Skip to main content
. 2023 Jan 10;16(2):683. doi: 10.3390/ma16020683
RLS Recursive Least Squares method
L-M Levenberg-Marguardt method
xd,yd,θd desired robot position and orientation
x,y,θ desired robot position and orientation
vd,ωd desired robot velocities (linear and angular)
v,ω real robot velocities (linear and angular)
vx,vy forward and lateral robot velocities
Frrx,Frry longitudal and lateral force of right wheel
Frlx,Frly longitudal and lateral force of left wheel
m mass of the robot
Iz moment of inertia of the robot with respect to the axis passing through the point G
G robot center of mass and center of rotation
σ1,,σ4 parameters of the robot dynamic model
ex,ey,eθ position and orientation tracking errors
ev,eω velocity errors
ukv,ukω control signals from kinematic controller
k1,k2,k3 gains of the kinematic kontrollers
ϵ oscillation damping coefficient
ωn characteristic frequency
b additional control coefficient
udv,udω control signals from dynamic controller
kv,kω gains of the dynamic controller
tr regulation time