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Abstract: (1) Background: Several retrospective observational analyzed treatment outcomes for
COVID-19; (2) Methods: Inverse probability of censoring weighting (IPCW) was applied to correct
for bias due to informative censoring in database of hospitalized patients who did and did not receive
convalescent plasma; (3) Results: When compared with an IPCW analysis, overall mortality was
overestimated using an unadjusted Kaplan–Meier curve, and hazard ratios for the older age group
compared to the youngest were underestimated using the Cox proportional hazard models and 30-day
mortality; (4) Conclusions: An IPCW analysis provided stabilizing weights by hospital admission.
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1. Introduction

From March through June of 2020, New York City experienced a surge of coronavirus
disease (COVID-19). The novelty of this illness limited treatment options and resulted in
significant morbidity and death. In-hospital mortality has become a frequently described
endpoint in COVID-19 clinical studies. Calculating this outcome requires multiple patient-
level and hospital-level variables that have been difficult to trace during this pandemic.
Many previously healthy people were hospitalized with COVID-19 and rapidly fell ill with
slowly declining trajectories. Mortality often occurred after a prolonged index admission
or upon subsequent readmissions. Patient transfers were common, since many patients
became ventilator-dependent and intensive care units reached their capacities. Moreover,
recovering patients were transferred to temporary intermediate care sites, such as the one
at the Jacob Javits Convention Center in New York City, to make room in hospitals for
incoming COVID-19 patients. Moribund patients were often transferred to out-of-system
hospice and long-term care facilities in order to free up space on the wards. Electronic
medical records between transferring facilities were frequently incompatible, and post-
discharge expiration was not always reported back to the index facility. Therefore, the
ultimate outcomes of many discharged patients cannot be determined from the primary
hospital’s medical records. Wolkewitz et al. and Yi et al. [1,2] discussed different types of
bias that may occur when analyzing in-hospital COVID-19 data.

Time-to-event analysis, also called survival analysis, models patients’ survival prob-
ability during their hospitalization. This analysis relies on three possible endpoints at a
given time point, including “inpatient death”, “still hospitalized”, and “discharged alive”.
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If one of these events does not occur during the pre-specified follow-up time or a patient
is lost to follow-up, the patient is then “censored”. Censoring patients with COVID-19
occurred when patient data was no longer available post discharge from the primary
facility. The reason for censoring is that one cannot infer outcomes as the data are unavail-
able. The major assumption of this standard survival methodology is that the censoring
is non-informative, meaning that patients’ withdrawals from a study are assumed to be
independent of their characteristics and failure times. If the study cohort is a mixture of
subpopulations determined by some implicit factors, then these factors might influence
the timing and the probability of whether a patient will be lost to follow-up. For example,
age can influence censoring. If younger COVID-19 patients tended to be discharged much
earlier, then the remaining cohort would be older and may have an inherently increased
risk of death. This violates the assumption that the discharged patients and the patients
who remain hospitalized all follow the same survival distribution. This non-informative
censoring assumption (e.g., censoring is not associated with cohort attributes) may lead to
gross overestimates or underestimates of inpatient mortality.

Depending on the analytic approach, informative censoring may lead to biased sur-
vival estimates [3,4]. An increasing awareness of this issue appears in a variety of medical
literature involving patients with COVID-19 [1,2], surgical site infections [5], kidney trans-
plants [6], and cancer [7]. Simulation studies demonstrate that the magnitude of the bias
depends on the hazard ratio of the treatment effect and the proportion of patients who are
informatively censored [8]. If the patients who are informatively censored are at higher
risk of an event than those who remain in the study, then the survival probability would
be overestimated. Relative bias increases proportionally with an increasing number of
informatively censored patients. Thus, a larger sample size will not remove the bias that is
incurred with informative censoring.

There is no standard approach to control for informative censoring in survival analysis
methodology. One proposed approach accounts for factors that affect event times and
censoring times [9]. For example, antivirals [10] and steroids [11] have been suggested to
improve hospitalized patient survival. Conversely, metabolic complications of COVID-19,
such as established or newly diagnosed diabetes, is associated with increased mortality [12].
Including these COVID-19 directed treatment options and concomitant treatments for
associated COVID-19-associated complications as time-varying covariates can help modify
the confounding effect. A second recommendation requires a sensitivity analysis to gauge
the effect of informative censoring on the outcomes. A competing risk analysis can also
be applied to independently model different causes of clinical outcomes [13,14]. However,
it is important to understand the distinction between a competing risk and a censored
observation. A competing risk is an event whose occurrence precludes the occurrence of
the event of interest. For example, performing a tracheostomy on an intubated patient may
increase their survival. The risk of receiving a tracheostomy (as an outcome) is therefore a
competing risk for mortality (as another outcome). Censoring, on the other hand, refers to
an inability to determine the time at which an event occurs. If a patient was discharged
and subsequently received a tracheostomy at another facility, that information would be
unknown. As noted by Wolkewitz et al. [1], cumulative incidence functions should be used
instead of Kaplan–Meier survival curves when analyzing in-hospital data, accounting for
discharge as a competing event. Here, the inverse probability of censoring weight (IPCW)
approach is offered [15–17].

IPCW accounts for the mechanism of censoring when performing a survival analysis.
IPCW adjusts parameter estimates with the conditional probabilities of being uncensored
for each patient throughout the follow-up period. IPCW estimators correct for informative
censoring by allocating additional weight to subjects who are not censored. The scope of
this paper will not describe the IPCW method in detail, but rather introduces this method
as an advantageous solution to the informative censoring dilemma in survival analysis for
any group of patients with personal or systemic characteristics that make them difficult to
follow—here, specifically COVID-19 patients.
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2. Materials and Methods

To illustrate how IPCW works, suppose there are 100 hospitalized COVID-19 patients
on admission (day 0) and 80 of them were discharged alive before day 30. In a typical
survival analysis, the risk set of patients who could potentially die on day 30 only includes
the 20 subjects who remained in the hospital. If all patients were kept in the hospital even
after their recovery, there would have been 80 extra subjects at risk of death. By weighting
the contribution of subjects who are not discharged by the inverse of the proportion of
the remaining patients (1/(20/100) = 5), the risk set changed from 20 to 100. Hence, the
censored patients were analyzed as if they were included in the computations to estimate
the survival rate. Since the conditional probabilities of being censored increase with time,
the weights similarly increase with time.

Uncensoring probability (the chance of remaining at risk of death in the study, opposite
of discharged alive) is denoted as pi(t) for subject i at time t, given that the subject is still in
the study at time t−1.

The conditional probability that the patient remains uncensored up to time t (i.e., died
on time t) is

pi(1) × pi(2) × . . . × pi(t) (1)

The weight at time t for subject i is

wi(t) = 1/[pi(1) × pi(2) × . . . × pi(t)] (2)

This weight can become very large, which could lead to instability in parameter
estimation. Alternatively, a stabilized weight is often used by incorporating a term to the
numerator for each 1/pi(t).

The final weight becomes

wi(t) = [si(1) × si(2) × . . . × si(t)]/[pi(1) × pi(2) × . . . × pi(t)] (3)

Informally, the weight is a ratio of a patient’s probability of remaining uncensored
up to day t, calculated as if there had been no time-dependent determinants of censoring,
divided by the subject’s conditional probability of remaining uncensored up to day t.

The practical question is how to obtain wi(t). The first step is to build two logistic
regression models to estimate the probability of remaining uncensored on a given time t, one
of which includes only baseline characteristics and is used to construct si(t) in the numerator
of the weight (also known as the stabilized model) and the other also includes time-varying
covariates and is used to construct pi(t) in the denominator (also known as the un-stabilized
model). The fundamental difference between the two models is the incorporation of the
time-dependent covariates in estimating pi(t). Without the time-varying covariates, the
si(t)/pi(t) = 1 for all patients, which would imply that the probability of uncensoring is
independent from survival time. Therefore, by adding the time-dependent covariates,
the informative censoring as a function of survival time is captured. Specifically, before
building the logistic regression models, a new observation that includes all of the covariates
under consideration and survival outcome should be entered into the dataset either for
each follow-up day or whenever there is a change in the covariate profile during follow-up
(e.g., adding a new antibiotic drug to the existing treatment regimen). In addition, the
cumulative follow-up duration as well as the period indicator (calendar time during the
pandemic) should also be included. The resulting longitudinal dataset reflect the change in
the patient’s treatment history and health condition, which can then be used to predict the
temporal probability of remaining in the hospital versus being discharged alive. Once the
models are built, the second step is to estimate the weight wi(t) as described above. The last
step would be to use standard survival software with the weight option to perform survival
analysis that allows repeated events. It is important to be aware that the standard errors of
the parameter estimates from the typical software output tend to be underestimated due to
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the fact that the weights are estimated with uncertainty. Robust (empirical) standard errors
should be used instead. A schematic diagram of the method is shown in Figure 1.
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To illustrate the method, retrospective data for patients within the Mount Sinai Health
System (MSHS) in New York City who were treated with SARS-CoV-2 convalescent plasma
is analyzed. This study was approved by Institutional Review Board of Icahn School of
Medicine at Mount Sinai. Time 0 was defined as the time of the first admission when
the COVID-19 test was confirmed positive (index admission). The measured outcome
was mortality.

For the plasma example, the final outcome of interest is the survival after the index
admission. To construct the stabilizing weights, two logistic regression models were built
to predict the probability of not being discharged alive for a given hospitalization, without
and with time-varying covariates, respectively. Specifically, the covariates included the
admission hospital site, age, sex, race and ethnicity, week of calendar time, and duration
of follow-up in the stabilized logistic regression model for si(t). In particular, a restricted
cubic spline curve was fit for week and length of cumulative follow-up time since the
index admission. The cubic spline curve allows for a non-linear relationship between a
time-related variable and the logit of the probability of remaining at risk of death. The
un-stabilized logistic regression model for pi(t) considered the above covariates and the
following time-dependent covariates, which included whether the patient received any
of the following interventions during the visit: plasma treatment status, intubation and
tracheostomy status, use of investigational and/or off-label drugs (e.g., investigational
antiviral, hydroxychloroquine, and azithromycin), and use of therapeutic anticoagulants,
broad-spectrum antibiotics, antiplatelet agents, and steroids. For the purpose of illustration,
here, the number of observations used in the logistic regression models for each patient
was the number of hospital admissions (see Discussion). Hence, the covariates differed by
hospital admissions, but remained the same within the same hospitalization. In the last step
of IPCW survival analysis, weight is incorporated into the standard survival software model.
As some patients were readmitted multiple times after their initial discharge, a counting
process approach was used to analyze the multiple admission data and reported empirical
standard errors for parameter estimates (see Supplementary Materials for SAS code).

3. Results

Between 24 March 2020 and 14 July 2020, 441 patients hospitalized at five hospitals
within the MSHS received convalescent plasma. At the time of analysis on 14 July 2020,
133/441 (30.0%) of patients had died and 14 patients were still in the hospital. The majority
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(n = 378) of patients had a single admission; however, 63 patients were readmitted after
their initial admission, for a total of 524 unique admissions (Table 1). The median follow-up
time was 13 (IQR 18; max 97) days for patients who were discharged alive, 18 (IQR 19;
max 90) days for patients who died, and 94 (IQR 23; max 112) days for patients remaining
in the hospital. Of the 133 deaths, six occurred in the subsequent readmissions after the
plasma therapy (1.4%). Table 1 shows the descriptive statistics for the cohort, stratified by
the number of admissions.

Table 1. Baseline and in-hospital characteristics for the convalescent plasma recipients.

Admission Visit Number before 7/15/2020

Covariate Statistics Level 1
N = 378

2
N = 47

3
N = 12

4
N = 4

Parametric
p-Value *

Non-Parametric
p-Value **

Discharge
Disposition

N (Row %) Discharged Alive 242 (82.3) 40 (13.6) 8 (2.7) 4 (1.4)
<0.001

<0.001
N (Row %) Expired 126 (94.7) 6 (4.5) 1 (0.8) 0 (0)
N (Row %) In Hospital 10 (71.4) 1 (7.1) 3 (21.4) 0 (0)

Hospital Site

N (Row %) A 245 (84.2) 33 (11.3) 9 (3.1) 4 (1.4)

0.960

1.000
N (Row %) B 37 (84.1) 5 (11.4) 2 (4.6) 0 (0)
N (Row %) C 37 (90.2) 4 (9.8) 0 (0) 0 (0)
N (Row %) D 31 (91.2) 3 (8.8) 0 (0) 0 (0)
N (Row %) E 28 (90.3) 2 (6.5) 1 (3.2) 0 (0)

Sex
N (Row %) F 154 (85.1) 21 (11.6) 3 (1.7) 3 (1.7)

0.327
0.360

N (Row %) M 224 (86.2) 26 (10) 9 (3.5) 1 (0.4)

Race/Ethnicity

N (Row %) Asian 30 (81.1) 6 (16.2) 1 (2.7) 0 (0)

0.209

0.193
N (Row %) Black 73 (86.9) 11 (13.1) 0 (0) 0 (0)
N (Row %) Hispanic 96 (81.4) 13 (11.2) 6 (5.1) 3 (2.5)
N (Row %) Other 105 (92.1) 7 (6.1) 2 (1.8) 0 (0)
N (Row %) White 74 (84.1) 10 (11.4) 3 (3.4) 1 (1.1)

Therapeutic
Anticoagulant

N (Row %) No 103 (74.6) 27 (19.6) 6 (4.4) 2 (1.5)
<0.001

<0.001
N (Row %) Yes 275 (90.8) 20 (6.6) 6 (2.00) 2 (0.7)

Broad
Spectrum

Antibiotics

N (Row %) No 123 (75) 33 (20.1) 6 (3.66) 2 (1.2)
<0.001

<0.001

N (Row %) Yes 255 (92.1) 14 (5.1) 6 (2.17) 2 (0.7)

Anti-Platelets
N (Row %) No 273 (84.5) 38 (11.8) 9 (2.8) 3 (0.9)

0.656
0.672

N (Row %) Yes 105 (89.0) 9 (7.6) 3 (2.5) 1 (0.9)

Steroids
N (Row %) No 162 (78.3) 32 (15.5) 11 (5.3) 2 (1.0)

<0.001
<0.001

N (Row %) Yes 216 (92.3) 15 (6.4) 1 (0.4) 2 (0.9)

Tocilizumab
N (Row %) No 346 (85.0) 45 (11.1) 12 (3.0) 4 (1.0)

0.488
0.668

N (Row %) Yes 32 (94.1) 2 (5.9) 0 (0) 0 (0)

Investigational
Antiviral

N (Row %) No 323 (84.1) 45 (11.7) 12 (3.1) 4 (1.0)
0.094

0.106
N (Row %) Yes 55 (96.5) 2 (3.5) 0 (0) 0 (0)

Hydroxy-
chloroquine

N (Row %) No 182 (76.5) 41 (17.2) 11 (4.6) 4 (1.7)
<0.001

<0.001
N (Row %) Yes 196 (96.6) 6 (3.0) 1 (0.5) 0 (0)

Azithromycin N (Row %) No 193 (78.5) 39 (15.9) 10 (4.1) 4 (1.6)
<0.001

<0.001
N (Row %) Yes 185 (94.9) 8 (4.1) 2 (1.0) 0 (0)

Mechanical
Ventilation

N (Row %) No 296 (82.9) 46 (12.9) 11 (3.1) 4 (1.1)
0.006

0.002
N (Row %) Yes 82 (97.6) 1 (1.2) 1 (1.2) 0 (0)

Tracheostomy N (Row %) No 357 (85) 47 (11.2) 12 (2.9) 4 (1.0)
0.299

0.408
N (Row %) Yes 21 (100) 0 (0) 0 (0) 0 (0)

Plasma
Therapy

N (Row %) No 0 (0) 37 (75.5) 9 (18.4) 3 (6.1)
<0.001

<0.001
N (Row %) Yes 378 (96.4) 10 (2.6) 3 (0.8) 1 (0.3)

Age

Mean 63.0 62.9 63.8 52.8

0.595

0.841
Median 64 65 66.5 59

Min 19 23 44 20
Max 96 96 89 73

Std Dev 14.8 16.2 13.0 23.0
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Table 1. Cont.

Admission Visit Number before 7/15/2020

Covariate Statistics Level 1
N = 378

2
N = 47

3
N = 12

4
N = 4

Parametric
p-Value *

Non-Parametric
p-Value **

Days to Plasma
Therapy from

Index
Admission

Mean 4.8 5.2 13.6 27.3

<0.001

0.080
Median 2.4 2.5 4.6 13.1

Min 0.1 0.9 0.4 1.9
Max 48.3 34.6 67 81.2

Std Dev 7.5 6.5 20.6 37.3

* The parametric p-value is calculated by ANOVA for numerical covariates and chi-square test for categorical
covariates. ** The non-parametric p-value is calculated by the Kruskal–Wallis test for numerical covariates and
Fisher’s exact test for categorical covariates.

3.1. Outcomes with Reduced Bias
3.1.1. Overall Mortality

When patients who were discharged alive were treated as censored observations at
the time of discharge, and patients who remained hospitalized were treated as censored
observations on 14 July, the unadjusted Kaplan–Meier curve suggests that half of the
patients would have died before week 6, and the mortality rate would be >60% by week 9
(unadjusted scenario). However, if those who were discharged were all still alive as of
14 July, the 90-day mortality post COVID-19 diagnosis would be 133/441 = 30% (best case
scenario). In reality, among those who left the hospital, the discharge disposition included
a hospice or long-term care facility. Therefore, the true 90-day mortality should be close to,
but greater than, 30%.

Figure 2 depicts the survival curves estimated using three different approaches: the
unweighted approach for recurrent admission events, the same unweighted approach
assuming all discharged patients were still alive on 14 July (best-scenario approach for
sensitivity analysis), and the IPCW approach.
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3.1.2. Age Group Comparisons

For an illustration of how informative censoring affects the group comparison, Table 2
shows the mortality hazard ratios for the age groups 45–65 and >65 years old, relative to
the younger than 45 years old age group, using the Cox proportional hazard models under
the three scenarios as shown in Figure 2. Additionally, the competing risk analysis that
treated hospital discharge as a competing outcome was also performed. All four models
suggest that the risk of mortality increases as age increases. The largest difference was seen
for the 65 years and older vs. younger than 45 years age group comparison between the
regular Cox model (HR = 3.19) and the other two models (HR = 5.44, 5.87 and 5.94, for the
IPCW model, competing risk model, and the best scenario model, respectively). Younger
patients were more likely to be discharged early, resulting in an increasing older and sicker
cohort as follow-up time lengthened. Therefore, the regular Cox model under-estimated
the true hazard ratio for the 65+ group.

Table 2. Hazard ratios for age group among convalescent plasma recipients.

Model Age Group Hazard
Ratio 95% CI * p-Value *

Regular Cox Model 45–64 vs.<45 1.94 0.79 4.74 0.147
65+ vs. <45 3.19 1.34 7.60 0.009

IPCW Cox Model
45–64 vs. <45 1.81 0.50 6.51 0.362
65+ vs. <45 5.44 1.73 17.06 0.004

IPCW Cox Model with Only Time-Dependent
Treatment Covariates

45–64 vs. <45 2.59 0.61 11.09 0.473
65+ vs. <45 7.54 2.06 27.57 0.001

Competing Risk Model 45–64 vs. <45 3.35 1.34 8.40 0.010
65+ vs. <45 5.87 2.40 14.33 0.001

Regular Cox Model,
Assuming Discharged Patients Were Still Alive on 14 July 2000

45–64 vs. <45 3.42 1.36 8.59 0.009
65+ vs. <45 5.94 2.43 14.53 <0.0001

* Based on empirical standard errors.

3.1.3. 30-Day Mortality

Our institution ascertains the death status for all hospitalized patients using the Social
Security Administration Limited Access Death Master File (LA-DMF, updated monthly) and
LexisNexis database (updated weekly). As of 15 August, only one additional death was found
after final hospital discharge, which led to an overall mortality rate of 30.2%, almost identical
to the rate estimated by the “best scenario” approach described above. Except for those
patients who died, all patients had had at least 30 days of follow up after index admission,
with a 30-day mortality of 24.0% (95% CI: 20.0–28.3%). In comparison, the estimated 30-day
mortality was 43.1% (34.9–48.5%) for the regular unweighted method, 24.6% (20.3–28.6%) for
the unweighted best scenario approach, and 22.8% (IPCW, 95% CI: 14.6–30.2%) for the IPCW
approach. Furthermore, the relative risk of 30-day mortality based on proportions of patients
who died was 2.43 (0.95–6.25) and 5.36 (2.01–14.29) for those aged 45–64 and 65+, respectively,
when compared to the under 45 age group.

3.1.4. Influence of Time-Dependent Covariates

To investigate and compare the influence of the time-dependent covariates on the
estimation of age effects in Table 2, we performed a series sensitivity analysis. The first
analysis was to include the time-dependent treatment covariates only in the denominator
of the weight and set the numerator of the weight to be 1 (Table 2). The impact of older age
on mortality was significantly greater. Because the older patients tended to receive more
and longer treatment interventions, the age effects were confounded by the time-dependent
treatment covariates in the unadjusted regular Cox model.

The second analysis was to omit one time-dependent variable at a time in estimating
the marginal probability of remaining uncensored on a given day (Table 3). The largest
differences, compared to the IPTW final results in Table 2, were seen for the intubation status
and convalescent plasma status. The durations of mechanical intubation and convalescent
plasma treatments were significantly correlated with age, as well as whether a patient
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remained in the hospital. For example, patients who had an extended hospital stay tended
to be intubated and older. Therefore, the failure to account for this led to a similar finding
to that of the unadjusted regular Cox model.

Table 3. Sensitivity analysis of Table 2 analysis for omitting the time-dependent covariate in building
the marginal probability of remaining uncensored.

Time-Dependent Variable Omitted Age Group Hazard
Ratio 95% CI * p-Value *

Therapeutic Anticoagulants 45–64 vs.<45 1.69 0.44 6.53 0.450
65+ vs. <45 5.90 1.83 19.07 0.003

Broad-Spectrum Antibiotics 45–64 vs. <45 1.67 0.43 6.497 0.463
65+ vs. <45 5.64 1.69 18.76 0.005

Antiplatelet Agents 45–64 vs. <45 1.76 0.48 6.40 0.390
65+ vs. <45 5.40 1.73 16.83 0.004

Steroids
45–64 vs. <45 1.79 0.48 6.70 0.386
65+ vs. <45 5.77 1.82 18.36 0.003

Investigational Antiviral 45–64 vs.<45 1.87 0.54 6.53 0.326
65+ vs. <45 4.84 1.51 15.50 0.008

Hydroxychloroquine 45–64 vs.<45 2.01 0.56 7.28 0.286
65+ vs. <45 5.97 1.88 19.01 0.003

Azithromycin 45–64 vs.<45 1.78 0.49 6.42 0.378
65+ vs. <45 5.37 1.72 16.77 0.004

Plasma Treatment Status
45–64 vs.<45 3.42 1.02 11.43 0.046
65+ vs. <45 7.33 2.22 24.18 0.001

Intubation Status
45–64 vs.<45 2.23 0.77 6.47 0.138
65+ vs. <45 3.41 1.37 8.48 0.008

Tracheostomy Status 45–64 vs.<45 1.76 0.48 6.41 0.392
65+ vs. <45 5.31 1.68 16.75 0.004

* Based on empirical standard errors.

4. Discussion

An awareness of the non-informative censoring problem should prompt caution
when analyzing COVID-19 data, particularly when using hospital data. Unfortunately,
discharged participants are often lost to follow up unless state- or national-level death data
are available. The LA-DMF, which is available for download and incorporation into local
hospital registry data, is known to be incomplete because of restrictions imposed on the
sharing of state-level data [18]. State-level mortality queries require individual data use
agreements with each state of interest (EX SPARCS, https://www.health.ny.gov/statistics/
sparcs/access/, accessed approximately 15 August 2020 [19]. The Centers for Disease
Control National Death Index [20] has significant restrictions on access and use that make
it unsuitable for incorporation into time-sensitive analyses (https://www.cdc.gov/nchs/
ndi/index.htm, accessed approximately 15 August 2020 Therefore, local hospital data are
often used to estimate overall mortality for hospitalized patients.

When treating discharged-alive patients as censored observations at the time of dis-
charge, large numbers of early censored values decrease the number of subjects at risk of
death at later times, reducing the effective sample sizes. Heavy censoring may also be
indicative of a pattern in the censoring, including younger and healthier patients being
discharged earlier, leaving only older and more sick patients (for example, those with a
prolonged time on a ventilator) who represent a very high-risk subset. This accelerates
the drop of the Kaplan–Meier survival curve, particularly towards the later part of the
follow-up period.

A popular alternative for analyzing mortality data commonly seen in the medical
literature is to model death as a binary outcome using logistic regression. It is used in the
context of a clear and well-defined study period, such as 30-day mortality. The follow-up
duration is often short so that the final outcome can be ascertained for every subject by the
study end without any censored observations. In addition, the mortality rate is expected to

https://www.health.ny.gov/statistics/sparcs/access/
https://www.health.ny.gov/statistics/sparcs/access/
https://www.cdc.gov/nchs/ndi/index.htm
https://www.cdc.gov/nchs/ndi/index.htm
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be low. A log-binomial regression model for relative risk might be used when the mortality
rate is greater than 10%. For hospitalized patients with COVID-19, the overall in-hospital
mortality was estimated to be more than 20% in our institution as of 14 July (internal
data). Neither approach is able to depict how the risk of mortality changes throughout the
follow-up period. The timing of death is important for patients with COVID-19 in order to
determine treatment options, as most severe adverse events happen later during admission
rather than earlier.

This study has some important limitations. The convalescent plasma example is used
to demonstrate the potential and neglected bias in estimating survival outcomes due to
informative censoring. In the analysis, only those patient and clinical factors with the best
data quality were considered for illustration. There are other clinical and comorbidity
variables that also affect the survival outcomes for patients with COVID-19. The goal of the
current analysis is not to establish whether convalescent plasma is effective, nor to identify
the factors associated with plasma survival. In addition, the data were only representative
of one health system in the New York City metropolitan area collected during the peak of
the local epidemic.

As demonstrated in Figure 2, the unadjusted approach substantially underestimated
the survival probability, whereas the IPCW approach yielded a similar survival curve as
the curve that assumed all discharged patients were still alive, with slightly lower 90-day
mortality towards the end of the follow-up. In the IPCW analysis, we constructed the
stabilizing weights by hospital admission. Therefore, the weights would vary depending
on the duration of hospitalization, number of hospitalizations, treatment regimen, and
patients’ medical and baseline characteristics. Because most aforementioned therapeutic
interventions were given shortly after admission, this assumption might be reasonable,
but overly simplified. An improved analytic approach would be to enter one observation
for each follow-up day to take into account the daily variation in patient’s health status,
reflected by laboratory test results, vital signs, and invasive oxygen treatment.

5. Conclusions

During the first wave of the COVID-19 pandemic, many studies attempted to estimate
the true mortality rate from COVID-19. This raises the concern of a neglected cause of bias
in estimating COVID-19 mortality using hospital data, which arises from treating the dis-
charged patients as typical censored observations in survival analysis. Some recommended
remedies are briefly discussed, with a focus on the IPCW method because it is a less familiar
approach in the medical literature. As the plasma example showed, the Kaplan–Meier
curve, especially towards the later follow-up period, vastly overestimated the mortality rate.
In our plasma example, as almost all patients now have been discharged, the picture of the
true in-hospital mortality is more attainable. Therefore, the biased estimate of the survival
rate using the Kaplan–Meier method becomes more obvious. The clinical implications of
this method allow for an improved accuracy of true mortality rates and treatment effects
derived from observational data. Hence, clinicians and researchers should be aware of the
impact of informative censoring when reviewing the earlier COVID-19 publications. In
planning future analyses using COVID-19 in-patient data, it is important to incorporate
not only baseline characteristics data, but also to document time-dependent vital sign and
laboratory data, as well as the timing of different treatment regimens. These data are crucial
for model adjustment and for understanding the censoring mechanism. Finally, all analyses
should be accompanied by a thorough sensitivity analysis to understand the degree of bias,
if any, present in the selected models.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/life13010210/s1.
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