Table 2.
Classification Models | AUC (95% CI) | Accuracy | Sensitivity | Specificity | PPV | NPV | F1 Score |
---|---|---|---|---|---|---|---|
XGBoost | 0.989 (0.983–0.995) | 0.952 | 0.947 | 0.960 | 0.959 | 0.946 | 0.953 |
Light GBM | 0.710 (0.669–0.752) | 0.675 | 0.676 | 0.682 | 0.681 | 0.677 | 0.674 |
Random Forest | 1.000 | 0.998 | 1.000 | 1.000 | 1.000 | 0.997 | 1.000 |
AdaBoost | 0.815 (0.782–0.849) | 0.736 | 0.724 | 0.752 | 0.742 | 0.736 | 0.731 |
CNB | 0.618 (0.572–0.663) | 0.592 | 0.694 | 0.495 | 0.574 | 0.624 | 0.626 |
SVM | 0.509 (0.462–0.556) | 0.538 | 0.253 | 0.822 | 0.629 | 0.534 | 0.305 |
XGBoost, extreme gradient boosting; Light GBM, light gradient boosting machine; AdaBoost, adaptive boosting; CNB, complement naïve Bayes; SVM, support vector machine; PPV, positive predictive value; NPV, negative predictive value.