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Abstract: Staphylococcus aureus protein A (SpA) is an IgG Fc-binding virulence factor that is widely
used in antibody purification and as a scaffold to develop affinity molecules. A cyclized SpA Z
domain could offer exopeptidase resistance, reduced chromatographic ligand leaching after single-
site endopeptidase cleavage, and enhanced IgG binding properties by preorganization, potentially
reducing conformational entropy loss upon binding. In this work, a Z domain trimer (Z3) was
cyclized using protein intein splicing. Interactions of cyclic and linear Z3 with human IgG1 were
characterized by differential scanning fluorimetry (DSF), surface plasmon resonance (SPR), and
isothermal titration calorimetry (ITC). DSF showed a 5 °C increase in IgG1 melting temperature
when bound by each Z3 variant. SPR showed the dissociation constants of linear and cyclized Z3
with IgG1 to be 2.9 nM and 3.3 nM, respectively. ITC gave association enthalpies for linear and
cyclic Z3 with IgG1 of −33.0 kcal/mol and −32.7 kcal/mol, and −T∆S of association 21.2 kcal/mol
and 21.6 kcal/mol, respectively. The compact cyclic Z3 protein contains 2 functional binding sites
and exhibits carboxypeptidase Y-resistance. The results suggest cyclization as a potential approach
toward more stable SpA-based affinity ligands, and this analysis may advance our understanding of
protein engineering for ligand and drug development.

Keywords: protein A; cyclic Z3; SICLOPPS; tandem mass spectrometry; ITC; DSF; SPR

1. Introduction

Protein A of S. aureus binds to the Fc portion of human IgG [1,2], helping protect
S. aureus from opsonophagocytic killing. It also cross-links the antigen-binding (Fab)
portions of VH3-type B cell receptors leading to the activation and clonal expansion of
B cells and their subsequent apoptotic collapse, a mechanism that suppresses adaptive
immune responses during staphylococcal infection [3].

Protein A was first discovered based on the observation that all 500 human sera tested
appeared to contain antibodies recognizing S. aureus [4]. Further investigation determined
that this was not a true immune response but rather was due to a bacterial cell surface
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protein (protein A) that binds antibodies independent of their antigen specificity [2]. Protein
A and its domains have been widely used as model systems for protein folding [5,6] and in
immunochemical assays [7]. The functions of protein A as a virulence factor [8,9] and B
cell superantigen [10] have been extensively investigated. The Uhlèn group mutagenized
the B-domain for greater resistance to hydroxylamine and cyanogen bromide as well as
reduced binding to the VH3 Fab region, producing the widely studied ‘Z’ domain [11].
Engineered derivatives of protein A and the Z domain, including forms with increased
avidity [12] and resistance to high-pH sanitization, are widely used in the purification
of antibodies [13,14]. Display technology has been used to derive Z domain variants
binding to non-immunoglobulin targets ‘affibodies’ [15], which are being used for various
diagnostic and therapeutic applications [16–18].

Stabilizing proteins against thermal stress and proteolytic degradation by topology
engineering has been increasingly explored. Tools for enhancing the functional properties
of proteins include site-specific incorporation of non-canonical amino acids [19], loop engi-
neering [20], and cyclization [21–23]. A potential approach to improving protein stability
is the linkage of the N- and C-termini. Side chain cross-linking and backbone cyclization
were reported to restrain protein conformation and decrease the entropy of the denatured
state, improving stability [24,25]. Cyclization has been achieved by covalent linkage, native
chemical ligation (NCL), the actions of inteins, and by enzymatic methods [26,27]. However,
low protein yields from NCL, the absence of native cysteine residues in the Z domain to
facilitate covalent linkage, energetically unfavorable hydrogen-bonding networks, and inter-
ference with appropriate folding [28] remain significant drawbacks of cyclization. Inteins are
naturally occurring internal protein domains that autocatalytically remove themselves from
the parent protein and re-ligate the flanking regions by spontaneous protein splicing [29].
Split inteins are created by separating inteins’ primary sequence into two fragments at the
genetic level. The split polypeptides flank the two termini of the target protein [30]. Upon
expression, the intein segments first associate with reconstituting the active intein and then
ligating the fused N- and C-extein sequences through protein splicing.

Previous reports demonstrated chemically synthesized cyclic two-helix Z domain
protein, high affinity bivalent intein-circularized 2Z protein, and a sortase-mediated cy-
clized dimer of Z domain affibodies [31–33]. In this study, we constructed a cyclic trimer
of the Z domain (cyclic Z3) of protein A using gp41-1-based split-intein circular ligation
of peptides and proteins (SICLOPPS) [34]. Intein gp41-1 was selected for its superior
trans-splicing reaction rate [35–37]. The resultant cyclic protein was purified by IgG affinity,
confirming the retention of protein A binding functionality. Cyclization was confirmed
by matrix-assisted laser desorption/ionization (MALDI), tandem mass spectrometry after
trypsin digestion (MS-MS), carboxypeptidase Y (CPDY) digestion, Edman degradation, and
analytical ultracentrifugation (AUC). IgG binding of linear Z3 and cyclic Z3 protein was
demonstrated using differential scanning fluorimetry (DSF), surface plasmon resonance
(SPR), and isothermal titration calorimetry (ITC). DSF showed a similar ca. 5 ◦C increase in
the melting temperature upon IgG binding for both protein variants. ITC demonstrated the
similarity of thermodynamics and stoichiometry of association, and SPR showed similar
association and dissociation rates. This analysis may advance our understanding of the
biophysical effects of topology modification on Z domain-based binding proteins and may
also represent an approach to a more stable ligand for use as drugs and in the purification
of therapeutic antibodies.

2. Results and Discussion
2.1. Expression and Purification of Recombinant Linear and Cyclic Z3 Proteins

The cyclization of the trimeric Z domain protein was achieved using SICLOPPS. The
C-terminal and N-terminal split intein genes flank the two termini of the linear Z3 gene
(Figure 1A,B). A hydrophilic α-helical linker (A(EAAAK)2A) [38] was inserted between the
C terminus of the linear Z3 gene and the N extein, downstream of the Z3 gene to improve
folding and avoid destabilizing strain on the native structure. The linear Z3 and cyclic Z3
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gene constructs were cloned and transformed into E. coli BL-21(DE3) cells and kanamycin-
resistant transformants were screened by PCR and agarose gel electrophoresis. Sanger
sequencing confirmed the correct sequence of the obtained constructs (pET28a-LinZ3 and
pET28a-CycZ3; Supplementary Figure S1). Each recombinant protein was purified using
IgG affinity chromatography and immobilized metal affinity chromatography (IMAC),
followed by size exclusion chromatography (SEC) as a polishing step (Supplementary
Sections S1–S4). Successful IgG affinity purification of the linear and cyclic Z3 confirmed
their IgG affinity (Figure S2). Properly spliced and ligated cyclic proteins were purified from
non-spliced or prematurely spliced proteins using the IMAC in the flow-through mode and
by SEC (Figures S3–S6). As evidenced by non-reducing SDS-PAGE (Figure 2A), the cyclic
protein migrated more rapidly on the SDS-PAGE gel than the linear Z3 despite having a
1.5% higher molecular weight, consistent with the more compact nature of the cyclized
protein. A similar observation was made with cyclized Bacillus subtilis xylanase [29].
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Figure 1. Protein cyclization (A) Cyclic Z3 construct map. (B) Schematic representation of SICLOPPS
process; The two intein fragments interact to form an active intein that autocatalytically splices to
cyclize the flanked Z3 protein by forming a peptide bond and releasing the intein complex.

2.2. Characterization of Recombinant Proteins by Mass Spectrometry Methods

Using the ExPASy Compute pI/MW tool (https://web.expasy.org/compute_pi/,
accessed on 20 March 2021), the calculated molecular weight (MW) of linear Z3 protein was
22,394 Da, and that of the cyclic Z3 protein was 22,719 Da. MALDI-TOF gave two singly
charged linear Z3 peaks of 22,211 Da and 22,247 Da (Figure 2B). The peak with higher m/Z
matches closely with the ExPASy predicted molecular weight, while the lower molecular
weight peak in the spectrum might be the product of the co-translational cleavage of
N-terminal methionine by methionine aminopeptidase [39]. The MALDI mass of the split-
intein-derived ligated cyclic Z3 protein was 22,726 Da, closely matching the calculated mass

https://web.expasy.org/compute_pi/
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(+7 Da difference) (Figure 2C). In separate analyses, the purified proteins were subjected
to overnight trypsin digestion followed by peptide identification by LC-MS/MS analysis.
Mapping analysis confirmed the removal of the terminal methionine residue (Table S1) for
the linear Z3 peptide.
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Figure 2. (A) Non-reducing SDS-PAGE analysis of cyclization of the Z3 protein. Lane 1: Precision
plus protein™ standards (Bio-Rad # 161-0374); lane 2: purified cyclic Z3; lane 3: purified linear Z3.
(B,C) MALDI-ToF mass spectra of purified proteins. (B) linear Z3 protein (calculated: 22,394 Da,
observed: 22,247 Da and 22,211 Da, additional prominent peak at 11,102 Da attributed to doubly
charged ion) (C) cyclic Z3 protein (calculated: 22,719 Da, observed: 22,726 Da, additional prominent
peak at 11,361 Da attributed to doubly charged ion).

All expected tryptic peptides were observed (Tables S1 and S2), confirming the se-
quence of each protein (Figure 3A,B). As each protein contains three copies of the Z domain,
there is ambiguity in the assignment of each individual peptide molecule to a single loca-
tion in the overall structure, but no mutations or covalent modifications of the sequence
were observed in the tryptic mapping. The overall mass of each protein and, therefore,
the number of Z domains was confirmed by other methods. Additionally, the sequence
SGYSSSDVVDNK was not encoded in the plasmid DNA but expected in the intein-cyclized
protein as the ligation scar sequence between the N and C termini. This sequence was
observed in the tryptic peptide data (Table S2, peptide no. 7) from the cyclic Z3 protein
(Figure 3C), confirming successful cyclization by SICLOPPS.

2.3. Confirmation of Cyclization by Edman Degradation (ED) and Carboxypeptidase
Y (CPDY) Digestion

Edman N-terminal sequencing was carried out to confirm the absence of a free N-
terminus in the cyclic Z3 protein. The Edman degradation-derived N-terminal sequence of
the linear Z3 matched with the expected N-terminal sequence (Figure 4A). As expected,
Edman degradation of cyclic protein did not give coherent sequencing results; some
peaks were observed with the dominant presence of S, A, P, and V amino acid residues
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(Figure 4B). The expected N-terminal residues of non-cyclized splicing intermediates are
SSSDV, and those from the non-spliced parent protein are SSHHH for cycles 1 through 5.
The recovered peaks partially matched with the spliced but non-cyclized product of an
incomplete SICLOPPS process or protein degradation, as previously discussed [26].
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Figure 3. (A,B) Protein sequence coverage in tryptic MS-MS analyses; (A) Linear Z3 protein and
(B) cyclic Z3 protein. Each blue underline indicates one identified peptide sequence. The green box in-
dicates the peptide sequence connecting the N and C termini of the cyclic Z3 protein. (C) Identification
of ligation scar sequence in trypsin-digested cyclic Z3. MS/MS spectrum (after trypsin digestion) of
the cyclic Z3 protein shows the junction sequence SGYSSSDVVDNK, which is not genetically encoded
but is expected in the cyclic protein. The b and y ions corresponding to the ligation scar are shown.

Separately, carboxypeptidase Y (CPDY) was used to test for the presence of free
C-termini and assess relative resistance to exopeptidase degradation. CPDY is a serine
carboxypeptidase with broad amino acid specificity [40]. Two hours of CPDY digestion of
the linear Z3 at 37 ◦C gave lower molecular weight protein fragments (Figure 5), which
were not observed with cyclic Z3, suggesting the absence of an accessible carboxyl-terminus
and hence resistance to exopeptidase digestion.
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Figure 5. CPDY digestion SDS-PAGE analysis. Lane 1: protein ladder (Spectra Multi Color Low
Range; Thermo scientific); lane 2: undigested linear Z3; lane 3: digested linear Z3 (Protein: CPDY
mass ratio = 2.5:1); lane 4: undigested cyclic Z3; lane 5: digested cyclic Z3 (Protein: CPDY mass
ratio = 2.5:1); lane 6: CPDY enzyme.

2.4. Antibody Binding Characterization by Differential Scanning Fluorimetry (DSF)

DSF melting point shift experiments were used to compare the IgG complex stability
of the linear and cyclic Z3 proteins. SYPRO™ orange dye binds to the exposed hydrophobic
regions of denatured proteins, and so reports temperature-induced denaturation. As shown
in Figure 6, the derivative of the fluorescence of Fc and Fab fragments of IgG1 shows the
denaturation temperature of the Fc and Fab fragments of IgG1.
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Figure 6. Differential scanning fluorimetry of rituximab-protein interaction in a Bio-Rad CFX 96
real-time PCR instrument. The DSF profiles of equimolar mixtures of rituximab/ Z3 protein variants
were compared with profiles of the individual components. The negative derivative of fluorescence
is plotted as the temperature was increased from 25 ◦C to 95 ◦C.

Previous studies have shown that the thermal transitions of the Fc and Fab of IgG1 are
independent [41]. In our experiments, the DSF profile of rituximab (human monoclonal
IgG1) showed two major transitions centered at 68.5 °C and 74.1 °C (Table 1) and one
smaller transition at 81.3 °C, closely matching previous results for human IgG1 [42]. No
significant change in fluorescence intensity was observed in the linear and cyclic Z3 samples
(Figure 6) over the temperature range of interest. The high denaturation temperature of the
Z domain was previously reported (melting temperature >90 ◦C, as determined by DSF
and circular dichroism) [42].

Table 1. Melting temperatures (Tm) and thermodynamic parameters of unfolding (Gibbs free energy,
enthalpy, and entropy change) of rituximab and an equimolar mixture of rituximab with Z3 protein variants.

Components Tm1 (◦C) Tm2 (◦C) Tm3 (◦C) ∆uG0

kJ mol−1
∆uS0

kJ mol−1 K−1
∆uH0

kJ mol−1

Rituximab 68.5 ± 0.1 74.1 ± 0.0 81.3 ± 0.5 55.8 ± 0.5 1.3 ± 0.0 429.9 ± 1.6

Rituximab:
linear Z3 (1:1) 73.4 ± 0.1 84.6 ± 0.1 N/A 68.7 ± 3.3 1.4 ± 0.1 481.1 ± 22.6

Rituximab:
cyclic Z3 (1:1) 73.4 ± 0.2 82.8 ± 0.1 N/A 66.8 ± 1.0 1.4 ± 0.0 476.0 ± 9.0

The standard error was calculated from three independent measurements.

As expected, binding protein A variants to rituximab resulted in an increase in both
transition temperatures. Addition of either linear or cyclic Z3 increased the lower transition
temperature by 4.9 ◦C, suggesting that each Z3 variant interacts similarly with Fc (Table 1).
The transition observed at 81.3 ◦C with pure rituximab (ascribed to the Fab and secondary
Fc interactions [42] shifted upward by 3.3 ◦C and 1.5 ◦C for rituximab/protein complexes
with linear and cyclic Z3, respectively. In addition, thermodynamic parameters of unfolding
at 25 ◦C were calculated for the rituximab Fc transition near 68.5 ◦C (Table 1), assuming
a two-state reversible protein folding model with no stable intermediate [43]. ∆uG0 and
∆uH0 of rituximab/Z3 protein variants in a 1:1 molar mixture were similarly higher than
those of rituximab (Table 1). However, the addition of neither protein A form produced
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a significant change in the ∆uS0. The increase in Tm, ∆uG0, and ∆uH0 implies similar
molecular interactions between the Z3 protein variants and rituximab.

2.5. Binding Kinetics by Surface Plasmon Resonance (SPR)

Dose–response sensorgrams were obtained for the binding of linear and cyclic Z3
to rituximab immobilized on a CM5 dextran chip. Kinetic parameters were calculated
using the BIAevaluation software (Version 2.0.1) with a 1:1 Langmuir binding model
(Figure 7A,B). The model-derived association rate constants (kon) for linear and cyclic
Z3 were (3.1 ± 0.04) × 105 M−1s−1 and (2.2 ± 0.02) × 105 M−1s−1, respectively. The
dissociation rate constants (koff) were (9.2 ± 0.42) × 10−4 s−1 and (7.3 ± 0.31) × 10−4 s−1,
respectively, for linear and cyclic Z3. The dissociation equilibrium constants, KD, calculated
as koff/kon, was 2.9 ± 0.09 nM for linear Z3 and 3.3 ± 0.10 nM for cyclic Z3. The kinetics-
derived kon, koff, and dissociation constant for linear Z3 are in reasonable agreement with
literature values determined for linear ZZ independently by flow cytometry, ELISA, and
SPR [32,44,45]. Although the kon and koff values for cyclic Z3 were slightly (29% and 21%,
respectively) lower than those for the linear Z3, the KD was nearly identical (Figure 7A,B).
The similar affinities of the two protein variants for rituximab may be attributed to their
functionally similar binding surfaces and confirm that cyclization does not significantly
interfere with binding either by steric hindrance or by local denaturation.
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Figure 7. Kinetics of Z3 proteins interaction with rituximab (A) Linear Z3 at 0.67, 0.34, and 0.17 µM
and (B) cyclic Z3 at 0.57, 0.28, and 0.14 µM were bound to immobilized rituximab. Rate and
equilibrium constants were determined from direct curve fitting of the sensorgrams. The values
represent the mean ± standard error calculated from the BIAevaluation software.

2.6. Conformational Analysis by Analytical Ultracentrifugation (AUC)

AUC sedimentation velocity experiments were used to characterize the sedimentation
and transport properties of the linear and cyclic Z3 molecule. The linear form (S = 1.7–2.9)
has higher sedimentation heterogeneity than the cyclic form (S = 1.7–2.2) (Figure 8A). The
frictional ratio of the cyclic form appeared primarily as a single, homogeneous species
at f/f0 = 1.5 and S = 2.0, While linear Z3 was more heterogeneous with a frictional ratio
f/f0 = 1.3–2.2 and S = 1.7–2.9 (Figure 8B). Molar mass transformations of the sedimentation
and diffusion coefficients, assuming a constant partial specific volume, suggest that the
linear form is more prone to forming oligomeric structures as large as trimers, while the
cyclic form remains mainly monomeric (Figure 8C). These results suggest that the linear
form is more prone to oligomerization. In contrast, the cyclic form is more compact, less
heterogeneous, and has less conformational flexibility than the linear Z3, a finding that is
consistent with previous literature on cyclic proteins [46,47].
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frictional ratio of linear and cyclic Z3, showing also greater heterogeneity in the frictional ratio for
linear Z3. (C) Molar mass overlay of linear and cyclic Z3.

2.7. Binding Thermodynamics by Isothermal Titration Calorimetry (ITC)

ITC was used to analyze the energetics of association of Z3 proteins with rituximab (Figure 9).
The binding of linear Z3 to rituximab was enthalpically driven (∆H = −33.0 ± 0.6 kcal/mol),
with an unfavorable entropic contribution at 25 ◦C (T∆S = −21.2 ± 0.73 kcal/mol) and an
overall Gibbs Free energy of binding, ∆G of −11.7 ± 0.2 kcal/mol (KD = 2.8 ± 0.8 nM) and
binding stoichiometry of 1.9 IgG1 molecules per linear Z3. The energetics of binding of
cyclic Z3 was very similar with ∆H = −32.7 ± 0.7 kcal/mol, T∆S = −21.6 ± 0.66 kcal/mol,
∆G = −11.1 ± 0.03 kcal/mol, KD = 7.6 nM and stoichiometry of 2.1 IgG1 molecules
binding per cyclic Z3 molecule. A study of Z2 domain protein association with human
IgG showed energetics similar to those observed here, with a favorable binding enthalpy
(∆H = −34.5 kcal/mol) and unfavorable binding entropy (T∆S = −23.9 kcal/mol) [48].
Additionally, the thermodynamic properties obtained in this study are in accord with
previously reported studies on protein A-IgG interaction [48,49]. Both linear and cyclic
Z3 contain three identical IgG1 binding monomers, but the ITC data for each revealed
functional stoichiometry of ~2 IgG1 per Z3 protein variants, presumably because of steric
exclusion [48]. These results are in agreement with the previously reported solution phase
stoichiometry of antibodies and Fc-fusion proteins with protein A (GE Healthcare and
Calbiochem), measured using ITC and SEC [50,51]. Furthermore, while we had anticipated
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a potential reduction of conformational entropy loss upon binding by cyclization, we
observed no significant difference in binding energetics, suggesting domain independence.
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Figure 9. Titration calorimetric characterization of the interaction between rituximab and Z3 protein
variants. (Top) Raw data of the sequential titration of (A) 40.3 µM linear Z3 into 8.0 µM rituximab
in the sample cell and (B) 48.1 µM cyclic Z3 into 7.6 µM rituximab in the sample cell. (Bottom) B
integrated heat of titration as a function of the molar ratio of Z3: rituximab. The standard error was
calculated from three independent measurements.

3. Materials and Methods
3.1. Materials

Synthetic nucleic acids were obtained from Genewiz (South Plainfield, NJ, USA).
Bovine serum albumin (BSA), chicken egg-white lysozyme, Benzonase® Endonuclease,
LB broth (Miller), isopropyl ß -D-1-thiogalactopyranoside (IPTG), Tris, imidazole, Am-
icon centrifugal filters, tryptone enzymatic digest from casein, sodium chloride, Triton
X-100, kanamycin, carboxypeptidase Y (CPDY) and spermidine tetrahydrochloride were
purchased from Sigma (St. Louis, MO, USA). Pierce™ protease inhibitor mini tablets EDTA-
free, SYBR Green I, Pierce™ BCA protein assay kit, and SYPRO™ orange protein gel stain
were purchased from Thermo Fisher Scientific (Waltham, MA, USA). Other reagents used in-
clude glacial acetic acid, glycerol, sodium hydroxide, hydrochloric acid, anhydrous ethanol
(VWR, Radnor, PA, USA), and phosphate-buffered saline (PBS) tablets Takara Bio (San
Jose, CA, USA). Buffers were prepared with deionized water (Millipore Milli-Q, Burlington;
MA, USA) and filtered with sterile polystyrene filters (Corning, New York, NY, USA).
Gibson Assembly® cloning master mix (GA), restriction enzymes, and Q5® High-Fidelity
Polymerase 2X Master Mix were purchased from Promega (Madison, WI, USA) or New
England Biolabs (Ipswich, MA, USA). QIAprep Spin Miniprep, QIAquick Gel Extraction
Kit, QIAquick polymerase chain reaction (PCR) cleanup, and QIAprep plasmid miniprep
kits were purchased from Qiagen (Germantown, MD, USA). IgG Sepharose 6 Fast Flow, Ni
Sepharose 6 Fast Flow adsorbents, XK 16/200 columns, and Superdex-200 10/300 GL SEC
column were purchased from Cytiva (Marlborough, MA, USA). Transformation-competent
E. coli BL-21(DE3) cells and pET plasmids were obtained from Invitrogen (Waltham, MA,
USA). Rituximab was purchased from Zydus (Ahmedabad, Gujarat, India).

3.2. Circularized and Linear Z3 Protein Plasmid Construction

A synthetic gene sequence encoding a single copy of the Z domain (RCSB PDB—2SPZ)
flanked by gp41-1 inteins (C terminal intein/extein and N-terminal intein/extein [37]) was
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purchased from Genewiz. PCR amplification was performed using high-fidelity DNA
polymerase (Q5® High-Fidelity 2X Master Mix). The gene fragment was amplified with the
forward primer NdeI-Zcyc-F (5′ CCGCGCGGCAGCCATATGATGTTGAAGAAGATC 3′,
encoding the NdeI restriction site) and the reverse primer XhoI-Zcyc-R (5′ GTGGTGGTG-
GTGGTGCTCGAGTTACTTGTC 3′), encoding the stop codon and the XhoI restriction site),
and cloned into a NdeI/XhoI digested pET28a vector using 2X GA reaction mix to produce
pET28a-Z1cyc. Afterward, the SalI restriction site encoded downstream of the Z domain
was used to produce gene-coding cyclic Z domain multimers. A linear double-stranded
5′ phosphorylated Z domain gene with the N-terminal intein/extein gene was obtained
for Z domain multimerization purposes. First, the plasmid pET28a-Z1cyc was digested
with SalI and XhoI. The linear double-stranded 5′ phosphorylated gene was then ligated to
linearized pET28a-Z1cyc. The resultant cyclic Z protein-coding gene was amplified using
primers NdeI-Zcyc-F and XhoI-Zcyc-R, analyzed by gel electrophoresis, and visualized
by SYBR Green staining. Correct-sized fragments were excised from the gel, purified
using a QIAquick gel extraction kit, and cloned into the pET28a vector using a 2X Gibson
assembly (GA)reaction mix to produce the plasmid pET28a-Z2cyc. Briefly, a purified gene
fragment (30 ng/µL) was incubated with NdeI/XhoI digested pET28a (50 ng/µL) and 2X
GA reaction mix at 50 ◦C for 2 h. The same procedure was repeated to produce the cyclic
Z3 protein-expressing plasmid pET28a-Z3cyc. Separately, linear Z3 protein-expressing
plasmid, pET28a-Z3lin was produced according to our previously reported study [52].

3.3. Expression and Purification of Linear Z3 and Cyclic Z3 Proteins

A 5 mL aliquot of freshly transformed E. coli BL-21(DE3) cells in LB medium was
incubated for 4–5 h at 37 ◦C and then used to innoculate to 2.8 L baffled Fernbach flasks
containing 500 mL Super Broth (32 g tryptone, 20 g yeast extract, 5 g NaCl, 5 mL 1 N NaOH)
with 50 µg/mL kanamycin. When the cultures reached an OD600 of 0.6, protein expression
was induced with 1 mM IPTG and grown for an additional 5 h. Bacterial cells were then
harvested in an Avanti J-E High-Speed Centrifuge (Beckman Coulter, CA, USA) at 6000× g
for 20 min and stored at −80 ◦C until further use.

Bacterial pellet was mixed with half of its volume of a lysis buffer (20 mM Tris-HCl
buffer, pH 8.0, 100 µg/mL lysozyme, 0.1% Triton X-100, 10 mM spermidine tetrahydrochlo-
ride, and 10% glycerol). The mixture was incubated at 4 °C for 1 h, and the cells were
lysed using a Biologics 150VT Ultrasonic Homogenizer at 40 kHz for three 15 s cycles. The
cell lysate was centrifuged at 14,500× g for 20 min using an Eppendorf Centrifuge 5424 R.
The supernatant was filtered using a 0.22 µm syringe filter, loaded on an IgG Sepharose
FF column, and eluted using 0.1 M acetic acid, pH 3.5. The eluate was pH adjusted to
pH 7.4 using 2 M Tris solution and loaded on a Superdex-200 SEC column to remove the
aggregates and fragments.

For cyclic Z3 purification, the IgG Sepharose affinity-capture step was carried out as
described in the previous paragraph. The neutralized eluate was subjected to IMAC using
Ni Sepharose 6 Fast Flow adsorbents in flow-through mode. Furthermore, the Superdex-
200 SEC column was used to remove aggregates and fragments. (See Supplementary
information Section S4).

3.4. SDS-PAGE

SDS-PAGE was performed using 4–20% Mini-PROTEAN® TGX™ Precast Gels (Bio-
Rad, CA, USA), according to the manufacturer’s recommendation. All samples for elec-
trophoresis were mixed with 2X Laemmli SDS-PAGE gel loading buffer in 1:1 (v/v) and
loaded on the gel. Finally, the gel was stained with 0.1% (w/v) Coomassie blue R-250, 40%
(v/v) methanol, and 10% (v/v) acetic acid.

3.5. Matrix-Assisted Laser Desorption/Ionization (MALDI) Mass Spectrometry

The purified proteins were characterized by MALDI-ToF-MS (Voyager STR-DE, Ap-
plied Biosystems, Waltham, MA, USA) analysis at the Tufts University Core Facility (Boston,
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MA, USA). For mass spectrometry, protein samples were buffer exchanged in Tris–HCl
buffer (0.02 M, pH 7.4) on a Superdex-200 SEC column, concentrated using Amicon centrifu-
gal filters (2 mg/mL; quantified with the Pierce™ BCA protein assay kit), and submitted
for analysis frozen on dry ice. Sinapinic acid was used as a MALDI matrix, with a 0.5 µL
spot of sample and 0.5 µL of matrix on top of it on the stainless-steel sample plate. The
mixture was air-dried and loaded into the instrument for reading in linear mode.

3.6. Tryptic Digestion MS-MS

The protein samples (50 µL of 1 mg/mL) were heat-treated at 95 °C for 5 min. Then,
Thermo Pierce™ Trypsin Protease, MS Grade (catalog number: 90058), was added in a
proportion of 1:40 (Z3/trypsin, w/w), and the mixture was incubated overnight at 37 °C and
500 rpm on a turbo thermal shaker. The samples were cleaned up using Thermo Scientific
PierceTM C18 Tips on a 100 µL bed as per the manufacturer’s recommendations [53]. Trypsin-
digested samples were analyzed on a mass spectrometer (timsTOF Pro) MS-MS analyzer at
the Mass Spectrometry Laboratory, University of Houston, Houston, Texas, USA.

3.7. Carboxypeptidase Y (CPDY) Digestion

Cyclic and linear Z3 protein samples were buffer exchanged into 50 mM, pH 6.5 MES
(2-(N-morpholino) ethanesulfonic acid) buffer. Lyophilized CPDY powder was dissolved
in 50 mM, pH 6.5 MES buffer. Linear and cyclic Z3 protein samples (0.2 mg/mL of 0.1 mL)
were mixed with CPDY enzyme in a mass ratio of 2.5:1 (w/w) and incubated at 37 ◦C for 2 h
(the reaction conditions were obtained from the literature [54]). The resultant post-reaction
samples were analyzed on SDS-PAGE as described above.

3.8. Edman Degradation

N-terminal amino acid sequencing using Edman degradation was conducted at Tufts
University Medical School (Boston, MA, USA). The protein samples were spotted onto
polyvinylidene fluoride (PVDF) using a ProSorb cartridge from Life Technologies, and
automated Edman degradation was performed on an Applied Biosystems Procise 494 HT
instrument. Data analysis was carried out using the instrument’s proprietary software.

3.9. Differential Scanning Fluorimetry (DSF)

DSF assays were used to characterize the thermal stability of proteins and of complexes
of linear and cyclic Z3 with IgG1 [55]. Proteins (32 µM) were mixed with 10X SYPRO™
orange dye (stock concentration: 5000X in DMSO) in 20 mM Tris, pH 7.4. The total reaction
volume per well in the PCR plate was 20 µL. The fluorescence was measured at 15 s interval
with a temperature gradient of 0.6 ◦C/min from 15 ◦C to 95 ◦C in a Bio-Rad CFX96 real-time
PCR instrument [56].

3.10. Surface Plasmon Resonance (SPR)

SPR experiments were performed using a Biacore X100 system (Cytiva, Marlborough,
MA, USA). Rituximab was covalently immobilized in flow cell 2 of a carboxy methylated
(dextran) CM5 sensor chip, and flow cell 1 was used as a reference channel. First, the
carboxymethyl groups of the chip were activated with 70 µL 0.05 M N-hydroxysuccinimide
(NHS) and 0.2 M 1-ethyl-3-(3-dimethylamino-propyl)-carbodiimide hydrochloride (EDC)
solution. Multiple injections of 70 µL rituximab (50 µg/mL) were made to promote the
coupling reaction by washing with 10 mM HEPES, 150 mM NaCl, 3 mM EDTA, 0.005%
Tween-20, pH 7.4 (HBS-EP+); (previously 0.22 µm filtered and sonicated) between injections.
Upon baseline stabilization, the uncoupled activated carboxymethyl groups were blocked
with 70 µL 1 M ethanolamine-HCl, pH 8.5. Following the same procedure, the reference
channel (flow cell 1) was blocked in parallel with 1 M ethanolamine (10 µL/min flow
rate was used in all steps of chip preparation). For the binding study, serial dilutions of
purified buffer-exchanged Z3 samples covering a range of 100 nM–10 µM were freshly
prepared in running buffer HBS-EP+; 75 µL (300 s) were injected for each dilution for



Int. J. Mol. Sci. 2023, 24, 1281 13 of 16

the association. Dissociation was performed at 15 µL/min over a 120 s interval with the
HBS-EP+ buffer. The surface was regenerated between samples by injecting 45 µL (90 s)
of 100 mM sodium citrate, 500 mM NaCl, pH 3.5. All experiments were carried out in
triplicate, and results were analyzed using the Biacore X100 BIAevaluation software version
2.0.1 (Cytiva, Marlborough, MA, USA).All experiments were carried out in triplicate, and
results were analyzed using the Biacore X100 BIAevaluation software, version 2.0.1 (Cytiva,
Marlborough, MA, USA).

3.11. Analytical Ultracentrifugation (AUC)

AUC experiments were performed to compare the composition and conformation of
linear and cyclic Z3 molecules. All samples were measured on an Optima AUC (Beckman
Coulter, Indianapolis, IN, USA) at the Canadian Center of Hydrodynamics, University of
Lethbridge, AB, Canada. Sedimentation velocity (SV) data were analyzed using UltraScan-
III, version 6570 [57]. AUC experiments were performed in PBS (Dulbecco). SV experiments
were measured twice at two speeds, first at 40,000 rpm for 16 h and then at 60,000 rpm
for 7 h. The temperature in both experiments was maintained at 20 ◦C, and samples were
monitored in intensity mode at a wavelength of 220 nm. The data from the two different
speeds were fitted globally using the two-dimensional spectrum analysis [58] in conjunction
with Monte Carlo analysis [59] to optimize the frictional information [60]. SV experiments
were processed as described earlier [61]. Diffusion-corrected sedimentation profiles were
determined with the enhanced van Holde—Weischet analysis [62]. For calculating the
molar mass and frictional ratios, a partial specific volume of 0.7206 mL/g was assumed, as
calculated by UltraScan based on the sequence information. Furthermore, the presence of
contaminants or aggregates in the samples was resolved to identify the hydrodynamics of
the species of interest.

3.12. Isothermal Titration Calorimetry (ITC)

ITC studies were performed using a MicroCal PEAQ-ITC instrument (Malvern, UK).
Before performing any experiment, a system suitability test was performed as per the
manufacturer’s recommendation (Figures S7 and S8 and Table S3). The samples were
buffer-exchanged into PBS, pH 7.4, using a Cytiva Superdex-200 SEC column and degassed
by incubating in a vacuum for 20 min. The concentration of the analytes was optimized
to reach saturation at least four injections before titration ended. A stirring speed of
750 rpm, temperature 25 °C, reference power 10 µcal/s, high feedback, and an initial
delay of 60 s was used for all experiments. The first priming injection was 0.4 µL, and
the rest were 2 µL with 150 s intervals between injections. All calorimetric measurements
were performed in triplicate. The data were analyzed using MicroCal PEAQ-ITC analysis
software (Version 1.1.0.1262).

3.13. Accession Codes

UniProt ID of Staphylococcus aureus protein A is P38507·SPA_STAAU, rituximab is
P0DOX5·IGG1_HUMAN, and carboxypeptidase Y is P00729·CBPY_YEAST. Protein Data
Bank ID for staphylococcal protein A Z domain is 2SPZ.

4. Conclusions

We describe the development of a cyclic trimer of protein A Z domain using gp41-
1 intein-based protein splicing and comparison of the biophysical characteristics of the
cyclic and linear molecules. Overall biophysical characterization showed functional near-
equivalence between cyclic and linear proteins. Cyclization appears to reduce confor-
mational heterogeneity and should increase exopeptidase and ligand leaching resistance
during processes such as the purification of monoclonal antibodies. Further studies will be
required to demonstrate the potential advantages of the cyclic ligand. Nevertheless, struc-
tural and biophysical studies of engineered IgG-binding domains and their complexes are
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of interest for developing Z domain-based affinity tools as well as for further understanding
the mechanisms of biomolecular recognition.
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