Skip to main content
. 2023 Jan 4;12(2):418. doi: 10.3390/jcm12020418

Table 4.

The predictive performance of machine learning-based models for the PE and its subtypes.

ML Model Type of PE TPR (%) FNR (%) PPV (%) FDR (%) Accuracy (%) AUC Value Precision Recall F1 Score
DT All PE 94.1 5.9 91.4 8.6 92.8 0.93 0.91 0.94 0.93
EO-PE 92.9 7.1 75 25 94.1 0.95 0.93 0.75 0.86
LO-PE 66.7 33.3 92.9 7.1 88.2 0.80 0.93 0.93 0.93
Moderate PE 75 25 91.7 8.3 82.4 0.80 0.85 0.92 0.88
Severe PE 82.1 17.9 44.4 55.6 79.4 0.70 0.67 0.44 0.53
NB All PE 96.3 3.7 96.4 3.6 98.6 0.98 0.96 0.96 0.98
EO-PE 96.4 3.6 80 20 91.2 0.88 0.67 0.80 0.73
LO-PE 33.3 66.7 87.1 12.9 85.3 0.72 0.96 0.87 0.92
Moderate PE 25 75 79.3 20.7 73.5 0.68 0.88 0.79 0.84
Severe PE 89.3 10.7 50 50 82.4 0.67 0.50 0.50 0.50
SVM All PE 70.6 29.4 77.8 22.2 85.5 0.98 0.71 0.78 0.88
EO-PE 96.4 3.6 80 20 91.2 0.91 0.67 0.80 0.73
LO-PE 33.3 66.7 86.7 13.3 82.4 0.76 0.93 0.87 0.90
Moderate PE 37.5 62.5 80.8 19.2 70.6 0.49 0.81 0.81 0.81
Severe PE 85.7 14.3 20 80 73.5 0.64 0.17 0.20 0.18
RF All PE 94.1 5.9 91.4 8.6 92.8 0.94 0.91 0.94 0.93
EO-PE 92.9 7.1 71.4 28.6 91.2 0.94 0.83 0.71 0.77
LO-PE 66.7 33.3 92.9 7.1 88.2 0.84 0.93 0.93 0.93
Moderate PE 87.5 12.5 94.4 5.6 70.6 0.79 0.65 0.94 0.77
Severe PE 85.7 14.3 33.3 66.7 76.5 0.76 0.33 0.33 0.33

Table 4 legend: All PE—all types of preeclampsia; EO-PE—early- onset preeclampsia; LO-PE—late-onset preeclampsia; ML—machine learning; DT—decision trees; NB—naïve Bayes; SVM—support vector machine; RF—random forest; TPR—true positive rate; FNR—false negative rate; PPV—positive predictive value; FDR—false detection rate; AUC—area under the curve.