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Abstract: The specialized literature emphasizes the fact that vitamin D has a potentially beneficial
effect in the context of the current COVID-19 pandemic. The purpose of this article is to highlight
the role of vitamin D, both prophylactic and curative, in the treatment of patients diagnosed with
COVID-19. Even though its relevance is still unknown and causes various controversies, there is
currently no specific treatment for patients diagnosed with COVID-19. There are various prevention
strategies with new vaccination schedules, but additional randomized and clinical trials are still
needed to combat this pandemic. In addition to the systemic manifestations of SARS-CoV-2 infection,
oral manifestations of this disease have also been described in the literature. The etiology of oral
manifestations associated with COVID-19 infection and vitamin D deficiency remains controversial.
In the present studies, oral manifestations such as salivary gland infections, aphthae, erythema,
gingivitis, ulcers, etc. have been reported. This is a new topic, and the prevalence of manifestations is
described in only a few studies, which is inconsistent with the number of COVID-19 cases reported
since the beginning of the pandemic. The clinical symptomatology in patients with current COVID-19
infection is polymorphic. Whether the oral manifestation is directly caused by SARS-CoV-2 or a
secondary manifestation remains an important topic to analyze and discuss.

Keywords: coronavirus; COVID-19; SARS-CoV-2; vitamin D; prevention; systemic manifestations

1. Introduction

SARS-CoV-2 infection has become a global public health problem causing millions
of deaths. The first epidemic to include a respiratory syndrome was (SARS)-CoV, first
described in 2002 in China, and later Middle East (MERS)-CoV was reported in 2012 in
Saudi Arabia. In late 2019, the first cases of CoV were confirmed in Wuhan, Hubei, China;
originally named 2019-nCoV, it was later renamed by the World Health Organization to
COVID-19, in February 2020. The main cause of death from infection with COVID-19 is
generally due to severe atypical pneumonia and associated comorbidities [1,2].

Currently, although there is no specific treatment to stop the pandemic except for the
vaccine and the prevention measures that were enforced, studies emphasize the particularly
important roles of micronutrients on the immune system.
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Current data in the literature, although there are conflicting studies, have highlighted
the benefits of micronutrient supplementation that can modulate the immune system (vita-
min C, D, and zinc according to studies) and decrease the risk of infection, hospitalization,
and death rate among patients diagnosed with COVID-19 [3].

2. Materials and Methods

The literature search was conducted in PubMed database (accessed on 1 September
2022), focusing on studies published within the last 11 years. Our search queried “vitamin
D [AND] oral manifestation [OR] systemic manifestations [OR] COVID-19 [AND] SARS-
CoV-2” and was limited only to prospective and retrospective studies and metanalyses,
omitting abstracts, documents, and reviews. Our search resulted in 87 total references.
These were manually reviewed, and only 25 references were within our scope of interest
ranging from 2013 to 2022.

3. Structure, Sources, and Vitamin D Absorption

The amount of sunlight needed to meet our vitamin D requirements is difficult to
estimate because it depends on many important factors, such as skin pigment, age, season
or time of day, and not least altitude [4,5]. Because foods are deficient in natural sources
of vitamin D, diet does not provide the necessary dose of vitamin D for most people.
Therefore, in many situations where there is inadequate exposure to the sun as well as
low food intake, vitamin D supplementation may be necessary. A suitable example of this
situation is represented by the restrictions imposed by the pandemic caused by COVID-19.
This restriction affects the majority of the population by reducing their exposure to sunlight
and, consequently, the synthesis of vitamin D.

There are two main dietary sources of vitamin D: cholecalciferol (vitamin D3) and
ergosterol (vitamin D2). From a chemical point of view, vitamin D is a cholesterol derivative,
vitamin D2 is obtained by ergosterol oxidation of plant origin, while vitamin D3 is obtained
by 7-dehydrocholesterol oxidation of animal origin. Foods of animal origin in which
we find vitamin D3 are tuna liver oil, salmon, beef liver, and mackerel. Mushrooms
are the food of plant origin in which we find vitamin D2 (for example the mushroom
Agaricus bisporus) [5–7].

Vitamin D esters (either vitamin D3 or D2) are hydrolyzed by pancreatic esterases to
release vitamin D, which are emulsified in the presence of bile salts and pancreatic juice,
thus forming mycelia that diffuse into enterocytes [4]. With the diffusion of mycelia in
the jejunum, the formation of chylomicrons occurs, which initially pass into the lymph
and then into the blood. In the blood, vitamin D is bound to α-globulin (VDBP-vitamin
D-binding globulin) and thus transported to the liver. As only a fraction is contained in the
chylomicron, vitamin D can be absorbed by adipose tissue and skeletal muscle tissue [5,8].
The rest of the chylomicrons that transport vitamin D to the liver, with the help of the
vitamin D-binding protein (VDBP), will make it possible to enter the hepatocytes and,
subsequently, facilitate their transport to the various tissues that need them [6,8].

Cholecalciferol (Vitamin D3) is formed at the integumentary level, being photosyn-
thesized in the skin as a result of the irradiation of 7-dehydrocholesterol (a substance
found physiologically in skin tissue) by ultraviolet solar rays [6]. Therefore, adequate
exposure to the sun prevents vitamin D deficiency. Vitamin D, which enters the body
exogenously (through food intake), is identical to cholecalciferol formed in the skin, except
for substitutions at one or more atoms, which do not affect its function [7].

Cytochrome P450 mixed-function oxidases (CYPs) have a major role in vitamin D
metabolism, 25-hydroxylation, and 1α-hydroxylation, with localization either in the en-
doplasmic reticulum (ER) (e.g., CYP2R1) or mitochondria (e.g., CYP27A1, CYP27B1, and
CYP24A1). The electron donor for ER enzymes is reduced NADPH-dependent P450 [6,9,10].
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4. Liver and Renal Metabolism of Vitamin D

The first step in the activation of cholecalciferol is its transformation into 25-hydroxyc-
holecalciferol under the action of 25-hydroxylase (CYP450 enzyme, especially CYP2R1),
which occurs in the liver within 24 to 96 h [6,10]. The process is limited because
25-hydroxycholecalciferol exerts a feedback inhibitory effect on the conversion reaction.
Monohydroxylated derivatives can follow three paths in the body (Figure 1): they carry
out the hepato-entero-hepatic circuit; they are hydroxylated in the liver under the action
of 24-hydroxylase with the formation of 24,25-dihydroxy-vitamin D2 or D3, biologically
inactive forms, but which can stimulate 25-hydroxy-1α-vitamin D hydroxylase from the
renal level; and the transport to the kidneys is achieved by binding to the specific globulin
VDBG, where in the mitochondria of the cells of the proximal renal tubules they are hy-
drolyzed to obtain the active form 1α, 25 dihydroxyvitamin D (calcitriol), dependent on
CYP450 (CYP27B1) and tightly regulated by calcium levels and blood phosphate via PTH
and fibroblast growth factor 23 (FGF-23) [11].
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The conversion of 25-hydroxycholecalciferol to 1,25-dihydroxycholecalciferol takes
place in the presence of the parathyroid hormone. In its absence, the amount of 1,25-
dihydroxycholecalciferol is almost zero [6,13,14]. Therefore, the functional effects of vitamin
D on the body are due to PTH. Since the final synthesis of vitamin D occurs in the body,
from dietary precursors, calcitriol can be considered a hormone, since it does not meet all
the conditions to be considered a vitamin [12,15,16].

5. Effects of Vitamin D

The mechanism of action of calcitriol is mediated by VDR, known as vitamin D
receptor, which belongs to a subfamily of nuclear receptors that act as transcription factors
in target cells after forming a heterodimer with the retinoid X receptor (receptor for retinoic
acids) with an affinity approximately 1000 times higher than for 25-hydroxycholecalciferol,
which explains the different intensity of their biological effects [17–19].

Vitamin D has a well-known role in the homeostasis of the osteoarticular system and
is essential for good calcium absorption. Being essential for a good absorption of calcium,
there has been increased interest in the involvement of vitamin D in the metabolic pathways
involved in muscle function.

Vitamin D is a key nutrient in maintaining the health of the musculoskeletal system,
and its deficiency can lead to myopathy, a disorder characterized by hypotonia, atrophy of
skeletal muscles, and asthenia [20–22].

Muscle biopsies obtained from vitamin D-deficient adults show the presence of large
interfibrillar spaces, fibrosis, and a loss of type II fibers. There is also an increase in fat
infiltration into muscle, a similar effect seen in the elderly, where there is a progressive loss
of muscle mass, muscle contraction force, and an increase in transdifferentiated adipose
tissue [23,24].

6. Risk of Vitamin D Deficiency

Vitamin D deficiency in all age groups is a widespread phenomenon globally, becom-
ing a public health problem mainly caused by low sun exposure. It is estimated that more
than one billion people suffer from vitamin D deficiency, a number that increases with age
and associated comorbidities [25–27]. Studies showing the risk of vitamin D deficiency are
summarized in Table 1.

Table 1. The risk of vitamin D deficiency.

Study Purpose Comments

Fleet 2017, [26]
To establish that hormonal control of vitamin D
will regulate serum calcium levels so that they
are maintained within a very narrow range

The study showed the importance of vitamin D and
signaling through the VDR in the control of intestinal
calcium absorption, renal calcium metabolism, bone
metabolism, and even vitamin D metabolism

Wacker 2013, [27]

To evaluate what blood level of
25-hydroxyvitamin D should be attained for
both bone health and reducing risk for vitamin
D deficiency associated acute and chronic
diseases and how much vitamin D should
be supplemented

The authors suggest a pivotal role of vitamin D for a
plethora of physiological functions and health
outcomes including neuropsychiatric disorders

Fleet 2017, [26]
To establish that hormonal control of vitamin D
will regulate serum calcium levels so that they
are maintained within a very narrow range

The study showed the importance of vitamin D and
signaling through the VDR in the control of intestinal
calcium absorption, renal calcium metabolism, bone
metabolism, and even vitamin D metabolism



Medicina 2023, 59, 68 5 of 15

Table 1. Cont.

Study Purpose Comments

Wacker 2013, [27]

To evaluate what blood level of
25-hydroxyvitamin D should be attained for
both bone health and reducing risk for vitamin
D deficiency associated acute and chronic
diseases and how much vitamin D should
be supplemented

The authors suggest a pivotal role of vitamin D for a
plethora of physiological functions and health
outcomes including neuropsychiatric disorders

Ghozali 2022, [28]
To report metabolic effects of vitamin D, in
order to identify its potential use to prevent
and overcome metabolic diseases

The study provided concrete evidence for the function
of vitamin D in maintaining glucose tolerance

Braga 2017, [29]
To determine the effect of 1,25-D3 on myogenic
cell differentiation in skeletal muscle derived
stem cells

Vitamin D exerts a clear pro-myogenic effect on
satellite cells in charge of muscle reconstitution after
muscle injury or muscle waste

Pincombe 2019, [30] To establish the effect of vitamin D
supplementation on endothelial function

The authors have proven that vitamin D
supplementation showed no improvement in
endothelial function

Kheiri 2018, [31]
To correlate studies and trials on the effect of
vitamin D supplementation on cardiovascular
risk factors and hypertension

Low vitamin D is associated with hypertension and
higher cardiovascular and all-cause mortality

Banerjee 2021, [32]

To elucidate how vitamin D through its diverse
actions on immune effector cells could have a
modulatory role on the pathogenic
mechanisms of COVID-19

Epidemiological data and biochemical and
immunological evidence showed that vitamin D could
be an important disease modifying-agent in COVID-19

It has been shown that vitamin D administration is associated with the recovery and
increased quality of life in patients after bone surgery. Following postoperative supple-
mentation with vitamin D, it was observed that pain in the skeletal system decreased in
intensity [22,23,33,34].

Rabbits and mice with experimentally induced vitamin D deficiency show low insulin
secretion, and following vitamin D supplementation, a normalization of insulin secretion
is observed [28,35–37]. Mice with abnormalities in the specific receptor for vitamin D
have been found to have reduced glucose tolerance compared to animals that have this
functional receptor.

Data from the literature highlight the fact that fat infiltration in muscle tissue not only has
a direct impact on muscle functionality and strength, but is also an important independent risk
factor for metabolic diseases such as insulin resistance and diabetes [23,38–40].

Several studies have demonstrated that myogenic precursor cells retain the potential
for transdifferentiation towards the adipogenic lineage. Previous studies have revealed
that vitamin D has potent effects on adipogenesis and myogenesis [29,40,41].

Experimental research has shown that a hyperlipidemic, vitamin D-deprived diet is
associated with reduced femur mineral density compared to animals fed a high-fat diet,
suggesting that vitamin D influences bone metabolism [42–45].

Experimental studies on laboratory animals have demonstrated an interdependence
between vitamin D supplementation and the degree of bone repair. It should be noted that
obesity, smoking, severe anemia, and diabetes will prevent bone regeneration associated
with vitamin D deficiency, suggesting the particularly important role of vitamin D in
the body [20,23,46–48]. The molecular mechanisms responsible for the differentiation
and evolution of human adipogenesis are not fully elucidated, especially because of the
difficulty in identifying and characterizing human adipocyte precursors.

Preadipocytes—those corresponding to unilocular cells, but also to multilocular
cells—are difficult to identify, due to the impossibility of their differentiation, in relation to
any other fibroblast-like cell [49,50].
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Recent evidence suggests that vitamin D, in addition to its classic role in calcium
homeostasis and maintenance of the bone system, has also anti-inflammatory and
antithrombotic effects.

Vitamin D deficiency influences the secretion of proinflammatory cytokines and
chemokines, and there is clear evidence of the severity of viral respiratory infections
that, in the long term, increases the risk of developing hypertension, diabetes, congestive
heart failure, and peripheral arterial disease, such as myocardial infarction, stroke, and
death [51–53].

Slightly low plasma levels of vitamin D (approximately 25 ng/mL) increase the risk
of patients developing hypertension, and at values of 3–4.8 ng/mL, much reduced, they
are associated with an increased risk of heart disease, accident ischemic stroke, myocardial
infarction, and early death by 40%, 64%, and 57%, respectively, compared with individuals
with plasma vitamin D levels of 18.83–28.44 ng/mL [30,31,54–56]. The functioning and
integrity of skeletal muscles is influenced by the development of osteoporosis, as a result of
vitamin D deficiency [45,57].

Although there is insufficient scientific evidence, vitamin D may play an important role
in tumor progression in the oral field [58]. In a case-control study, VDD was associated with
an increased risk of esophageal squamous cell carcinoma at the oropharyngeal level and
with an increased prevalence in tobacco and alcohol-consuming patients [32,59]. Another
study concluded that in premalignant and malignant conditions there is an increase in VDR
expression and the administration of vitamin D had the effect of significantly reducing
toxicity, morbidity, and increasing the quality of life-related to treatment in advanced oral
cancer [17,60,61].

Patients diagnosed with SARS-CoV-2 present specific or non-specific clinical symp-
toms, symptomatic or asymptomatic, and they can affect the systemic organism. Recent
studies have also described the oral manifestation of COVID-19 infection in these patients.
The SARS-CoV-2 virus was detected in the patient’s saliva and which could cause lesions
at this level, through inflammatory effects and tissue destruction produced at the oral
lesions [62]. Lesions such as gingivitis, erythema, aphthous, salivary gland infections, and
ulcers were described in new studies [63]. The etiology involved in oral manifestation asso-
ciated with the infection with COVID-19 remains an interesting subject to discuss. There
are not enough studies to confirm that these lesions are directly caused by SARS-CoV-2
or that this could be associated with SARS-CoV-2 infection correlated with the favorable
factors. The current studies have considered that the presence of poor oral hygiene, smok-
ing, existing dental conditions such as periodontal disease, comorbidities, and adverse
reactions to medication administered were associated with oral lesions [64].

Additionally, the data from the literature reported that the presence of secretory
dysfunction of the salivary glands and acute parotitis can be initial clinical symptoms
of COVID-19.

The prevalence of oral lesions of these patients is analyzed in few studies, which
is discrepant with the number of cases reported with COVID-19 since the beginning of
the pandemic.

7. Vitamin D and COVID-19 Infection

The pandemic caused by the SARS-CoV-2 infection has registered numerous deaths
among the population and controversies worldwide.

The incidence of respiratory tract infections (RTIs) is more common in winter, espe-
cially in northern regions, compared to the summer months. This is also true for the rapid
global spread of the infectious disease in 2019 of coronavirus disease (COVID-19) during the
winter period, which later became a pandemic, because the virus is more easily transmitted
in cold temperatures [12]. Based on the premise that insufficient intake of vitamin D3 may
contribute to the development and severity of the infection with COVID-19, in order to
combat this pandemic, it is considered that the administration of an adequate amount of



Medicina 2023, 59, 68 7 of 15

vitamin D3 may be effective in keeping the pandemic under control until it develops an
effective therapy and chemoprophylaxis [65,66].

To date, there are very few studies on the link between vitamin D and COVID-19.
Studies showing the relationship between vitamin D and COVID-19 are summarized
in Table 2.

Table 2. Relationship between vitamin D and COVID-19.

Study Purpose Comments Outcome

Annweiler 2020, [67]

to evaluate whether bolus vitamin
D supplementation taken
regularly was effective in
improving survival among
hospitalized frail elderly
COVID-19 patients

in elderly vitamin D
supplementation was associated
with less severe COVID-19 and
better survival.

Adjuvant treatment
for COVID-19

Sulli 2021, [68]

to correlate the 25OH-vitamin D
serum concentrations with clinical
parameters of lung involvement,
in elderly patients hospitalized
for SARS-CoV-2 infection

25OH-vitamin D serum deficiency
is associated with more severe
lung involvement, longer disease
duration and risk of death, in
elderly COVID-19 patients.

Crucial risk factor at any age

Alexander 2020, [69]

to investigate the usefulness of
early micronutrient intervention,
focus on vitamin D, to relieve
escalation of COVID-19

they recomend early outpatient
nutritional intervention in
SARS-CoV-2 exposed or high-risk
subjects.

Nutritive adjuvant therapy

Radujkovic 2020, [70]
to explore possible associations of
vitamin D status with disease
severity and survival

Vitamin D deficiency was
associated with higher risk of
invasive mechanical ventilation
and death, when adjusted for age,
gender, and comorbidities.

High risk of potentially
fatal COVID-19

Sarhan 2022, [71]

to explore the effect of high-dose
intramuscular vitamin D in
hospitalized adults infected with
moderate-to-severe SARS-CoV-2
in comparison with the standard
of care in the COVID-19 protocol.

study showed that high-dose
vitamin D was considered a
promising treatment in the
suppression of cytokine storms
among COVID-19 patients and
was associated with better clinical
improvement and fewer adverse
outcomes compared to low-dose
vitamin D.

Cytokine response against
infections in the era
of COVID-19

Pizzini 2020, [72]

to investigate associations of
vitamin D status to disease
presentation within the
COVID-19 registry

Vitamin D deficiency is frequent
among COVID-19 patients but not
associated with disease outcomes.

Disturbed
parathyroid-vitamin-D axis

Hastie 2021, [73]

to establish whether baseline
serum 25(OH)D concentration
was associated with COVID-19
mortality, and inpatient
confirmed COVID-19 infection, in
UK Biobank participants

not a potential link between
25(OH)D concentrations and risk
of severe COVID-19 infection
and mortality.

25(OH)D and confirmed
COVID-19 infection
or mortality

Sabico 2021, [74]

to determine the effects of 5000 IU
versus 1000 IU daily oral vitamin
D supplementation in the
recovery of symptoms and other
clinical parameters among mild to
moderate COVID-19 patients
with sub-optimal vitamin D status

a 5000 IU daily oral vitamin D3
supplementation for 2 weeks
reduces the time to recovery for
cough and gustatory sensory loss
among patients with sub-optimal
vitamin D status and mild to
moderate COVID-19 symptoms.

Vitamin D supplementation
among those with suboptimal
levels against COVID-19
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Table 2. Cont.

Study Purpose Comments Outcome

Gönen 2021, [75]

to establish an acute treatment
protocol to increase serum
vitamin D, evaluate the
effectiveness of vitamin D3
supplementation, and reveal the
potential mechanisms
in COVID-19

Vitamin D treatment shortened
hospital stay and decreased
mortality in COVID-19 cases.

Vitamin D supplementation is
effective on various
targeted parameters

Rustecka 2021, [76]

to evaluate whether home
confinement led to decreased
vitamin D serum levels in
children in Warsaw, Poland.

The COVID-19 pandemic
restrictions led to a significant
decrease in vitamin D serum
levels in children.

The importance of vitamin D
supplementation in the
paediatric population

Boulkrane 2020, [61]
To establish the potential role of
vitamin D in SARS-CoV-2
virus/COVID-19 disease

The higher concentrations of
vitamin D3 is better for the
protection from various viral and
respiratory infections.

Supplementation of vitamin
D3 in COVID-19

Bishop 2020, [77]

To provide an update on current
understanding of the prominent
immune actions of vitamin D, as
well as highlighting new, less
well-recognized immune effects
of vitamin D

There are strong evidence that
vitamin D metabolic enzymes are
expressed in virtually all cells in
the innate and adaptive arms of
the immune system.

Regulation of the NF-κB
pathway during infection

Albergamo 2022, [78]

To explore the correlation studies
between vitamin D deficiency and
increased risks of severe
COVID-19 disease and, similarly,
between vitamin D deficiency and
acute respiratory
distress syndrome

Numerous studies highlight its
immunomodulatory and
anti-inflammatory properties, and
its use was proposed
in COVID-19.

Decreasing the severe
symptoms due to
inflammation and
oxidative stress

Ghelani 2021, [79]

To consolidate the research
surrounding the role of vitamin D
in the treatment and prevention
of COVID-19.

This current study shows
evidence wich supports the links
between vitamin D and
COVID-19 and the benefits of
vitamin D supplementation.

The toxicity of Vitamin D
supplementation is far
outweighed by the potential
benefits in relation to
protection against COVID-19.

Biesalski 2020, [80]

To establish whether an
inadequate vitamin D supply has
an influence on the progression
and severity of COVID-19 disease

Various non-communicable
diseases (hypertension, diabetes,
CVD, metabolic syndrome), are
associated with low vitamin D
plasma levels.

Vitamin D deficiency increase
the risk of severe COVID-19

Verdoia M 2021, [81]
To determine the potential
implications for
COVID-19 pandemic

Vitamin D appears to reduce the
acute-phase response associated
to a larger pulmonary damage
and complications as ARDS
or sepsis.

Vitamin D modulates the
activity of IL-6

Weir 2020, [82]

To establish if vitamin D
supplement would offer a
relatively easy option to decrease
the impact of the pandemic

Vitamin D appears to have
beneficial effects against
COVID-19, it would follow that
the severity of the disease should
lessen in the
Northern hemisphere.

Vitamin D, an easy option to
decrease
the impact of the pandemic
of COVID-19

Hribar 2020, [83]
To determine the relationship
between vitamin D, PD, and
COVID-19.

Vitamin D may have antiviral
properties and play a role in
protecting against infections,
including respiratory illnesses.

2000–5000 IU/day of vitamin
D3 in individuals with PD
may be beneficial in reducing
the risk and severity
of COVID-19.
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Daily supplementation with Vit D (1000 to 3000 IU) to maintain serum levels within
normal limits may be beneficial both in the prevention and treatment of infection caused
by COVID-19 [84].

The studies carried out before the COVID-19 pandemic—a study carried out on
5660 participants (age ranging from 6 months to 75 years) as well as a study carried out
on 10,933 participants (aged 0–95 years) from 14 different countries—demonstrated that
supplementation with vitamin D offers a protective and effective role in reducing the risk
respiratory tract infections [12,85].

Daily supplementation with moderate doses of vitamin D prevents the occurrence
of multisystem injuries induced by COVID-19 infection, mortality, coagulopathy, and
even reduces the risk and severity of COVID-19 [80–83,86], offering benefits among
these patients.

Retrospective studies to date have demonstrated a relationship between serum vitamin
D3 levels and respiratory tract infections.

For example, the authors of a preliminary study conducted among the patients with
COVID-19 found that severity of infection was correlated with serum vitamin D levels. The
authors found that 85.5% of patients with serum levels of Vit D3 above 30 ng/mL presented
a moderate form of the disease, while 72.8% of patients with Vit D3 deficiency (<20 ng/mL)
had a severe form [87,88].

The authors of a study of approximately 191,779 patients from 50 states, with an
average age of approximately 54 years, in which vitamin D values were correlated in
patients diagnosed with SARS-CoV-2, found that the positivity rate for hypovitaminosis D
was higher among 39,190 patients compared with 27,870 patients with normal vitamin D
values [89].

According to a study in a group of 178 patients from Indonesia, where it was investi-
gating the correlation between the serum level of Vit D3 and the severity of the COVID-19
infection, among patients with serum levels of Vit D3 between 20–30 and <20 ng/mL,
deaths were approximately 10.12 times higher compared to the group of patients with
serum levels within normal limits [90].

At the same time, another limited cohort study (among 43 cases) from Singapore
highlighted the fact that in the case of patients with COVID-19, the administration of the
oral dose of vitamin D3 (1000 IU), Mg (150 mg), and vitamin B12 (500 µg) significantly
reduced the administration of oxygen therapy, compared to the control group [91].

Thus, vitamin D has proven to be an essential prevention factor against respiratory
infections. Vitamin D deficiency was observed in patients with chronic pathologies and
generally had a poor prognosis. In elderly patients, severe hypovitaminosis D was found
to be an independent predictor of community-acquired pneumonia, and death. Addi-
tionally, it was associated with lung inflammation, causing acute respiratory distress
syndrome (ARDS), damage to the respiratory epithelium, and hypoxia. Moreover, consid-
ering the increased incidence of pulmonary fibrosis—sequelae of the infection caused by
COVID-19—it is important to remember that vitamin D prevents a profibrotic phenotype
caused by TGF-1 of the lung cells [92,93]. Several studies emphasize the need for adequate
management of oral conditions in patients with diabetes to avoid inflammatory conditions
and potential morbidities [94]. Significant associations were identified between vitamin
deficiency D and glucose, with this aspect negatively influencing the evolution of patients
with COVID-19 [95].

Current available literature data provide information on the importance of micronutri-
ent administration in the management, evolution, and prognosis of COVID-19.

The pathophysiological mechanisms by which vitamin D deficiency may cause pro-
gression from simple lesions (airway inflammation and diffuse alveolar lesions) to com-
plicated, clinically significant lesions (vascular inflammation and thrombosis associated
with COVID-19), and the lack of clinical and cohort studies on the role of vitamin D3 in
the prevention of infection with COVID-19 present areas of future research, both with a
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therapeutic and preventive role [78,89]. Endothelial dysfunction is the central element of
the pathology triggered by the SARS CoV-2 virus.

8. The Role of Vitamin D in Endothelial Dysfunction

In the literature, the important role of endothelial dysfunction in patients with COVID-
19 and several interrelated mechanisms involving the renin-angiotensin system and im-
mune cells have been proposed and also analyzed and discussed [96–98].

Endothelial dysfunction has a particular role in vascular inflammation associated with
COVID-19 infection and coagulopathy [91,99–101], but the role of endothelial dysfunction
in patients with vitamin D deficiency and COVID -19 remains controversial [95].

The vascular endothelium is essential for maintaining regulating vascular tone and
vascular homeostasis. It is responsible for the regulation of oxidative stress by releasing
mediators such as nitric oxygen (NO), prostacyclin, endothelin, and controlling the local
activity of angiotensin II [99].

Endothelial dysfunction is characterized by alteration of the regulatory functions of the
endothelium, causing an imbalance between relaxing and contracting factors, procoagulant
and anticoagulant mediators, or substances that inhibit and promote growth [102].

Pathophysiological mechanisms underlying endothelial dysfunction include risk fac-
tors for cardiovascular disease such as hypertension, insulin resistance, dyslipidemia,
smoking, hyperhomocysteinemia, or a combination of these factors [53].

Reduction of nitric oxide (NO) production and/or bioavailability is considered the
central mechanism responsible for endothelial dysfunction [91,94,103]. The stability of
NO is dependent on several factors that prevail in the physiological environment, such as
oxygen-derived free radicals (superoxide), pH, and thiol group availability. Thiols stabilize
NO by reducing available oxygen-derived free radicals. Another particularly important
role in the occurrence of endothelial dysfunction is the serum level of homocysteine, which
is considered an independent risk factor in the occurrence of cardiovascular pathology,
including hypertension.

The role of the endothelium as a target of vitamin D is demonstrated by the direct ef-
fects of vitamin D on endothelial function. It prevents endothelial cell death by modulating
apoptosis and autophagy through multiple mechanisms including inhibition of superoxide
anion generation and induction of NO production. The release of NO induced by vitamin
D during oxidative stress (imbalance between pro-oxidants and anti-oxidants) provides a
protective role for cells.

The multiple properties of NO (vasodilator, antiplatelet, anti-proliferative, anti-adhesive,
decreased permeability, and anti-inflammatory), NF-κB activation by pro-inflammatory
genes and oxidative stress play an important role in endothelial dysfunction and cell
apoptosis [101,103,104]. Endothelial apoptosis is associated with NO and peroxynitrite,
through the action of NO on vascular homeostasis and endothelium-derived contractile
factors such as angiotensin II and endothelin-1.

Previous studies have suggested that vitamin D protects against endothelial dysfunc-
tion by reducing oxidative stress and activating NF-κB [67,97]. Currently, the effects of
angiotensin-converting enzyme receptor 2 (ACE2), which is present in endothelial cells
(EC) of the lung, heart, kidney, intestine, and in systemic vessels (small and large arteries,
capillaries), are discussed and explored. In the current context, they become activated and
dysfunctional in the case of severe acute respiratory syndrome caused by SARS-CoV-2
infection. As a result of endothelial activation and dysfunction, serum levels of proinflam-
matory cytokines (interleukin-1, interleukin-6 (IL -6), and tumor necrosis factor-α), von
Willebrand factor (vWF) antigen, vWF activity, factor VIII, and chemokines (monocyte
chemoattractant protein-1) are increased. Acute phase reactant levels are also elevated
in SARS-CoV-2 infection (IL-6, D-dimers, C-reactive protein) were observed. Endothelial
dysfunction is therefore hypothesized to contribute to pulmonary, renal, cardiovascular
vascular inflammation, and coagulopathy associated with COVID-19 infection, particularly
microemboli in alveolar capillaries [67–69].
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Currently, there is some conflicting evidence about NF-κB activity between in vitro
and in vivo studies. In vitro studies suggest that vitamin D reduces inflammation through
NF-κB activity, although human clinical trials have not shown an effect of vitamin D
supplementation on inflammatory markers or NF-κB activity in vivo. Recently, an updated
systematic review with meta-analysis and meta-regression demonstrated that vitamin D
treatment does not improve endothelial dysfunction [70–73]. Although data in the literature
between in vitro and in vivo studies are conflicting, it is worth noting the methodological
differences based on the results. In vivo, the effects of vitamin D supplementation are
based exclusively on indices (central augmentation index, flow-mediated dilation, pulse
wave velocity), which cannot be consistent with endothelial activation biomarkers used in
clinical practice [75,97].

Further studies regarding the association between endothelial dysfunction in patients
with COVID-19 and the benefits of vitamin D supplementation are needed to understand
the therapeutic opportunities [32,75,76,79,105].

9. Conclusions

The specialized literature presents clear evidence regarding the role of serum vitamin
D levels in patients with SARS-CoV-2 infection. Assessment of serum 25-OHD concen-
tration is important for detailed identification of physiological effects of vitamin D with
pathophysiological implications. Relationships between the immune system, respiratory
infections, and the role of vitamin D in the context of COVID-19 infection have also been
identified. At the same time, oral manifestations caused by vitamin D deficiency were noted.
Many studies have been noted that have provided concrete evidence regarding the function
of vitamin D in maintaining glucose tolerance. Epidemiological data and biochemical and
immunological evidence have shown that vitamin D could be an important agent to modify
the evolution of patients with COVID-19 infection.
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