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Abstract: Natural products are an important source of drug lead compounds, and natural products
with significant biological activity are constantly being discovered and used in clinical practice. At
present, natural products play an important role in the targeted therapy of cancer, cardiovascular
and cerebrovascular diseases, nervous system diseases, and autoimmune diseases. Meanwhile, in
recent years, the rise of protein-targeted degradation technologies, such as proteolysis-targeting
chimeras (PROTACs) and molecular glues, has provided a new solution for drug resistance caused
by clinical molecular-targeting drugs. It is noteworthy that natural products and their derivatives, as
important components of PROTACs and molecular glues, play an important role in the development
of protein-targeting drugs. Hence, this review summarized the protein-targeted degradation agents
based on natural products, such as PROTACs and molecular glues. More natural products with
the potential to be used in the development of PROTACs and molecular glues as targeted protein
degradation agents are still being investigated.

Keywords: natural products; molecular-targeted drugs; targeted protein degradation agents;
PROTAC; molecular glue

1. Introduction

As important sources of drug lead compounds, natural products play pivotal roles in
drug discovery and development. It has been reported that, in the past 40 years, about 50%
of the new drugs on the market came directly or indirectly from natural products. Natural
medicines such as morphine, penicillin, aspirin, and paclitaxel are considered some of the
most important active molecules affecting the course of human history. In recent years,
drugs from natural sources have been found to have obvious advantages in antitumor,
anti-infection, and neurological disease treatment. Moreover, the high probability of
natural product discovery and structural diversity along with various properties provides
more opportunities and possibilities for drug research and development [1,2]. To date,
drugs obtained from natural products have been widely used in the clinical treatment of
various diseases, such as paclitaxel for its anticancer ability; butylphthalide for its anti-
cerebral ischemia ability; puerarin for its unique cardiovascular protection; the drug arsenic
trioxide for the treatment of acute promyelocytic leukemia; and artemisinin, which saves
millions of patients with malaria every year. Since the concept of tumor-targeted therapy
was proposed, small-molecule-targeted drugs have been a research hotspot. With the
continuous progress of isolation and identification technology, natural products with novel
structures and significant activities have been discovered. Meanwhile, some new targets
and mechanisms of the active compounds have been gradually clarified. Natural products
and their derivatives, such as romidepsin and rapamycin, have become an important
source of molecular-targeted drugs [3,4]. Compared with traditional chemotherapy drugs,
molecular-targeted drugs have the advantages of low systemic side effects and good
efficacy in disease treatment [5,6]. However, due to the cross-linking of signaling pathways
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resulting in drug resistance, the therapeutic effect of these molecular-targeted drugs has
been limited to patients with the target gene aberration and is short-lived [7]. Because of
this, in some cases, molecular-targeted drugs are not effective, and some proteins have
poor targeting and druggability. Some proteins are resistant to molecular-targeted drugs,
and others lack good targeting and druggability, such as disease-related transcription
factors, skeleton proteins, and other proteins without enzymatic activity. In recent years,
proteolysis-targeting chimeras (PROTACs) and molecular glue have evolved into two of
the most important technologies for targeting protein degradation.

The concept of PROTACs was first proposed by the team of Professor Craig M. Crews
of Yale University and Professor Raymond J. Deshaies of California Institute of Technology.
PROTAC technology is a targeted inducible protein degradation chimera formed by linking
target protein ligands and E3 ubiquitin-ligase enzyme (E3) ligands through suitable linking
chains. A PROTAC can simultaneously recruit the target protein and a specific E3 in vivo
to achieve target protein ubiquitination degradation (Figure 1), which is a promising
disease treatment strategy for target protein degradation via the ubiquitin-proteasome
pathway [8,9]. Compared with traditional inhibitors, it has the advantages of high selectivity
and potent activity and is expected to degrade non-generic targets and overcome drug
resistance. Since the first polypeptide-based PROTAC molecule degrading MetAp-2 was
reported in 2001, the technology has become an emerging strategy for target protein
degradation using the ubiquitin-proteasome system. The earliest PROTAC was designed
based on peptides, but its poor cell permeability and chemical stability meant that it did
not have the potential to be developed into drugs. Researchers gradually shifted their
focus to the development of small-molecule PROTACs, and they have been well-developed.
To date, PROTACs have been successfully used in the degradation of different types of
target proteins associated with a variety of diseases. In the PROTAC strategy, the following
have been reported as targets: nuclear proteins, such as estrogen receptorα (ERα); cyclin-
dependent kinases (CDKs); the breakpoint cluster region-c-abl (BCR-ABL) fusion protein;
transmembrane proteins, such as human epidermal growth factor receptor-2 (HER2); c-
mesenchymal-epithelial transition factor (c-Met); and cytoplasmic proteins, such as Brutons
tyrosine kinase (BTK) and mouse double minute 2 (MDM2) [10].
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Molecular glues are another class of small-molecule protein degraders acting via E3
ubiquitin ligases, the concept of which was proposed in the early 1990s. Although both
molecular glue and PROTACs are protein degraders, they have different mechanisms
of action and molecular structural characteristics. Molecular glue has high affinity and
selectivity, so it can directly bind to proteins in order to form ternary complexes, and it can
promote the dimerization or co-localization of two proteins [11]. By narrowing the distance
between the target protein and the E3 ligase, molecular glue can induce the ubiquitination
and degradation of the target protein, which is more in line with Lipinski’s five rules of
drug-like (Figure 1). Molecular glue has a small molecular weight and good druggability,
but it is difficult to design. According to recent research, some PROTACs designed target
proteins play an anticancer role through the formation of molecular glue that can degrade
new substrates. Some experts believe that the best PROTAC is made of molecular glue [12].
Therefore, in the design and verification of PROTACs, the two mechanisms should be
considered comprehensively.

In recent years, natural products and their derivatives have played important roles
in the design of PROTACs and molecular glues. The activities of natural products may
occur due to interactions with multiple targets, but their affinities with one target are
not very strong. The complexity of these mechanisms of action poses a huge challenge
in identifying their targets. PROTACs and molecular glues can degrade target proteins
effectively and specifically, and they bind to target proteins at lower dosages, which could
be an efficient strategy for confirming the indetectable targets of natural products and
for increasing their activities dramatically. Therefore, PROTACs and molecular glues
that are designed based on natural products have great potential for protein degradation.
This review summarized the progress of protein-targeting degradation agents based on
natural products, such as PROTACs and molecular glues. The classes of these natural
products include hormones, flavonoids, alkaloids, terpenoids, vitamins, microorganisms,
and peptides. More natural products applicable for developing PROTACs and molecular
glues are waiting to be explored. The toolbox of protein-targeted degradation agents will
be significantly expanded.

2. Natural Products and Their Derivatives in PROTAC Design
2.1. Derived from Hormones

According to reports, not only is a malignant tumor one of the diseases with the highest
morbidity in the world, but it also has a high mortality rate among major diseases, causing
serious harm to human health. It has been difficult to achieve satisfactory results using
traditional cancer treatment methods, such as surgery, chemotherapy, and radiotherapy, due
to serious damage to the body and poor drug selectivity. At present, tumor-targeted therapy
is the main direction of tumor therapy due to its specificity and targeting, and emerging
protein degradation technologies, such as PROTACs, are also constantly opening up new
fields of tumor-targeted therapy. Natural products contain endogenous compounds from
plants and animals that play a positive role in regulating biological activities. At present,
using natural products to fight cancer is the dominant direction of cancer drug development.

Breast cancer, as one of the most common malignant tumors, has seriously harmed
the health of women all over the world. ERα is a member of the steroid hormone nuclear
receptor family, and more than half of patients with breast cancer are ERα-positive [13].
Estrogen is a class of steroid compounds with a wide range of biological activities. Free
estrogen enters target cells through passive diffusion or specific active transport, and it
binds with the nuclear estrogen receptor (ER) to exert biological effects. Currently, antago-
nizing the interaction between estrogen and ERα is an important method for the treatment
of breast cancer [14]. In addition, due to the existence of drug resistance, the use of selective
estrogen receptor degraders (SERDs) to target the degradation of ERα is also an important
direction in the development of breast cancer therapy. Estradiol (E2) is the most biologically
active natural estrogen. Previous studies have shown that 17β-estradiol (Table 1 can be
used as a ligand to recruit ER in the PROTAC design, inducing the specific degradation of
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ER through the ubiquitin-proteasome system [15]. Data from a previous study have shown
that ligands linked to von Hippel-Lindau (VHL) E3 ligase via the C7α site of estradiol have
higher affinity for estrogen receptors and more efficient ER degradation than C16α-based
PROTACs, superior even to tamoxifen (Table 2). PROTACs, as an emerging strategy for
protein degradation, have successfully achieved the ubiquitination of ERα [16]. Designing a
new type of selective estrogen receptor degrader based on the PROTAC model is conducive
to further expanding the PROTAC toolbox [17]. In addition, breast cancer growth and
metastasis are dependent on angiogenesis, and ER is a potential anti-angiogenic target.
PROTACs utilizing the E3 ubiquitin ligase pVHL ligand HIF-1α octapeptide combined
with E2-Octa-[Ala] have endothelial-cell-targeting activity at low doses, and the use of
ER-targeted PROTACs as probes for angiogenesis can be used to study the mechanisms of
angiogenesis in animal models of diseases [18].

Similarly, androgen receptor (AR) inhibitors are the main targeted drugs used for
prostate cancer, and they are effective in metastatic castration-resistant prostate cancer
(mCRPC). In the latest report in Nature on the sales of prostate cancer drugs, AR-targeted
therapies account for 58% [19]. In recent years, a series of highly selective AR degradation
PROTACs have been developed. Not only do these compounds effectively reduce AR
protein levels in prostate cancer cell lines, but they also effectively inhibit cell growth
in AR-positive breast cancer cell lines [20,21]. Dihydrotestosterone (Table 1) is a natural
androgen that has made an important contribution to the pioneering work in the design
and synthesis of PROTAC molecules for the degradation of AR. Preliminary experimental
results have shown that AR degradation depends on the recruitment of E3 ligands and
testosterone to bind to their respective targets, and the use of the green fluorescence protein
(GFP) fusion protein technique provides a convenient method to monitor PROTAC-induced
degradation (Table 2) [22,23]. The specific synthesis processes of the PROTACs discussed
in this section are shown in Schemes 1–4.
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Table 2. Natural product targets 1–3.

No. Target E3 Cell Type Reference

1 ERα pVHL and SCFβ-TRCP MCF-7 cells [15]
2 ERα pVHL and SCFβ-TRCP 293T cells [22]
3 AR SCFβ-TRCP 293T cells [22]

2.2. Derived from Flavonoids, Alkaloids, and Terpenoids

Apigenin (Table 3), a flavonoid natural product with anticancer activity, can directly in-
teract with the ligand-activated transcription factor aryl hydrocarbon receptor (AhR) [24,25].
Using apigenin derivatives as ligands for recruiting AhR, the degradation of AhR was effi-
ciently induced by the E3 ubiquitin ligase pVHL (Table 4) [26]. In addition, activated AhR
also had E3 ubiquitin ligase activity [27]. Wogonin (Table 3) is a natural flavonoid extracted
from the Chinese herbal medicine Scutellaria baicalensis, which has various biological activi-
ties, such as anti-inflammatory and antitumor activities, and it can improve diabetes [28,29].
Wogonin can directly bind to cyclin-dependent kinase 9 (CDK9) and selectively inhibit the
activity of CDK9. A series of PROTACs targeting CDK9 can be designed based on wogonin.
Previous results showed that the PROTACs obtained by linking wogonin and CRBN with
triazole groups can selectively degrade CDK9 (Table 4) [30].

As the core skeleton of various natural products, oxindole spiro compounds (Table 3)
have antimalarial, anticancer, antihypertensive, and other drug activities [31,32]. The E3
ubiquitin ligase MDM2 binds to p53 in order to ubiquitinate and degrade p53, and it is a
major cellular endogenous inhibitor of p53. In human cancers, the overexpression of MDM2
leads to the inactivation of the tumor suppressor gene p53. Therefore, MDM2 can be used
as a target of p53 activation, and the targeted degradation of MDM2-p53 can overcome the
accumulation and potential adverse effects of MDM2 due to the activation of p53 [33,34].
The compounds MD-222 and MD-224, which utilize the previously reported oxindole spiro
derivative MI-1061 as a ligand for recruiting MDM2 and a ligand for the ubiquitin ligase
CRBN, are effective in mice and degrade MDM2 in vitro, and MD-224 efficiently induces
the degradation of MDM2 in human leukemia cells at a concentration of 1 nM (Table 4) [35].
Researchers soon found that MG-277, obtained by removing the benzoic acid portion of the
MDM2 inhibitor segment of MD-222, achieved significant cell growth inhibitory activity
by inducing G1 to S phase transition 1 (GSPT1) protein degradation. This suggests that
the designed phthalimide-coupled degradation agent can act as either a true PROTAC
of the target protein or as a molecular glue (Table 4) [36]. Ursolic acid (UA) is a natural
triterpenoid widely distributed in many plants (Table 3). Researchers connected UA and
the CRBN ligand thalidomide through different linking chains and found that compound
1B with 3-Polyoxyether (POE-3) as the linking chain could inhibit the proliferation of
A549, Huh7, HepG2, and other cancer cell lines and that it has significant in vitro antitumor
activity (with an IC value of 0.23 to 0.39 µM) (Table 4) [37]. At the same time, the researchers
confirmed that UA has the targeted binding properties of MDM2 and that the UA-PROTAC
also promoted the expressions of P21 and PUMA proteins downstream of MDM2, thereby
inhibiting the proliferation of A549 cells and promoting apoptosis.

Indirubin (Table 3), isolated from the traditional Chinese medicine Indigo Naturalis, is
a new type of bisindole alkaloid antitumor drug that has a good curative effect on leukemia.
By linking the natural product indirubin, a selective inhibitor of HDAC6, with the E3 ubiq-
uitin ligase CRBN ligand pomalidomide, PROTAC compounds that can selectively degrade
HDAC6 can be designed (Table 4) [38]. Targeting the STAT3 pathway has been shown
to eliminate resistance to EGFR inhibitors in head and neck squamous cell carcinomas.
Researchers designed and synthesized a PROTAC that specifically degrades STAT3 using
the triterpenoid toosendanin compound (Table 3). This PROTAC has significant inhibitory
activity in head and neck cancer and colorectal cancer tumor models (Table 4) [39]. Recently,
based on the previously discovered molecular mechanism of broad-spectrum pentacyclic
triterpenes inhibiting virus entry into host cells, Zhou and Xiao’s team linked oleanolic acid



Pharmaceuticals 2023, 16, 46 7 of 25

(OA) binding to influenza virus hemagglutinin protein (HA) to the CRBN and VHL ligands
of E3 ligase by using PROTAC targeted protein degradation technology (Table 3) [40]. In
this study, the PROTAC molecule was constructed to degrade hemagglutinin at both the
molecular and cellular levels, and compound V3 effectively degraded the A/WSN/33
(H1N1) virus protein (DC50 = 1.44 µM) during viral replication (Table 4).

The efficacy of traditional Chinese medicine components and natural products includes
realized through their interactions with multiple targets, and their affinities with target
proteins are not very strong. The complexity of these mechanisms of action brings great
challenges to the identification of their targets. In view of the fact that PROTAC molecules
can effectively and specifically degrade target proteins without strong affinity, recent
studies have demonstrated the potential of PROTAC technology in identifying the targets
of traditional Chinese medicine components and natural products. In an article in 2020,
PROTAC technology was combined with a quantitative proteomic analysis to identify the
unknown target of the multikinase inhibitor sorafenib [41]. Recently, the research team
at Shenyang Pharmaceutical University creatively introduced PROTAC technology into
the field of traditional Chinese medicine research [42]. The combination of the PROTAC
technique with quantitative proteomics and the molecular interaction detection technique
represented by a microscale thermophoresis (MST) assay were proposed. It is proved that
V-maf musculoaponeurotic fibrosarcoma oncogene homolog F (MAFF) is the target of a
series of lathyrane diterpenoids obtained from the traditional Chinese medicine Euphorbia
lathyris, and it is clarified that the anti-inflammatory effect of the lathyrane diterpenoid
ZCY020 is based on the Nrf2/HO-1 signaling pathway. The core skeleton of the ZCY-001
compound lathyrol (Table 3) is linked to thalidomide (an E3 ligase CRBN ligand) by a
PEG linker, and the resulting PROTAC molecule ZCY-PROTAC strongly degrades MAFF
in a dose-dependent manner (Table 4). The specific synthesis processes of the PROTACs
discussed in this section are shown in Schemes 5–12.
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Table 3. Natural products 3–11.

No. Natural Products Structure Structure
Classification Source of Compounds Reference
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Table 4. Natural product targets 4–12.

No. Target E3 Cell Type Reference

4 AhR pVHL Immortalized mouse hepatocyte cells and
CV-1 cells (monkey kidney cell line) [26]

5 CDK9 CRBN MCF-7 and L02 cells [30]
6 MDM2 CRBN RS4;11 cells [35]

7 MDM2 CRBN RS4;11, MOLM-13, MDA-MB-468,
MV-4-11, HL-60, and MDA-MB-231 cells [36]

8 MDM2 CRBN A549, Huh7, and HepG2 cells [37]
9 HDAC6 CRBN K562, HeLa, and THP-1 cells [38]

10 STAT3 CRBN and VHL CAL33 and HCT116 cells [39]
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Table 4. Cont.

No. Target E3 Cell Type Reference

11 Hemagglutinin protein CRBN and VHL Human embryonic kidney 293T cells [40]

12 MAFF CRBN
Mouse RAW264.7 macrophage and

human embryonic kidney 293T
(HEK293T) cells

[42]

2.3. Derived from Vitamins

Retinoic acid (RA) is a metabolic intermediate of vitamin A (retinol) in the body, and
cellular retinoic-acid-binding proteins are important regulators of RA activity (Table 5) [43].
Studies have shown that an increased level of cellular retinoic-acid-binding protein 1
(CRABP1) in tumor cytoplasm is associated with RA resistance and that an increased
level of cellular retinoic-acid-binding protein 2 (CRABP2) in the nucleus is associated with
RA sensitivity, so RA is a potential tumor therapeutic target [44]. Studies have shown
that the use of the Cullin4B-Ring (CRL4B) E3 ligase complex component AhR to recruit
degradants and a small-molecule chimera composed of all-trans retinoic acid and AhR
ligands connected by a suitable linker chain can effectively degrade CRABPs (Table 6) [45].
In addition, natural products can also be used as tools for the targeted delivery of PROTACs
in vivo to achieve the selective degradation of target proteins in cancer cells. Folic acid,
a water-soluble B vitamin, was first extracted and isolated from spinach leaves. Folic
acid (Table 5) deficiency may induce cancer [46]. Folate receptor alpha (FOLR1) is highly
expressed in a variety of cancers, including ovarian, lung, and breast cancers, but it has
low or no expression in normal tissues and cells. FOLR1 is the most well-defined target
for drug delivery to cancer cells, and other receptors, such as FOLR2 and FOLR3, have
less affinity for folic acid than FOLR1 [47]. Based on PROTACs, a FOLR1-targeted drug
delivery strategy is provided. A folic acid group is installed on the E3 ubiquitin ligase
ligand. After entering cancer cells, folic acid-PROTAC is preferentially transported to
cancer cells with high FOLR1 expressions. Intracellular hydrolase-catalyzed release and
subsequently released PROTACs designed for specific target proteins recruit endogenous
VHL E3 ubiquitin ligases to efficiently ubiquitinate and degrade cancer-cell-associated BRD,
MEK, and ALK proteins (Table 6) [48]. The specific synthesis processes of the PROTACs
discussed in this section are shown in Schemes 13 and 14.

Table 5. Natural products 12–13.

No. Natural Products Structure Structure
Classification Source of Compounds Reference

12 Retinoic acid
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2.4. Derived from Microorganisms

Ovalicin (Table 7) is one of the earliest microbial-derived immunosuppressants pro-
duced by fungi, and it has a strong inhibitory effect on lymphocyte proliferation and the
DNA synthesis of lymphoma cells [49]. Ovalicin can covalently inhibit MetAP2, which
plays a catalytic role in the cleavage of the N-terminal methionine of newly synthesized
proteins in cells, thus regulating the growth cycle of endothelial cells and inhibiting tu-
mor angiogenesis and growth [50]. Ovalicin was selected as the ligand of the MetAP2
protein, and the first PROTAC for the ubiquitination labeling and degradation of MetAP2
was designed and synthesized by properly binding to the phospopeptide binding to
SKp1-Cullin-Fbox (SCF) of the ubiquitin ligase E3 system (Table 8) [51]. Because of the
reduced efficacy of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reduc-
tase, HMGCR) accumulation after statin treatment, researchers found that, by inducing the
degradation of HMGCR, the accumulation of HMGCR can be eliminated and cholesterol
can be reduced [52]. Inspired by PROTACs, researchers designed and synthesized the
PROTAC molecule P22A based on the E3 ligase CRBN. P22A can promote the expression
of endogenous HMGCR proteins in Insig-1- and Insig-2-deficient Chinese hamster ovary
(CHO) cells (SRD15 cells) [53]. The HMGCR inhibitor lovastatin (Table 7), which is also
derived from microorganisms, is a drug used for the treatment of hypercholesterolemia. It
can prevent the development of atherosclerosis, can reduce the incidence of myocardial
infarction, and has a good effect on cardiovascular diseases [54]. Using lovastatin acid
and VHL ligand conjugation, a powerful HMGCR-targeting PROTAC (21c) was identified
that efficiently degrades HMGCR in Insig-silenced HepG2 cells (DC50 = 120 nmol/L).
Furthermore, the corresponding lactone prodrug 21b has been shown to afford high plasma
exposures referring to the active ingredient 21c, leading to efficient HMGCR degradation
and promising cholesterol-lowering potency in vivo (Table 8) [55]. Microbial metabolites
can be important sources for discovering natural PROTAC molecules. Recently, the first
PROTAC molecule derived from a microbial natural product was reported [56]. The micro-
bial natural product APL-16-5 (Table 7), based on the PROTAC mechanism, simultaneously
binds to the E3 ubiquitin ligase TRIM25 and influenza virus PA subunit in order to induce
TRIM25-dependent PA ubiquitination and degradation (Table 8). The TRIM25/APL-16-
5/PA complex blocks viral RNA replication and has anti-influenza A virus activity in vivo.
Apl-16-5 and its derivatives can also be used as TRIM25 ligands to further expand their
applications. In addition, researchers suggest that the phenalenone fragment mainly con-
tributes to interactions with PA and that the diterpene fragment determines the binding
to TRIM25. The specific synthesis processes of the PROTACs discussed in this section are
shown in Schemes 15 and 16.

Table 7. Natural products 14–16.

No. Natural Products Structure Structure
Classification Source of Compounds Reference

14 Ovalicin
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Table 8. Natural product targets 17–19.

No. Target E3 Cell Type Reference

17 MetAP2 SCFβ-TRCP 293T cells [51]
18 HMGCR VHL HepG2 cells [55]

19 Viral
endonuclease PA TRIM25 HEK293T, A549, MDCK,

Huh7.5.1, Vero, and BHK21cells [56]
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2.5. Derived from Peptides

PROTACs designed using peptides to recruit target proteins have certain limitations
in applications. However, PROTACs based on peptides are not only easy to modify but also
have large protein-protein interaction surfaces, which have certain therapeutic potential
for oncoproteins with unknown interactions [57,58]. β-catenin is an extremely attractive
cancer target that plays an important role in the Wnt/β-catenin signaling pathway. As a
β-catenin-targeted stapled peptide, xStAx (sequence: Ac-RRWPRSILDSHVRRVWR-NH2),
derived from the tumor suppressor gene Axin, has been found for the first time to target
and degrade β-catenin [59]. The xStAx-VHLL obtained by coupling xStAx with the VHL
ligand not only promoted the continuous degradation of β-catenin in the tumor cells
of various mouse tumor models but also strongly inhibited Wnt signaling. In addition,
xStAx-VHLL also has a significant inhibitory effect on the survival of tumor organoids
from patients with colorectal cancer. Researchers designed a cell-permeable peptide-based
PROTAC. It was based on the homodimerized leucine-zipper-like motif in the C-terminus
domain of the cell-cycle-related and expression-elevated proteins in tumors (CREPT, also
named RPRD1B) to induce their degradation in vivo. In pancreatic cancer cells, PROTACs
can induce CREPT degradation in a proteasome-dependent manner. Therefore, the use of
protein-based dimeric structure interaction motifs may be a new approach to designing
PROTACs [60].

In addition, natural products and their derivatives can also be used as ligands to recruit
E3 ubiquitin ligases in PROTACs. Bestatin is a natural product derived from streptomyces
olivaceus (Table 9). Studies have shown that small hybrid molecules composed of amide
derivatives of bestatin and polymeric probes induce Huntingtin protein (Htt) aggregates in
Huntington’s disease (HD) to form complexes with the E3 ubiquitin ligase cIAP1, thereby
leading to the proteasomal degradation of mHtt, and this approach can also be used to
target other aggregation-prone proteins responsible for neurodegenerative diseases, includ-
ing Alzheimer’s disease (AD), Parkinson’s disease (PD), and other polyQ (Table 10) [61].
Nimbolide, a triterpenoid derived from the leaves and flowers of Azadirachta indica L., can
inhibit tumor genesis and metastasis (Table 9). Researchers found that the natural product
nimbolide is a covalent ligand of the E3 ligase RNF114 via an activity-based proteome
profiling (ABPP) platform, and they further confirmed that the recruitment of RNF114 by
nimbolide can be used to target protein degradation (Table 10). The PROTACs formed
by nimbolide coupled with BCR-ABL fused with the oncogene inhibitor dasatinib BT1
selectively degrade BCR-ABL but not c-ABL in leukemia cells, compared with previously
reported CRBN- and VHL-recruited BCR-ABL inhibitors [62,63]. The specific synthesis
processes of the PROTACs discussed in this section are shown in Schemes 17 and 18.

Table 9. Natural products 17–18.

No. Natural Products Structure Structure
Classification Source of Compounds Reference

17 Bestatin
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Table 10. Natural product targets 20–21.

No. Target E3 Cell Type Reference

20 mHtt cIAP1 Hela cells [61]
21 BCR-ABL RNF114 K562 cells [62]
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3. Molecular Glue Degradation Agents Derived from Natural Products

Protein-protein interactions induced by molecular glues also have great application
potential in the field of protein degradation. Currently, molecular glues are being examined
in clinical studies, but most of them were accidentally discovered, and there is no good
drug development strategy at present, so the discovery of new molecular glues is very
challenging. Ubiquitin ligases regulate a variety of plant hormone signaling pathways.
Studies have shown that, when an F-box protein transport inhibitor response 1 (TIR1)
protein binds to auxin (Table 11), it will initiate SCF ubiquitin ligase to degrade downstream
auxin/indole-3-acetic acid (Aux/IAA) transcription factors. These proteins are assembled
into SCFTIR1 protein complexes in plants. Studies have shown that auxin can regulate the
degradation of Aux/IAA proteins by directly binding to TIR1 (Table 12). The regulatory
mechanism of TIR1 by auxin suggests that there may be a small molecule in ubiquitin
ligases that facilitates protein-protein interactions [64]. Researchers found that the leucine-
rich repeat domain of TIR1 contains a phytate cofactor present in plants and eukaryotes
(InsP6/phytate), which recognizes auxin and Aux/IAA polypeptide substrates through a
single surface pocket [65].

Table 11. Natural products 19–21.

No. Natural Products Structure Structure
Classification Source of Compounds Reference

19 Auxin
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No. Target E3 Cell Type Reference

22 Aux/IAA TIR1 Hi5 suspension insect cells [64]
23 TP53 UBR7 231MFP cells [66]
24 E2F2 ZFP91 HepG2 cells [67]

Nomura’s team found that a manumycin polyketide, asukamycin (Table 11), has
multiple electrophilic sites, targets Cys374 of the E3 ligase UBR7 in breast cancer cells, and
participates in the molecular glue interaction of the new substrate tumor suppressor TP53
in order to form a UBR7-asukamycin-TP53 complex to exert anticancer effects (Table 12).
Combined with chemical proteomic studies, it was found that asukamycin can also serve
as a probe for the rational identification of molecular glues from electrophilic natural
products [66]. Recently, a natural-product-derived molecular glue has been identified using
a human proteome chip (Table 11). The study identified a natural-derived small-molecule
bufalin that promotes the rapid degradation of E2F transcription factor 2 (E2F2) and inhibits
hepatocellular carcinoma (Table 12). In addition, the pyrone structure of bufalin has been
suggested as a potential structural group for targeting the atypical E3 ligase Zinc finger
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protein 91 (ZFP91). Its carbonyl-conjugated structure may possess electrophilic addition
capability in order to covalently bind to the cysteine in ZFP91 [67].

4. Perspectives and Conclusions

This review summarized the progress of protein-targeting degradation agents based
on natural products, such as PROTACs and molecular glues (Figure 2). The classes of
these natural products include hormones, flavonoids, alkaloids, terpenoids, vitamins,
microorganisms, and peptides. In conclusion, PROTACs and molecular glues based on
natural products and their derivatives have good application prospects in the targeted
degradation of disease-related proteins. In addition, PROTACs mainly degrade intracellular
proteins, but 40% of gene products are extracellular and membrane-associated proteins,
such as growth factors, cytokines, and chemokines, which cause abnormalities in various
diseases, such as pain and inflammation signaling. Lysosome-targeted chimera (LYTAC) is
a degradation technology targeting extracellular proteins, and it was reported in Nature by
the research team of Professor Bertozzi of Stanford University. The study confirmed that
LYTAC successfully degraded the epidermal growth factor receptor (EGFR), programmed
death-ligand 1 (PD-L1), and apolipoprotein E4 [68]. Stanford researchers have also shown
that LYTACs can target and degrade important proteins in Alzheimer’s disease and cancer
in cells. The structure of an LYTAC is similar to that of a PROTAC. One side of an LYTAC is
an oligopeptide group that can bind to the transmembrane receptor CI-M6PR on the cell
surface, the other side is an antibody or small molecule that can bind to the target protein,
and the two sides are connected by a linker. For example, LYTAC AB-2 is a conjugation of
the anti-EGFR monogram lowering antibody cetuximab and the CI-M6PR ligand M6Pn
sugar polypeptide. The complex can be engulfed by the cell membrane to form transport
vesicles and then transferred to the lysosome for degradation under the action of CI-
M6PR. The receptor CI-M6PR can be recycled and returned to the cell membrane in order
to degrade EGFR. In addition, there are other emerging targeting protein technologies,
such as light-controlled target protein degradation (photo-PROTAC), autophagy-mediated
target protein degradation (AUTAC), and autophagosome-tethering compounds (ATTECs).
These techniques not only expand the pathway of protein degradation but also improve
the accuracy of protein degradation.

In addition, signal transduction associated with disease is an extremely complex and
multifactorial regulatory process. Therefore, single-target therapy is often insufficient to
curb disease progression, and new multi-target drugs or drug combinations need to be
designed to block related signal transduction for different pathways and mechanisms to
achieve the effect of treating the disease and reduce the drug resistance [69,70]. Recently,
novel dual PROTACs with gefitinib/olaparib and CRBN/VHL E3 ligands as substrates
have been reported to degrade EGFR and PARP in cancer cells simultaneously [71]. As the
first successful case of dual PROTACs, this technology will greatly broaden the application
of PROTAC methods and open up a new field for drug discovery. In addition, recent
studies have shown that natural products have structural diversity, high activity, and
low toxicity and that their therapeutic effects are generally achieved through multi-target
therapy [72]. Therefore, the use of natural products is one of the important ways to obtain
multi-targeted drugs, and they are also a hot direction of multi-targeted drug research.
Meanwhile, there has been increasing interest in the use of PROTAC and molecular glue
strategies to recognize natural product target proteins. With the help of proteomics and
other technologies, protein-targeted degradation agents based on natural products will
have great application potential in the field of protein-targeted degradation.
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