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Abstract: The manuscript represents a novel square tooth-enabled superstrate metamaterial loaded
microstrip patch antenna for the multiple frequency band operation. The proposed tooth-based
metamaterial antenna provides better gain and directivity. Four antenna structures are numerically
investigated for the different geometry of the patch and tooth. These proposed structures are
simulated, fabricated, measured, and compared for the frequency range of 3 GHz to 9 GHz. The
electrical equivalent model of the split-ring resonator is also analyzed in the manuscript. The
comparative analysis of all of the proposed structures has been carried out, in terms of several
bands, reflectance response, VSWR, gain and bandwidth. The results are compared with previously
published works. The effects are simulated using a high-frequency structure simulator tool with the
finite element method. The measured and fabricated results are compared for verification purposes.
The proposed structure provides seven bands of operation and 8.57 dB of gain. It is observed that the
proposed design offers the multiple frequency band operation with a good gain. The proposed tooth-
based metamaterial antenna suits applications, such as the surveillance radar, satellite communication,
weather monitoring and many other wireless devices.

Keywords: microstrip patch antenna; metamaterial; advanced; multiband; directivity; gain

1. Introduction

An antenna is a prime component in all kinds of wireless communication. We are
converting most wired technology to wireless, to ease equipment usage and to cover long-
range communications, due to the heavy demand for multiple applications, such as mobile
communication, wireless local area networks, global positioning system (GPSs), radio
frequency identification (RFID) and many more. RF engineers always face challenges, such
as multi-bands, wide bandwidths, high gains, and power-efficient antennas [1]. There is a
need to target multiple applications with the same device. To achieve the same multiband
and broadband antenna, it is helpful to cover the broader spectrum. An antenna with a low
profile, a small size and broadband should be located in the front of the system to target
multiple wireless communication applications [2]. One of the significant challenging parts
is to design a smaller antenna, as a microstrip patch antenna is more suitable. A microstrip
patch antenna is also called a printed antenna or patch antenna [3]. The advantages
of patch antennas are their low cost, better reconfigurability and ease of fabrication [4].
However, due to certain drawbacks of microstrip patch antennas, such as their low gain, low
bandwidth and low directivity, some improvement is required [5,6]. Multiband antennas
have tremendous applications in mobile communication [7,8].
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There is always controversy in bandwidths and antenna sizes. The rise of one parame-
ter will degrade another parameter. There are many ways available to achieve a multiband
operation, such as engraving slots on a patch [9], loading shorted slots with outers [10],
etching unit-cells of metamaterial on/around the patch and loading it on a substrate,
ground layer [11]. The explosion in cutting-edge wireless communication methods has led
to a steady rise in the demand for compact mobile devices. Therefore, new approaches to
the design of wireless components are needed to meet many performance requirements at
once. Every wireless mobile component’s design and performance improvement currently
faces significant hurdles, including the need for a compact size, lightweight, low profile and
cheap cost. The antenna is one of the wireless components that will need to be improved,
to keep up with the demands of modern communication networks.

Many methods are available for enhancing the bandwidth and the gain of an antenna.
It can be accomplished by raising the thickness of the substrate [12], but the surface
radiation is affected by changing substrate’s thickness [13]. The solution is achieved by
using a substrate with a low profile [14], a different impedance matching network and a slot
antenna geometry [8,15]. A novel meandered high-impedance patch antenna provides the
desired multiband behavior by inserting narrow slits in the patch [16]. A broadband folded
patch antenna is used for wireless local area network applications [17]. Multiple patches
and ground plane slots are used to achieve the multiband operation [18]. Different shapes
in the patch also enrich the antenna’s bandwidth [19,20]. There are some approaches
available for the antenna’s gain improvement, such as the partial ground method, the
diffractive ground [21], an artificially soft surface [22], micromachining technology and
a substrate with a high dielectric constant, such as liquid (water-sea), rather than copper.
However, there is a high fabrication cost for anElectronic Band Gap ( EBG), including the
artificially soft surfaces and micromachining technology. The substrate multilayer provides
a better bandwidth but degrades the antenna’s gain, as well as the efficiency of antenna’s
structure [23]. The high gain antenna using the hexagon-shaped metamaterial elements, is
presented in the article [6]. The shape variation of the metamaterial elements affects the
band response [24,25]. The metamaterial concept-inspired wearable fractal antenna helps
to target different IoT applications [26]. The fractal Sierpinski-shaped antenna concept
helps to target multiple wireless applications with miniaturization features [27].

A superstrate provides an effective way to reduce the mutual coupling between
radiating elements. It reduces the turns’ mutual coupling and supports the antenna’s
directivity improvement [28,29]. There are many methods available for the antenna’s
improvement, such as an array of the antenna, a surface-mounted horn antenna, composite
conductors and a lens antenna [30–32]. At the same time, the main limitations of these
designs are the large space requirements and the hardware needed for the high-gain
antennas [6,33]. The listed problems are solved by adding artificial properties to the
material, these are called metamaterials.

Metamaterial provides a negative value of permittivity (
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) and permeability (µ) [34].
The primary elements for making metamaterial are the complementary split-ring resonators
(CSRRs) and metal wires. The gap between the two terminals of a metal wire behaves as
the capacitance, and their curvature shape provides an inductance effect. The size of such a
structure is less than the ordinary resonating structure [35]. The metamaterial approach
helps to achieve targets, due to their negative permittivity and negative permeability
concept [36]. Metamaterial-based designs are used for making perfect lenses, invisibility
cloaks, electromagnetic bandgaps (EBGs) and photonic bandgaps (PBGs) [37]. In antenna
development, the composite electromagnetic bandgap structure (EBG) and the metamaterial
inhibit the electromagnetic wave for a specific range of frequency [38,39]. This structure
innovates a new way of developing compact and better performing RF components [40].
The two-dimensional EBG design confines the surface wave in a patch structure and
metamaterial, enhancing the antenna’s gain, directivity and reflectance response [41].
There are a few possible ways for the miniaturization of metamaterial antennas. First is a
substrate with a high permittivity, a low tangent loss and a rising thickness. Second is a
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zero-impedance plane, similar to the perfect electric conductor. Third is inserting an infinite
impedance identical to an excellent magnetic conductor. Efficiency, in the third case, is
reduced due to the dissipative loss [42,43]. Fourth is using metamaterial above a patch
antenna to condense the surface waves. An array of metamaterial rings will enrich the
antenna’s gain, but it also increases the size of the antenna. The solution is provided by
inserting a tooth on the exterior surface of the ring [44].

The manuscript presented here represents a novel metamaterial-based multi-layered
superstrate structure, to achieve the multiband operation for S, C and X frequency bands.
Gain improvement has been achieved by adding a tooth to the metamaterial structure [45].
Four designs are simulated to achieve a high gain, multiband and broadband characteristics.
The first design is a patch with connectors and metamaterial rings with the tooth. The
second is a patch with connectors and metamaterial without a tooth. The third is a patch
without connectors and metamaterial with the tooth. Fourth is a patch without connectors
and metamaterial without a tooth. The charge distribution in the patch region is affected,
due to the connector section of the exterior and interior patch elements. Therefore, it leads
to a change in the reflectance response plot. The effect of the tooth over the metamaterial
loaded structure helps to attain a better performance. All designs are compared using
different substrate materials, such as Rogers RT Duroid 5880 and FR4 materials. The
simulated results are compared, in terms of the number of bands, the bandwidth, VSWR,
the reflectance response (S11) and gain.

2. Materials and Methods

A 3D view of the proposed superstrate rectangular microstrip patch antenna is shown
in Figure 1. The patch antenna has one rectangular cut/cropped section, which helps to
achieve a multiband response and a lower reflectance response (S11). Two substrate layers
of dielectric materials are used to achieve a broader bandwidth. A novel thing introduced
in the manuscript is a tooth around the split ring resonator. The design parameters of the
rectangular patch antenna, include the length (L) and width (w) of the ground plane and
the patch are calculated, based upon selecting the height of the substrate (h), the dielectric
constant of the substrate (εr) and the resonating frequency ( fr) [46].

Figure 2 represents the fabricated prototype of the proposed antenna structure.
Figure 2a represents a split ring resonator with the tooth. Figure 2b shows a split ring
resonator without a tooth. Figure 2c displays the disconnected inner and exterior sides
of the patch. Figure 2d represents the connected inner and exterior parts of the patch.
Figure 2e,f show the side views of the proposed structure. Figure 2g shows the anechoic
chamber during the antenna directivity measurement. Figure 2f displays the reflectance
response measurement using a vector network analyzer.

The side view of the designs are represented in Figure 3a. The ground layer, the patch,
the split ring resonator, and the tooth thickness are 0.35 mm. The height of the substrate
layer is 1.5 mm. The dimensions of the rectangular ground layer and the substrates are
66.4 mm. The patch and all of the split-ring resonators are designed in a centered position.
The upper view of the antenna is represented in Figure 3b. The first (exterior), second
(middle), and third (interior) split-ring resonators are positioned at 8.2 mm, 15.3 mm, and
22.2 mm, from the exterior border, respectively. The width of the SRR is 2 mm. The size
of the tooth is 1.5 × 1.5 mm2. The gap between the two terminals of the SRR is 2 mm,
and it is placed 32.2 mm away from the exterior border. The distance between the tooth
located in the split-ring resonators is, respectively, 4.44 for the first (exterior), 3.78 mm for
the second (middle) and 3.4 mm for the third (interior). The top view of the patch is shown
in Figure 3c. The patch is kept 5 mm away from the exterior edge. The rectangular patch
outer structure (POS) dimension is 56.4 mm. The cropped/cut section in the patch is 2mm.
The patch interior structure (PIS) is 46 mm. The connectors for shorting the PIS with the
POS are 2 mm. The connecters are kept 32.2 mm from the antenna’s exterior. The antenna’s
structure is excited by applying the input from a coaxial feed. The coaxial feed is kept
52.8 mm by 13.5 mm away from the exterior. The radius of the coaxial interior is 0.12 mm,
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and the exterior is 0.43 mm. The ground layer, the patch, the SRR, the tooth and coaxial’s
interior are made of copper. The coaxial’s exterior is made of plastic. Two types of substrate
materials are considered Rogers RT Duroid 5880 (
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Figure 1. Three-dimensional interpretation of the proposed rectangular microstrip patch antenna.
Two superstrate layers of substrates are used. The patch consists of a rectangular cut/cropped slot.
Three SRRs with the tooth are located at the top of the upper substrate.

In a SRR, the inductance effect is induced by the circular shape and the capacitance by
the space is between two ring terminals. The inductance (Ls) and capacitance (Cs) per unit
length can be calculated by Equations (1) and (2) [48].

Ls =
µ0b√

π

[
Log

(
32b

w
√

π

)
− 2
]

(1)

Cs = ε
wt
2g

(2)

where, µ0 is the free space permittivity (µ0 = 4 π × 10−7 N/A2), the width of the ring is w,
g is a gap between two split rings, b is the ring length, the series capacitance is Cs, t is the
ring thickness. The RLC circuit of the SRR is shown in Figure 4. The resonating frequency
of the proposed design can be calculated using Equation (3) [49].

f =
1

2π
√

LsCs
(3)
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Figure 2. (a–f) The fabricated prototype of the proposed antenna structure. (e) Directivity measure-
ment using the anechoic chamber. (f) Reflectance response measurement using a vector network
analyzer. (g) Testing of antenna in Anachoic chamber. (h) Measuring reflectance response using
Vector Network Analyser.

The performance index of the high frequency operated antenna structure can be
calculate using the S parameters. The impedance and refractive index is calculated using
the reflectance (S11) and the transmittance (S21) response using in Equations (4) and (5).

n =
1
kd

cos−1
[

1
2S21

X
(

1− S2
11 + S2

21

)]
(4)

z =

√(
1 + S2

11
)
− (S2

21)(
1− S2

11
)
− (S2

21)
(5)

where, d is the substrate width, n is the refractive index, k is the wave vector and z is the
wave impedance.
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Figure 3. (a) Side view of a presented structure. (b) Top view of the patch. (c) Top view of the
rectangular shaped MPA loaded with the tooth and SRR. Dimensions represented in the figure are
in mm.
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3. Result and Discussion

The proposed antenna design works in the range of the S, C, and X frequency bands.
Therefore, the response analysis should be carried out by the scattering parameters (S-
Parameters). The S-parameters represent the electrical behavior of a linear electrical system,
describing the input and output relations among the ports of an electrical system. Unam-
biguously, for the high frequency, it is essential to represent a given network, in terms of
waves, not by the voltage (v) or current (i).

Figure 5 represents four antenna structures that are simulated, based upon the on
and off in the interior-exterior of the patch and the tooth in the split ring resonators. The
following notations were given for the design of the antenna: the connected patch interior
and patch outer(CPIO), the disconnected patch interior and patch exterior (DCPIO), the
SRR with a tooth (SWT), and the split ring resonator without a tooth (SWOT). The four
combinations are represented in Table 1. The first structure is the CPIO and SWT. The
second structure is the CPIO and SWOT. The third structure is the DCPIO and SWT. The
fourth structure is the DCPIO and SWOT. The design of all of these structures is represented
in Figure 6. The performance of the four designs is observed by changing both the substrate
materials of Rogers RT Duroid 5880 and FR4.

S11 or gamma represents the amount of waves radiated by the antenna. The re-
sponse is observed for the different frequency values. S11 is chosen for values less than
−10 dB. The substrate material varies for all four structures, and the performance is an-
alyzed and compared. The reflectance response is represented by S11. The resonating
behavior of the antenna’s structure at a particular frequency is described by S11. How
closely an antenna’s impedance matches that of the radio or transmission line into the load
may be quantified using the voltage standing wave ratio (VSWR) value. The reflectance
response and the VSWR are both directly proposed for each other. The cross-verification
among both responses gives a better clarity of the proposed design. The wideband an-
tenna transfers information over a broad range of the frequency spectrum, whereas the
narrowband signals occupy a considerably smaller fraction of the spectrum and need less
transmitting power for a given application. Tactical military radios, industrial monitoring,
shorter-range fixed-location wireless applications, radio-frequency identification, and com-
mercial vehicle remote keyless entry devices are all types of uses that have traditionally
relied on narrowband antennas to achieve reliable links in varying operating environments.
Likewise, cellular communication networks use several very narrow bands to provide a
wide range of service applications. The effect of noise is also limited, due to the usage of a
narrow band, compared to the wideband response.

Figure 6 represents an analysis of S11 for the simulated and measured analysis, using
FR-4 material as the substrate. The similarity is observed in the measured and simulated
results. There are three frequency bands observed in the CPIO and SWT antenna structures.
The value of the reflectance response achieved is −26.11 dB at a resonance frequency of
3.38 GHz, and the maximum bandwidth achieved for this is 0.22 GHz. There are two
frequency bands observed in the CPIO and SWOT antenna structures. The reflectance re-
sponse value reached is−21.52 dB at a resonance frequency of 3.39 GHz, and the maximum
bandwidth achieved for this is 0.07 GHz. There are three frequency bands observed in
the DCPIO and SWT antenna structures. The value of the reflectance response achieved is
−11 dB at a resonance frequency of 7.27 GHz, and the maximum bandwidth achieved for
this is 0.24 GHz. There is one frequency band observed in the DCPIO and SWOT antenna
structures. The reflectance response value reached is −10.10 dB at a resonance frequency of
8.64 GHz, and the maximum bandwidth achieved for this is 0.02 GHz.

Figure 7 represents a S11 plot by choosing the substrate as Rogers RT Duroid 5880.
There are seven frequency bands observed in the CPIO and SWT antenna structures. The
maximum value of the reflectance response achieved is −33.79 dB at a resonance frequency
of 6.49 GHz, and the maximum bandwidth achieved for this is 0.18 GHz. There are six
frequency bands observed in the CPIO and SWOT antenna structures. The maximum value
of the reflectance response achieved is −34.54 dB at a resonance frequency of 6.52 GHz,
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and the maximum bandwidth achieved for this is 0.16 GHz. There are three frequency
bands observed in the DCPIO and SWT antenna structures. The maximum value of the
reflectance response achieved is −13.79 dB at a resonance frequency of 8.83 GHz, and
the maximum bandwidth achieved for this is 0.51 GHz. One frequency band is observed
in the DCPIO and SWOT antenna structures. The reflectance response value reached is
−10.05 dB at a resonance frequency of 8.80 GHz, and the maximum bandwidth achieved
for this is 0.07 GHz. Data are represented in Table 2. It is observed that more bands
and minimum reflectance responses are better in CPIO and SWT antenna structures in
both types of the substrate-based design. The Rogers RT Duroid-based antenna structure
provides more bands and a better reflectance response than the FR4-based substrate design.
Data are represented in Table 3.
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Figure 5. (a) The first design is the connected patch inner and patch outer (CPIO) and the SRR with
the tooth (SWT) (b) Second design is the combined patch inner and patch outer (CPIO) and the SRR
without a tooth (SWOT) (c) Third design is the disconnected patch inner and patch outer (DCPIO)
and the SRR with the tooth (SWT) (d) Fourth design is the switch disconnected patch inner and patch
outer (DCPIO) and the SRR without a tooth (SWOT).
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Table 1. Different proposed structures.

Design Antenna Design

1 Connected patch inner and patch outer (CPIO) and split ring resonator with tooth (SWT)
2 Connected patch inner and patch outer (CPIO) and split ring resonator without tooth (SWOT)
3 Disconnected patch inner and patch outer (DCPIO) and split ring resonator with tooth (SWT)
4 Disconnected patch inner and patch outer (DCPIO) and split ring resonator without tooth (SWOT)
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Figure 6. Measured and simulated reflectance response analysis using the FR-4 as substrate. The
number of bands for the proposed four structures is 3, 2, 3 and 1. Minimum reflectance responses are,
respectively, −26.11 dB,−21.52 dB, −11 dB and −10.10 dB. The resonance frequency is, respectively,
3.38 GHz, 3.39 GHz, 7.27 GHz and 8.64 GHz. (a) CPIO and SWT Design Structure. (b) CPIO and
SWOT Design Structure. (c) DCPIO and SWT Structure. (d) DCPIO and SWOT Structure.

The voltage standing wave ratio (VSWR) represents how effectively the antenna power
propagates through an antenna. Figure 8 (a) represents the VSWR response by choosing
the substrate as FR4. The CPIO and SWT antenna structures provide a VSWR of 1.51 at
3.38 GHz. The CPIO and SWOT antenna structures provide a VSWR of 1.18 at 3.39 GHz.
The DCPIO and SWT antenna structures provide a VSWR of 1.83 at 7.87 GHz. The DCPIO
and SWOT antenna structures provide a VSWR of 2.21 at 8.64 GHz. It is observed that
the connected interior and exterior patch (CPIO) design provides a better VSWR than the
disconnected interior and exterior patch (DCIOP) design. Data are represented in Table 3.
Figure 8b depicts the VSWR response by choosing the substrate as Rogers RT Duroid 5880.
The CPIO and SWT antenna structures provide a VSWR of 1.05 at 6.49 GHz. The CPIO
and SWOT antenna structures provide a VSWR of 1.03 at 6.52 GHz. The DCPIO and SWT
antenna structures provide a VSWR of 2.33 at 8.83 GHz. The DCPIO and SWOT antenna
structures provide a VSWR of 5.67 at 8.80 GHz. Data are represented in Table 2.
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Figure 7. Simulated reflectance response analysis using Rogers RT Duroid as substrate. S11 plot for
the proposed four antenna structures for the substrate Rogers RT Duroid 5880. The number of bands
for the proposed four structures is 7, 6, 3 and 1. Minimum reflectance responses are, respectively,
−33.79 dB, −34.54 dB, −13.79 dB and −10.05 dB. The resonance frequency is 6.49 GHz, 6.52 GHz,
8.83 GHz and 8.80 GHz, respectively.

Table 2. Reflectance plot (S11), total bands, resonance frequency, VSWR, and bandwidth data repre-
sentation for the proposed four antenna structures using a substrate of Rogers RT Duroid 5880.

Design No of
Bands

Reflectance
Response (S11)

Resonance
Frequency (GHz) VSWR Bandwidth

(GHz)

Starting
Point
(GHz)

Ending
Point
(GHz)

CPIO and
SWT 7.00 −24.78 3.33 1.15 0.02 3.32 3.34

−11.11 3.52 2.00 0.03 3.51 3.54
−20.11 4.04 1.28 0.13 3.98 4.11
−13.64 4.37 1.73 0.01 4.36 4.37
−13.00 4.72 1.78 0.11 4.68 4.79
−33.79 6.49 1.05 0.18 6.46 6.64
−11.17 7.89 2.06 0.07 7.85 7.92

CPIO and
SWOT 6.00 −13.37 2.91 1.54 0.03 2.90 2.93

−23.80 3.46 1.13 0.02 3.45 3.47
−26.30 4.05 1.10 0.11 4.00 4.11
−12.93 4.73 1.58 0.06 4.70 4.76
−34.54 6.52 1.03 0.16 6.50 6.66
−10.00 7.71 1.96 0.02 7.70 7.72

DCPIO and
SWT 3.00 −12.89 3.83 3.00 0.06 3.80 3.86

−10.00 7.06 6.77 0.02 7.05 7.07
−13.79 8.83 2.33 0.51 8.54 9.05

DCPIO and
SWOT 1.00 −10.05 8.80 5.67 0.07 8.76 8.83
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Table 3. Reflectance plot (S11), total bands, resonance frequency, VSWR, and bandwidth data repre-
sentation for the proposed four antenna structures using a substrate of FR4.

Design No of
Bands

Reflectance
Response (S11)

Resonance
Frequency (GHz) VSWR Bandwidth

(GHz)
Starting

Point (GHz)
Ending

Point (GHz)

CPIO and SWT 3.00 −26.11 3.38 1.51 0.13 3.32 3.45
−15.70 4.66 5.21 0.22 4.59 4.81
−12.30 5.56 8.00 0.11 5.50 5.61

CPIO and SWOT 2.00 −21.52 3.39 1.18 0.06 3.36 3.42
−15.60 4.64 1.39 0.07 4.61 4.68

DCPIO and SWT 3.00 −10.74 6.06 1.99 0.10 6.01 6.11
−11.00 7.27 1.83 0.24 7.17 7.41
−10.89 8.49 1.87 0.20 8.40 8.60

DCPIO and SWOT 1.00 −10.10 8.64 2.21 0.02 8.63 8.65

An antenna’s gain refers to how well it focuses or focuses the radio waves in a specific
direction. The gain refers to an antenna’s efficiency in transforming the electrical power
into radio waves in one order. In contrast, the directivity refers to an antenna’s capacity to
concentrate the radiation in a single directional beam. Since many antennas and optical
systems are only meant to emit electromagnetic waves in a particular direction or at a
specific angle, the directivity is an essential metric to consider. Increases in directivity
indicate that an antenna’s emitted signal is being focused or directed more narrowly.
Increasing the beam’s directivity also increases its range. Since dBi is the standard unit
of measurement for isotropic antennas, it is used to depict the antenna’s performance,
compared to the isotropic antenna [50]. Figure 9 represents the 3D radiation pattern plot for
the FR-4 substrate (−180◦ to +180◦). Figure 9a,b shows the maximum directivity of 5.59 dB
and the normalized directivity of 81◦ (−39 to +42) achieved for the CPIO and SWT modes.
Figure 9c,d shows the maximum directivity of 3.77 dB and the normalized directivity 93◦

(−39 to +54) achieved for the CPIO and SWOT models. Figure 9e,f show that the maximum
directivity is 3.35 dB and the normalized directivity is 21◦ (−42 to −24), 18◦ (−8 to +10),
13◦ (28 to 41) achieved for the DCPIO and SWT modes. Figure 9g,h show the maximum
directivity of 3.34 dB and the normalized directivity of 23◦ (−46 to −23), 17◦ (−7 to +10),
14◦ (+26 to +40) achieved for the DCPIO and SWOT models.

Figure 10 represents the directivity vs. the degree plot using Rogers RT Duriod 5880 as
the substrate (−180◦ to +180◦). Figure 10a,b show that the CPIO and SWT modes represent
the maximum directivity of 6.86 dB and the normalized directivity of 24◦ (−16 to +8). The
CPIO and SWOT models represent the maximum directivity of 6.84 dB and the normalized
directivity of 15◦ (−49 to −35), 25◦ (−19 to +4), and 14◦ (+23 to +37). The DCPIO and SWT
modes represent the maximum directivity of 4.47 dB and the normalized directivity of 32◦

(−43 to −11). The DCPIO and SWOT models represent the maximum directivity of 4.74 dB
and the normalized directivity of 29◦ (−43 to −14).

The antenna’s gain effectively represents the conversation of an applied electric signal
into the electromagnetic waves. Figure 11 illustrates a total gain for the proposed four
structures using the FR4, respectively, 4.54 dB, 3.51 dB, 2.39 dB and 2.38 dB. Figure 12
represents a total gain for the proposed four structures using Rogers RT Duroid 5880,
respectively, 8.57 dB, 8.34 dB, 7.76 dB, and 7.47 dB. The comparison of the total gain for the
proposed four antenna structures using the different substrate materials are represented in
Table 4. The comparison of proposed design with another multiband design is represented
in the Table 5.
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Figure 8. (a) The minimum value of the VSWR for the proposed four antenna structures by selecting
the substrate as FR4, is 1.51 at 3.38 GHz, 1.18 at 3.39 GHz, 1.83 at 7.27 GHz, respectively, and 2.21 at
8.64 GHz. (b) The minimum value of the VSWR for the proposed four antenna structures by selecting
the substrate as Rogers RT Duroid 5880 are 1.05 at 6.49 GHz, 1.03 at 6.52 GHz, 2.33 at 8.83 GHz and
5.67 at 8.80 GHz.
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Figure 9. Maximum directivity and the normalized directivity for all of the modes are, respectively,
5.59 dB with 81◦, 3.77 dB with 93◦, 3.35 dB with 21◦, 18◦, 13◦ and 3.34 dB with 23◦, 17◦, 14◦.
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Figure 10. Directivity plot using the Rogers RT Duroid 5880 substrate for the range of −180◦ to +180◦.
The maximum directivity and the normalized directivity for all of the modes are 6.86 dB with 24◦

and 7◦, 6.84 dB with 15◦, 25◦, 14◦, and 4.47 dB with 32◦ and 4.74 dB with 29◦.
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Figure 11. Total gain for the presented four antenna structures by selecting the substrate FR4.
(a) 4.54 dB for the CPIO and SWT (b) 3.51 dB for the CPIO and SWOT (c) 2.39 dB for the DCPIO and
SWT (d) 2.38 dB for the DCPIO and SWOT.
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Figure 12. Total gain for the presented four antenna structures by selecting the substrate Rogers RT
Duroid 5880. (a) 8.57 dB for the CPIO and SWT (b) 8.34 dB for the CPIO and SWOT (c) 7.76 dB for the
DCPIO and SWT (d) 7.7 dB for the DCPIO and SWOT.

Table 4. Total gain for the two different substrates, Rogers RT Duroid 5880 and FR4.

Design
Substrate

Rogers RT Duroid 5880 FR4

CPIO and SWT 8.57 4.54
CPIO and SWOT 8.34 3.51
DCPIO and SWT 7.76 2.39

DCPIO and SWOT 7.47 2.38
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Table 5. Comparison of the proposed structure with another multiband design.

References No of Bands Resonating Frequency
(GHz)

Minimum Reflectance
Response (S11) Peak Gain (dB)

[44] 5 4.4, 5, 5.8, 8.05 −17, −31, −13, −17 -
4 2.9, 5.1, 5.95, 6.55, 8.3 −25, −13, −22, −25, −21.5 -
5 3.2, 5.5, 6, 6.6, 8.3 −10, −17, −22, −12, −10 -

[9] 3 3.4, 5.7 −20, −39 -
[35] 5 5.3, 7.5, 9.8, 14.9, 19 −13, −12, −10, −23, −21 8.5
[6] 2 5.7, 10.3 −22, −21 6.38

[28] 3 4, 4.8, 9 −26, −16.5, −35 3.24
Proposed CPIO and

SWT structure 7 3.33, 3.52, 4.04, 4.37, 4.72,
6.49, 7.89

−24.78, −11.11, −20.11,
−13.64, −13, −33.79, −11.17 8.57

4. Conclusions

It is concluded that the tooth-added metamaterial superstrate structure with the
connected interior and exterior patch provides the multiband operation with a healthy
gain. The measured and fabricated results are compared for verification. The system’s
performance is analyzed by varying the substrate material, inserting and removing the tooth
in the split-ring resonator, and connecting and disconnecting the interior and exterior patch.
The results are compared, in terms of many bands, S11, the voltage standing wave ratio
and the bandwidth for the proposed four structures, by changing the substrate material
Rogers RT Duroid 5880 and FR4. The results are compared with earlier published work.
The presented design represents seven frequency bands of operation, a gain of 8.57 dB,
and a maximum reflectance response of −33.79 dB. The presented structure is appropriate
for numerous wireless communication applications, such as radar surveillance, satellite
communication and weather monitoring.

Author Contributions: Conceptualization, K.A. and S.K.P.; methodology, M.A. and S.L.; software,
S.L. and K.A.; validation, S.L., K.A., S.K.P. and M.G.D.; formal analysis, A.A. and M.A.; investi-
gation, A.A. and M.G.D.; resources, K.A., A.A. and M.A.; writing—original draft preparation, All
authors.; writing—review and editing, A.A. and S.K.P.; visualization, K.A. and M.A.; supervision,
A.A. and S.K.P.; project administration. All authors have read and agreed to the published version of
the manuscript.
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