IL-6, IL-8,
and tumor necrosis factor alpha (TNF-α) was upregulated in diabetic patients with DR.
Additionally, there is a correlation between the presence of high levels of growth factors and
inflammatory cytokines in the eye fluids and inflammation in patients with DR. In the retina,
under hyperglycemic stress, microglia is activated, which leads to the upregulation of the
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Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB) followed by increase
in oxidative stress with induction of pro-inflammatory cytokines, such as IL-1b, VEGF
and TNF-α, chemokines, and adhesion molecules (E-selectin, ICAM-1). Above-described
activation of the inflammatory process in DR causes the increase in vascular permeability,
loss of pericytes, and the appearance of microaneurysms. Because the retina uses high
quantities of glucose and oxygen to generate energy by using the mitochondrial electron
transport chain (ETC), reactive oxygen species (ROS) and free electrons are increased during
inflammatory process in DR which causes release into the cytosol harmful lipids, proteins
and oxidized mitochondrial DNA (mtDNA). They are recognized as damage-associated
molecular profiles (DAMP) by the Toll-like receptors TLR4, TLR9 and NLRP3, which in
turn enhances the production and activation of pro-IL-1β and pro-caspase-1 [26,28].

2.2. VEGF

“Vascular Permeability Factor” (VPF) was described by Senger et al. in 1983 [29],
then Ferrara and Henzel in 1989 [30] discovered its mitotic effect on endothelial cells and
proposed the name vascular endothelial growth factor (VEGF). Nowadays, “a family” of
vascular endothelial growth factors consists of several members: VEGF-A (called generally
VEGF, the prototype molecule of a family, discovered first); VEGF-B, VEGF-C, and VEGF-D
(also known as c-Fos-induced growth factor, FIGF); placenta growth factor (PlGF); and the
viral VEGF-E encoded by strains D1701, NZ2 and NZ7 of the parapoxvirus Orf (which
causes pustular dermatitis) (Table 2). VEGF itself is a heparin-binding, homodimer glyco-
protein; its weight is 46 kDa, with a different number of amino-acids that are produced
in human cells by alternative splicing (for VEGF-A, VEGF-B, and PGF) and processing
(VEGF-A, VEGF-C, and VEGF-D). VEGF gene expression is physiologically regulated by
oxygen tension—in hypoxia condition, the transcription factor HIF-1 (hypoxia-inducible
transcription factor 1) binds to the hypoxia-responsive enhancer elements (HREs) at VEGF
gene affecting transcriptional upregulation [31–33]. Moreover, some growth factors and
cytokines, including tumor growth factor (TGF), basic fibroblast growth factor (FGF-2),
interleukin-1 and interleukin-6 (IL-1, IL-6) can act synergistically with hypoxia [34]. VEGF
made up of 121 and 165 amino acids and is produced mainly by neutrophils, platelets, en-
dothelial cells, fibroblasts, epithelial cells, and macrophages in a soluble and freely diffusible
form, whereas VEGF consisted of 189 and 206 amino acids is associated with cells’ surface.
VEGF acts biologically by receptors tyrosine kinases (RTKs). These receptors have three
parts: an extracellular immunoglobulins-like domain, a middle part located in the thickness
of the cell membrane, and an intra-cytoplasmic part. VEGF binds to trans-membrane
tyrosine kinase receptors, inducing their dimerization and transphosphorylation. VEGF-A
binds to VEGFR2 (also called KDR/Flk-1) and VEGFR1 (Flt-1), VEGF-C and VEGF-D bind
VEGFR2 and VEGFR3 (Flt4), PlGF and VEGF-B bind only to VEGFR1, and VEGF-E binds
only to VEGFR2. VEGFRs differ considerably in signaling properties and are expressed
by endothelial cells, epithelial cells, or activated macrophages. In addition, it was found
that Neuropilin-1, a trans-membrane protein lacking tyrosine kinase activity, acts as a co-
receptor for VEGF-A [35,36]. VEGF plays a key role in the process of vasculogenesis (the de
novo formation of the embryonic circulatory system) and angiogenesis (the growth of blood
vessels from pre-existing vasculature) in physiological conditions, i.e., during post-natal
and skeletal growth, reproductive functions, embryogenesis with endothelial cells’ growth,
menstrual cycle, and wound healing. On the other hand, VEGF has also been implicated in
pathological angiogenesis, e.g., in cancers and metastasis, retinal neovascularization during
DR, age-related macular degeneration, chronic obstructive pulmonary disease, asthma,
ischemic heart disease, and rheumatoid or autoimmune diseases [37,38]. Drugs such as
aflibercept (binds to circulating VEGF and acts like a “VEGF trap”), bevacizumab and
ranibizumab (recombinant humanized monoclonal antibodies that blocks angiogenesis by
inhibiting VEGF), or pegaptanib (a pegylated anti-VEGF aptamer, a single strand of nucleic
acid that binds to the 165 isoform of VEGF) can inhibit VEGF and control or slow some of
those diseases [39,40].
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Table 2. The VEGF-family.

Member of the
VEGF-Family

Chromosomal
Location Receptor Function

VEGF-A 6p23.1 VEGFR1,
VEGFR2, NRP1

* angiogenesis: mitosis and migration
of endothelial cells, and astrocytes
* creation of blood vessel lumen

and fenestrations
* chemotactic factor for granulocytes

and macrophages
* vasodilation (indirectly by

NO release)

VEGF-B 11q13 VEGFR1,
NRP1

* embryonic angiogenesis
* protective for neurons in the retina
and the cerebral cortex during stroke
* protective for motoneurons during

motor neuron diseases such as
amyotrophic lateral sclerosis

VEGF-C 4q34 VEGFR2,
VEGFR3, NRP2

* promote the growth of lymphatic
vessels (lymphangiogenesis)

VEGF-D Xp22.31 VEGFR2, VEGFR3

* similar to those of VEGF-C
* necessary for the development of
lymphatic vasculature surrounding

lung bronchioles

PlGF 14q24 VEGFR, NRP1,
NRP2

* vasculogenesis
* angiogenesis during ischemia,
inflammation, wound healing,

and cancer
* regulates growth and differentiation

of trophoblasts in the placenta
during pregnancy

VEGF—vascular endothelial growth factor; VEGFR—vascular endothelial growth factor receptor;
NRP—neuropilin; PlGF—placenta growth factor; NO—nitric oxide.

3. Therapeutic Concepts in Diabetic Retinopathy
3.1. Prevention

Metabolic control should be used clinically to inhibit the development or progression of
DR. The most important factor in minimizing the onset of DR is control of hyperglycemia—
trials that involved patients both with type 1 diabetes and with type 2 diabetes, showed that
tight control of glycated hemoglobin levels and intensive glycemic control may lead to even
a 20% reduction in risk of DR [41–43]. Moreover, intensive blood pressure control is also
beneficial in lowering risk and progression of DR. The next step to decrease progression of
DR is treatment of dyslipidemia often connected with DM and hypertension as a metabolic
syndrome. Patients with type 2 diabetes should receive statin and/or fenofibrate to get a
significant reduction in risk and progression of DR. Additionally, early detection underpins
the importance of DR screening and surveillance—for this reason people with diabetes are
offered annual screening for the presence of retinopathy. All diabetic screening programs
require digital fundus photographs to be taken [44].

3.2. Specific Therapeutic Options

In addition to optimal medical control of blood pressure and serum cholesterol and
glucose level, several intraocular managements have become standard treatments for DR.
Ophthalmological treatment by inhibiting the inflammatory pathway reduces vascular
permeability, contributes to the breakdown of the BRB, inhibits leukostasis, inhibits VEGF
gene transcription and translation and finally, reduces the risk of visual loss in eyes with
sight-threatening complications. Inflammation and VEGF-mediated pathways are cru-
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cial in the development and progression of diabetic retinopathy and diabetic macular
edema (DME). According to mechanisms, the ocular therapy for diabetic retinopathy and
maculopathy includes anti-VEGF drugs, corticosteroids, and laser treatment.

3.2.1. DME Treatment

The exact mechanism of laser photocoagulation in DME treatment is still unknown. It
is suggested that it combines the occlusion of leaking vessels, especially microaneurysms
and the destruction of ischemic parts of retina. It improves oxygenation to areas located
near the treatment ones and contributes to the reduction of proangiogenic factors and
cytokines release. The complications after laser treatment include visual field sensitivity
deterioration, impairment of color, night vision and sensitivity, enlargement of laser scar,
secondary neovascularization, and subretinal fibrosis. The paradigms for treatment of DME
have been changing during last years. Intravitreal injections of anti-VEGF have almost
expelled the laser treatment for DME.

According to the Guidelines for the Management of Diabetic Macular Edema by the
European Society of Retina Specialists (EURETINA) [45] relative indications for using
conventional laser therapy are the vasogenic subform of DME with focally grouped mi-
croaneurysms and leaking capillaries, central retinal thickness less than 300 µm, and eyes
with persisted vitreomacular adhesions. Nowadays, more and more often, we use a sub-
threshold grid retinal laser which minimizes the destructive consequences of conventional
laser therapy. It is achieved by reducing the duration of light exposure and focusing the
treatment area only to the retinal pigment epithelium (RPE). Few clinical trials have sug-
gested that subthreshold grid laser is as effective as conventional therapy, but more time is
needed for proving that [46,47]. According to EURETINA, early diffuse edema is suggested
as a cheaper method than intravitreal injections. The first line therapy in diabetic macular
edema (DME) is anti-VEGF intravitreal injection.

We have a few medicaments that we use in treatment of DME: bevacizumab, ranibizumab,
aflibercept and the newest one, brolucizumab. The DRCR.net trial compared three of them—
bevacizumab, ranibizumab, and aflibercept, and recommends choosing the drug depending
on best corrected visual acuity (BCVA) [48]. In this trial patients were assessed with a letter
score, which is based on number of letters that patient can read from the ETDRS chart.
There are also different types of testing distance visual acuity like Snellen or LogMAR
notation. It is always crucial to indicate which notation is used, as lower value in Snellen
notation means lower acuity contrary to LogMAR, in which it is better acuity [49].

Using Table 3 it is easy to convert each score:

Table 3. Visual Acuity convertion chart.

Letter Score LogMAR Value Snellen Equivalent

5 1.6 20/800

10 1.5 20/640

15 1.4 20/500

20 1.3 20/400

25 1.2 20/320

30 1.1 20/250

35 1.0 20/200

40 0.9 20/160

45 0.8 20/125

50 0.7 20/100

55 0.6 20/80
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Table 3. Cont.

Letter Score LogMAR Value Snellen Equivalent

60 0.5 20/63

65 0.4 20/50

70 0.3 20/40

75 0.2 20/32

80 0.1 20/25

85 0.0 20/20

90 −0.1 20/15

95 −0.2 20/12

According to the DRCR.net trial results, aflibercept and ranibizumab are more suffi-
cient for the group with BCVA letter score less than 69 (20/50 or worse in Snellen equivalent).
For patients with BCVA 69 or more letters, bevacizumab is the only one used off-label, but
the cost is much less than the others. Aflibercept is the drug of choice for DME patients with
BCVA below 69 letters as more sufficient than bevacizumab in two years and ranibizumab
in first year of treatment. However, not all patients respond properly with this type of treat-
ment. About 40% patients have persisted edema after anti-VEGF monthly injections [50].
For this group, corticosteroid therapy may play a significant role. What is worth noticing
for this group is the various mechanisms which lead to an anti-inflammatory effect with
the decrease of inflammatory mediators and VEGF. Because of that, they deal with more
targets of DME mechanisms than anti-VEGF drugs. These mechanisms can be divided into
three groups: anti-inflammatory, vascular and anti-edematous effect. The vascular effect
consists of blocking the VEGF-mediated blood-ocular barrier breakdown and edema [51].
Apart from that, corticosteroids inhibit the expression of pathologic mediators such as
MCP1, TNF, IL1b, IL6, ICAM1, and SDF-1, which play a role in the breakdown of this
barrier [52]. This group of medicaments also stabilizes vessels [53]. The anti-edematous
effect is achieved by diminishing edema of Müller cells and restoring potassium and water
homeostasis [53–55]. We can choose between three drugs available commercially: triamci-
nolone acetonide, dexamethasone implant (Ozurdex) and fluocinolone (Iluvien). In case
of treatment with corticosteroids, cataract development and rise of intraocular pressure
should be considered. Corticosteroids have been shown effective in treatment of naive
eye and those that do not respond to anti-VEGF treatment. The latest study shown that
while making decision for treatment for an individual patient, we should assess probable
biomarkers of inflammation in our diagnostic process [56–59]. The first one is hyperreflec-
tive retinal foci (HRF), which can represent hard exudates, degenerated photoreceptors or
macrophages engulfing them, anteriorly migrated RPE cells, retinal vessels or activated
microglial cells [60]. Vujosevic et al. [61] has shown that HRF can be distinguished in pa-
tients with early diabetic retinopathy without DME and patients with diabetes but without
diabetic retinopathy, mainly in the inner parts of the retina. They suggested that these HRF
are marks of the inflammation process, and they appear as a response to early microglia
activation. The next one is subretinal fluid [62]. It can occur in about 15–30% patients with
DME. It is more frequent with thicker choroid and with occurrence of hyperreflectivity foci.
The other markers worth mentioning are the disorganization of the inner retinal layers
(DRIL) and its extension and choroidal vascularity index (CVI) [63]. Greater reduction of
DRIL extension has been observed in patients treated with steroids. CVI is the ratio between
choroidal stroma and the vessels which may be useful in assessment of choroidal conges-
tion [64]. Arrigo et al. reported that high amount of choroidal HRF and low CVI values
seems to be response to chorioretinal inflammation. According to Udaondo et al. [56], the
best candidate for good response with corticosteroids is with subretinal fluid, intraretinal
inflammatory cysts, and HRF.
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3.2.2. Proliferative Diabetic Retinopathy (PDR) Treatment

Three large clinical trials were undertaken: the British multicenter trial using xenon
arc photocoagulation [65] and the National Eye Institute’s Diabethic Retinopathy Study
(DRS) [66], in which xenon arc and argon laser photocoagulation were compared to no pho-
tocoagulations in PDR and Early Treatment Diabetic Retinopathy Study (ETDRS) [67]. The
DRS and ETDRS have proved that panretinal photocoagulation (PRP) significantly lowers
risk of severe vision loss from PDR. The mechanism of PRP is not fully known. It is supposed
that laser treatment of ischemic areas makes the retina produce less neovascularization-
inducing growth factors (e.g., VEGF). The first effect after laser treatment is more blood
flow from the choroid to the inner retina [68]. We must bear in mind that PRP has also com-
plications such as loss of visual function, damage to posterior ocular structures, macular
edema, choroidal detachment, secondary angle closure, iritis and increased ocular pressure,
and exudative retinal detachment. It has been reported that using anti-VEGF intravitreal
injections may diminish ischemia-related ocular neovascularization. Avery et al. [69] have
shown the effect of bevacizumab 24 h after injection with a duration of study of 2–11 weeks.
Results of DRCR.net study confirmed that patients treated with anti-VEGF had less visual
acuity loss, less visual field loss, less need for vitrectomy, and less DME development [70].
These results may be vital while making a decision for treatment for PDR eyes, especially
in young patients.

4. Conclusions

Diabetic retinopathy is a leading cause of vision loss in working-age patients in highly
developed countries and is a serious cause of blindness in the world. The population
of patients touched by this problem systematically grows. We are facing the problem of
accurate care for this patient, an early and easy diagnostic process, and better outcomes.
Numerous studies have supported the hypothesis that diabetic retinopathy is a neurovascu-
lar disease with neurodegeneration as an early event in the diabetic retina. The molecular
mechanism of neuronal damage in patients with DR relates to excitotoxic metabolites,
altered neurotrophic support/signaling and oxidative stress. Undoubtedly, hyperglycemia
causes abnormalities of biochemical pathways and an additionally dysregulated level of
VEGF to promote the development of inflammation and retinal hypoxia. Considering that
DR is a part of systemic diabetes progression, controlling of primary disease should be a
necessary background of DR prevention and treatment. Novel therapeutic strategies, like
anti-VEGF or steroid option, concentrate on a more fundamental level of DR pathophysiol-
ogy, and because of that, improve visual acuity and patients’ quality of life. The intravitreal
injections have almost expelled laser treatment and given a significant improvement in
anatomical and functional results. We must be aware that the response for treatment is not
equal for each patient because the contribution of mechanisms is different and different
types of care are required. Hopefully, by using multimodal imaging and assessment of
those markers mentioned above, we will be able to tailor more individualized paths for
each patient.
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