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Abstract: Recently, transfer learning approaches appeared to reduce the need for many classified
medical images. However, these approaches still contain some limitations due to the mismatch
of the domain between the source domain and the target domain. Therefore, this study aims to
propose a novel approach, called Dual Transfer Learning (DTL), based on the convergence of patterns
between the source and target domains. The proposed approach is applied to four pre-trained models
(VGG16, Xception, ResNet50, MobileNetV2) using two datasets: ISIC2020 skin cancer images and
ICIAR2018 breast cancer images, by fine-tuning the last layers on a sufficient number of unclassified
images of the same disease and on a small number of classified images of the target task, in addition
to using data augmentation techniques to balance classes and to increase the number of samples.
According to the obtained results, it has been experimentally proven that the proposed approach
has improved the performance of all models, where without data augmentation, the performance
of the VGG16 model, Xception model, ResNet50 model, and MobileNetV2 model are improved by
0.28%, 10.96%, 15.73%, and 10.4%, respectively, while, with data augmentation, the VGG16 model,
Xception model, ResNet50 model, and MobileNetV2 model are improved by 19.66%, 34.76%, 31.76%,
and 33.03%, respectively. The Xception model obtained the highest performance compared to the
rest of the models when classifying skin cancer images in the ISIC2020 dataset, as it obtained 96.83%,
96.919%, 96.826%, 96.825%, 99.07%, and 94.58% for accuracy, precision, recall, F1-score, sensitivity,
and specificity respectively. To classify the images of the ICIAR 2018 dataset for breast cancer, the
Xception model obtained 99%, 99.003%, 98.995%, 99%, 98.55%, and 99.14% for accuracy, precision,
recall, F1-score, sensitivity, and specificity, respectively. Through these results, the proposed approach
improved the models’ performance when fine-tuning was performed on unclassified images of the
same disease.

Keywords: transfer learning; fine-tuning; data augmentation; skin cancer; breast cancer; imbalanced
datasets; medical images

1. Introduction

Although there are many machine learning techniques to analyze medical images
in various areas, deep learning has become the better method to analyze and interpret
medical issues due to its accuracy [1]. Deep learning is a part of machine learning and
is based on artificial neural networks, called deep neural networks because the structure
of the neural network consists of multiple inputs, outputs, and hidden layers [2]. Deep
learning is widely known for its application in many areas, and is most important in the
analysis and interpretation of medical images [3], such as classifying melanomas [4,5],
brain tumors [6,7], and eye diseases [8,9], to overcome image processing barriers and
machine learning methods, although these applications also produce low-level classification
accuracy with deep learning due to deep learning models needing a sufficient number of
labeled images to perform better [10]. This will lead to a problem in the performance of
deep learning in some fields, especially in the medical field, where the field of medical
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image analysis suffers from a lack of labeled images, due to the time-consuming and
expensive process of labeling images, which requires experts specialized in radiology [10].
These reasons lead researchers to build computer systems that help experts make decisions
and speed up the diagnostic process. Transfer learning is provided to reduce the need
for many images and to speed up the training process by transferring knowledge from
a previous process and then training it to relatively small datasets for the current task.
Transfer learning is often applied to pre-trained models (such as LeNet, Alex-Net, VGG-
16, ResNet, etc.) on the ImageNet dataset, which consists of natural images, with large
numbers of more than 14 million images distributed over 1000 classes [11], such as objects,
animals, and humans, to solve. Many tasks are pattern recognition and computer vision.
For example, applying transfer learning on ImageNet (face detection, distinguishing types
of animals, or distinguishing types of flowers, etc.) can improve the performance of these
tasks, because their features are like those in the ImageNet dataset. However, the ImageNet
dataset does not contain medical images, resulting in a domain mismatch between the
source domain and the target domain as shown in Figure 1.
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In addition, fine-tuning the models for field convergence requires more images due to
increasing the number of trainable layers [12], which causes the problem of overfitting that
occurs when models are trained on few images [13]. Moreover, medical datasets have a
shortage of images in the malignant class compared to the number of images in the benign
class, which causes an imbalance between the classes of the dataset [14], and thus causes
the model bias problem for the class with the largest number of images.

Deep learning has become the ultimate method for the examination and classification
of cancerous diseases, due to its exactness, as there have been many previous works on
deep learning approaches, especially transfer learning technology from the pre-trained
models such as LeNet, Alex-Net, VGG-16, ResNet, etc. All related works are summarized in
Table 1. V. Shah et al., 2020 [15], used the models (DenseNet-121, SE-ResNeXt50, ResNet50,
and VGG19) to classify the ISIC2020 melanoma dataset images into malignant and benign.
ResNet-50, according to sensitivity, specificity, and accuracy, obtained the best results
among the other three, with values of 99.7%, 55.67%, and 93.96%, respectively. It is pointless
to use a test with low specificity for diagnosis because many people without the disease
will show positive results and potentially receive unnecessary diagnostic procedures. C.
Li et al., 2021 [16], applied transfer learning on three models (EfficientNet-B4, vgg16, and
ResNet50) for the purpose of classifying melanoma images in the ISIC2020 dataset. They
use data augmentation to improve the performance and accuracy of the model; after the
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training procedure, they had an AUC-ROC score for EfficientNet-B4 of 0.909, which is 3.5%
higher than VGG16 and 2.3% higher than Resnet50. They did not experiment with the
effect of balancing the classes, because the ISIC2020 dataset suffers from the problem of
imbalance between the benign and malignant classes. In addition, the proposed model
suffers from the problem of overfitting. R. Zhang, 2021 [17], used the EfficientNet-B6 model
and performed a transfer learning of the model on the ISIC2020 dataset. He obtained an
AUC-ROC score of 0.917. His model suffered from an overfitting problem. Z. M. Arkah
et al., 2021 [18], proposed a new approach to transfer learning by training the models (VGG,
GoogleNet, ResNet50) from scratch on a large number of unlabeled melanoma images, and
then training them on a small number of labeled skin images. They applied their approach
to the ISIC 2020 dataset. The ResNet50 achieved an accuracy of 93.7% when training with
the proposed method. However, training the models from scratch takes time and requires a
very large number of images, so the process of fine-tuning the pre-trained models to some
last layer that extracts custom features may lead to better results and less training time.

Table 1. Techniques used in the skin cancer and the breast cancer classification tasks.

Author(s)/Year Methods/Techniques Cancer Type Dataset Strengths Weaknesses

(V. Shah et al.,
2020) [15]

“Transfer learning on
(DenseNet-121, SE-ResNeXt50,

ResNet50, and VGG19)”
Skin cancer ISIC2020

“ResNet-50 according to
sensitivity, specificity, and

obtained the best accuracy results
among the other three, with
values of 99.7%, 55.67%, and

93.96%, respectively.”

It is pointless to use a test with low
specificity for diagnosis because
many people without the disease

will show positive results and
potentially receive unnecessary

diagnostic procedures.

(C. Li et al., 2021)
[16]

Transfer learning on three
models (EfficientNet-B4, vgg16,

and ResNet50)
Skin cancer ISIC2020

“They had an AUC-ROC score
for EfficientNet-B4 of 0.909,

which is 3.5% higher than VGG16
and 2.3% higher than Resnet50.”

They did not experiment with the
effect of balancing the classes,

because the ISIC2020 dataset suffers
from the problem of imbalance

between the benign and malignant
classes. In addition, the proposed
model suffers from the problem

of overfitting.

(R. Zhang 2021)
[17]

Transfer learning on
EfficientNet-B6 Skin cancer ISIC2020 AUC-ROC score of 0.917.

The model suffers from an
overfitting problem, so the

technique of data augmentation
and adding dropout layers can be

used to solve this problem.

(Z. M. Arkah
2021) [18]

Transfer learning on (VGG,
GoogleNet, ResNet50) Skin cancer ISIC2020

“The ResNet 50 model had
accuracy, precision, recall, and F1

scores of 93.7%, 95.7%, 94.6%,
and 95.1%, respectively.”

The process of training from scratch
takes time and requires a very large
number of images, so the process of
fine-tuning the pre-trained models

for some of the last layers that
extract customized features may

lead to better results and less
training time.

(L. Alzubaidi et al.,
2021) [10]

Transfer learning on deep
convolutional neural network

(DCNN)
Skin cancer ISIC2020

The proposed model achieved an
F1 value of 89.09% when training
from scratch and 98.53% with the

proposed method

The process of training from scratch
performs better but takes a lot of
time to train and requires a lot of

images to train well.

(R. Kaur et al.,
2022) [19]

Transfer learning on deep
convolutional neural network

(DCNN)
Skin cancer

ISIC2020-
ISIC2016-
ISIC2017

“The proposed DCNN achieved
average ACC, PRE, and REC of
81.41%, 81.88%, and 81.30% on

ISIC 2016, of 88.23%, 78.55%, and
87.86% on ISIC 2017, and of

90.48%, 90.39%, and 90.42% on
ISIC 2020.”

“The designed DCNN model can be
further extended to multi-class
classification to predict other

different types of skin cancers.”

(S. H. Kassani et al.,
2019) [20] Transfer learning on Xception Breast cancer ICIAR 2018

Their proposed model using a
pre-trained Xception model

obtained 92.50% average
classification accuracy.

The accuracy measure alone is not
sufficient to evaluate the model, so
other measures such as precision,
recall, and F1 score can be used.

(T. Kausar et al.,
2019) [21] Transfer learning on vgg16 Breast cancer ICIAR 2018

They achieved an accuracy of
94.3% for the multi-class

classification.

The effect of dataset size with or
without data augmentation on

classification is not reported

(C. P. Nguyen et al.,
2019) [22]

CNN is taken from the design
principle of DenseNet Breast cancer ICIAR 2018 78% accuracy

Data augmentation techniques
using GAN to generate additional

datasets have not been considered.”

(L. Alzubaidi
et al., 2021) [10]

Transfer learning on deep
convolutional neural network

(DCNN)
Breast cancer ICIAR 2018 Achieved an accuracy value of

97.51%

In patch extraction, some cells are
split between adjacent patches, and

these cut cells cause incorrect
classifications in the detection

results. There is also no guarantee
that small patches will contain

enough information for the correct
class.
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L. Alzubaidi et al., 2021 [10], proposed a new model that combines recent advances,
trained it from scratch on large datasets of unlabeled medical images, and retrained the
model classifier on a small number of labeled images. They applied the model to the
ISIC2020 dataset, in addition to using data augmentation techniques, to increase the num-
ber of samples. They have experimentally demonstrated that the proposed method can
significantly improve the classification performance. The proposed model achieved an F1
score of 98.53% with the proposed method. The process of training from scratch performs
better, but it takes a lot of time to train, requires a lot of images to practice well, and you
may run into the problem of overfitting that often occurs when designing new models. R.
Kaur et al., 2022 [19], proposed a DCNN that is lightweight and less complex than other
recent approaches to classify melanomas with high efficiency. In their study, the model
was tested on various cancer samples from the International Skin Imaging Collaboration
data stores (ISIC 2016, ISIC2017, and ISIC 2020). The proposed DCNN achieved an average
accuracy of 81.41% on ISIC 2016, an 88.23% on ISIC 2017, and 90.48% on ISIC 2020. The
designed DCNN model can be further extended to multi-class classification to predict other
different types of skin cancers.

S. H. Kassani et al., 2019 [20], proposed a transfer-learning method on the Xception
model to classify the ‘hematoxylin’ and ‘Eosin’ (H&E) spots available for histological breast
cancer images in the ICIAR 2018 dataset. To improve performance, they used different stain
normalization methods (Reinhard and Macenko). Various data augmentation methods
were applied to increase the number of samples. Their proposed model had an average
accuracy of 92.50%. The accuracy measure alone is not sufficient to evaluate the model,
so other measures such as precision, recall, and F1 score can be used. T. Kausar et al.,
2019 [21], used the VGG16 model to extract features and classify the histological images
of breast cancer in the ICIAR2018 dataset. They have normalized H&E images by the
Macenko method, as well as by using various methods of data augmentation techniques.
Their model is based on images, as opposed to the models that based on patches, so
they extracted features from 2048 × 1536 full size images. After that, a SoftMax classifier
was trained on the extracted feature set. During their experiments, they achieved an
accuracy of 94.3% for multi-category classification. The effect of data set size with or
without data augmentation on classification has not been reported. C. P. Nguyen et al.,
2019 [22], solved the problem of the limited number of images in the ICIAR2018 target
dataset. To improve classification accuracy, they performed augmentation of the data in the
test phase. They obtained a result with 78% accuracy in predicting the test set from four
classes. Data augmentation techniques using GAN to generate additional datasets have not
been considered. L. Alzubaidi et al., 2021 [10], sliced all breast cancer histological images in
the ICIAR-2018 dataset into 12 non-overlapping patches of 512 × 512 pixels to increase the
number of images. Their method achieved an accuracy value of 97.51%. Despite the good
results, the process of slicing the image into patches can miss some important information
needed to correctly predict the category.

To avoid slicing the images into small patches that may lose some important informa-
tion to the histological images, data augmentation techniques have been applied only to
the entire image, to increase the number of samples and to extract sufficient patterns from
the image.

Based on previous studies, it has been noted that all traditional transfer learning
methods depend on pre-trained models on the ImageNet, which were used to extract
features from them and to take advantage of the knowledge gained from them to classify
the images of the new task, and this is not considered logical, because the ImageNet dataset
includes natural images, and not medical images, to extract important features that can be
used to support the task of classifying targeted medical images. Except for L. Alzubaidi
et al., 2021, they trained a model from scratch on unclassified medical images of the same
disease and applied transfer learning to classified images, but the training process from
scratch also requires the presence of many images in addition to it taking time to train
the model. To the best of our knowledge, this is the first work that aims to converge the
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domains between the source domain and the target domain by unfreezing the last layers
that specialize in extracting special features, training them on unclassified medical images
of the same disease, and training the classification layers on classified images of the target
task, as shown in Figure 2. This process does not require many images and it does not
require training the model from scratch. In addition, most of the previous studies were
suffering from the problem of overfitting, so dropout layers by 50% are added to reduce
this problem, in addition to using data augmentation techniques to increase the number
of samples.
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This study aims to converge the domain between the source domain and the target
domain by taking advantage of the presence of large quantities of unclassified images of
the same type of disease of the target task, and by proposing a novel methodology for
transfer learning by fine-tuning the last layers on a large number of unclassified images of
the same disease, and on a small number of classified images for the target task, in addition
to solving the problem of unbalanced classes. Below is a summary of the most important
contributions of this study:

1. Four novel models were designed based on pre-trained models (Vgg16, Xception,
ResNet50, and MobileNetV2), and new layers were added to improve the prediction
and classification process, as well as to solve the problem of overfitting.

2. Proposing a novel approach to transfer learning called DTL to solve the issue of the
inefficiency of classified medical images, and the convergence of the field between
the source domain and the target domain, by fine-tuning the last layers of the models
on unclassified medical images of the same disease and then conducting the transfer
learning again on a few classified images, which reduces the need for a large number
of classified images. In addition to addressing the problem of the field convergence,
because the features extracted from ImageNet are different from the features extracted
from the target images.

3. Using a new method for pre-processing classified breast cancer images, by inserting
the entire image into the model, without cropping the images into small patches
(patch-wise), in order to preserve important patterns that may be lost while cropping
the image into small patches.

4. Various data augmentation techniques to overcome the problem of unbalanced data
and to increase the number of samples is applied.

5. To demonstrate that transfer learning from the same domain of the target dataset can
significantly improve performance.

6. To validate the validity of the proposed models, they were tested on different medical
imaging applications (skin cancer images and breast cancer images) as an example for
the purpose of generalization.
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The rest of the paper is organized as follows: Section 2 explains the materials and meth-
ods. Section 3 reports the results and discussions. Lastly, Section 4 concludes the paper.

2. Materials and Methods

The transfer learning approach is one of the most important approaches to solving
the problem of the lack of training data. However, there are still some limitations because
the features gained from pre-trained models are considered generic and not close to the
target task. Therefore, the last layers of the models are unfreezing to fine-tune the models
on unlabeled images (to extract relevant features closest to the target task) and on labeled
images for a few parts of the last layers. Moreover, modifying the fully connected layers
increases the efficiency of the model’s performance, in addition to applying the data
augmentation process for the purpose of balancing the images between the classes and
increasing the number of samples for the purpose of training. This section presents all the
steps and procedures, as shown in Figure 3, to achieve the proposed approach.
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2.1. Data Collection

Several publicly available datasets for both diseases, skin cancer and breast cancer, are
collected in the form of two sets: source dataset and target dataset. All the used datasets
are described below.

• Source dataset

Source dataset includes unlabeled images; this set represents the source domain.
For skin cancer, the first dataset is ISIC2019 that contains 33,569 images of dermoscopy
images [23] with different image sizes: 1024 × 1024, 1024 × 680, 1024 × 681, 1024 × 682,
1024 × 674, 1024 × 764, 1024 × 768, 600 × 450, and 919 × 802, in jpg format. The second
dataset is ISIC2020, which consists of 33,126 samples of dermatoscopy gathered from over
2000 patients [23], with large image sizes of 6000 × 4000, 4288 × 2848, and 3264 × 2448, in
addition to different image sizes of 1920 × 1080 and 640 × 480, in jpg format. The third
dataset is Derm7pt [24] Seven-Point Checklist Dermatology source dataset, abbreviated as
derm7pt. This dataset contains about 2000 dermatoscopy images, with an image size of
768 × 512 in jpg format. The fourth dataset is PH2 [25], which consists of 200 dermoscopic
images of melanocytic lesions. The dermoscopic images were obtained at the Dermatology
Service of Hospital Pedro Hispano (Matosinhos, Portugal), under the same conditions,
through the Tuebinger Mole Analyzer system using a magnification of 20×. They are
8-bit RGB color images with a resolution of 768 × 560 pixels in the file format BMP. The
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fifth dataset is PAD-UFES-20 [26], which contains 2298 samples. This dataset includes
different resolutions, sizes, and lighting conditions. All images are available in PNG file
format. The sixth dataset is MED-NODE [27], which contains 170 dermoscopic images
from the digital image archive of the Department of Dermatology of the University Medical
Center Groningen. This dataset includes different image sizes of 2000 × 1402, 2000 × 1583,
2000 × 907, 1199 × 907, 1200 × 1360, 841 × 759, and 781 × 704, in jpg file format. To
become the total images in source dataset is 71,300 unlabeled images for skin cancer.

For breast cancer, the first dataset is BreakHis [28], which contains 7909 images of
breast cancer collected from 82 patients and magnified 40×, 100×, 200×, and 400×. All
images are available with the size of 700 × 460 pixels and file format PNG. The second
dataset is IDC [29]; this dataset includes histopathology micrographs from 922 images
relating to 124 patients with IDC. This dataset includes different image sizes of 4032 × 3024,
2100 × 1574, and 1276 × 956, in jpg file format. The third dataset is SPIE-AAPM-NCI
BreastPathQ [30]. This consists of 3698 image patches selected from whole slide images
acquired from 64 patients from Sunnybrook Health Sciences Centre, with funding from the
Canadian Cancer Society, and was made available for the BreastPathQ challenge sponsored
by the SPIE, NCI/NIH, AAPM, and the Sunnybrook Research Institute. These image
patches were a size of 512 × 512, which was then saved as uncompressed TIF image files.
The fourth dataset is BreCaHAD [31]. This dataset contains 162 images of breast cancer
histopathology images that each measure 1360 × 1024 pixels, and all images are available
in TIF file format. The total images in source dataset is 12,691 unlabeled images for breast
cancer images. For fine-tuning the model on the source dataset, each dataset is taken as a
class within the source dataset and with the same name as the original dataset, because the
purpose here is to train the model on images from the domain and not for classification.

• Target dataset

The target dataset includes labeled images; this set represents the target domain. For
skin cancer, target dataset contains the SIIM-ISIC2020 [23] dataset that is classified into two
classes: benign, which contains 32,542 images, and malignant, which contains 584 images
(See Figure 4). For breast cancer, the target dataset contains ICIAR 2018 [32], which is
composed of microscopy images of breast cancer annotated image-wise by two expert
pathologists from the Institute of Molecular Pathology and Immunology of the University
of Porto (IPATIMUP) and from the Institute for Research and Innovation in Health (i3S).
This dataset includes 400 images with the size of 2048 × 1536 pixels. All images are
available in TIF file format (See Figure 5).
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image size, which may cause image distortion when resized to a smaller size. Partitioning 
was performed only for the unclassified images because the purpose of the unclassified 
images is to extract features relevant to the target disease. All datasets, from the first to 
fourth dataset, are resized to 299 × 299 to match with input size for all models, and all data 
format is changed to jpg. 

In addition, some modifications are applied to the target dataset for skin cancer. The 
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Figure 5. Examples of H&E stained images from the ICIAR2018: (A) normal tissue; (B) benign lesion;
(C) in situ carcinoma; (D) invasive carcinoma. Hematoxylin stains the nuclei purple while eosin
stains the stroma pink [34].

2.2. Pre-Processing

This section explains the operations that are performed on the datasets that are used
in the proposed work, such as data preparation, data augmentation, and data splitting, for
the purpose of initializing them before passing them to the model for the purpose of the
training process. The pre-processing steps are described in Figure 6.
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2.2.1. Data Preparation

For skin cancer, all images of ISIC2020 in the source dataset are resized to 500 × 375 to
reduce image size and facilitate training. For breast cancer, some modifications are made to
the source dataset. The first dataset, BreakHis, contains 7909 images, and each image is
partitioned into two patches of the size of 350 × 460 (see Figure 7), so that the total number
is 15818 images. The second dataset, IDC, contains 922 images; one image is cropped and
partitioned into nine patches to become 8262 images after removing the images that contain
a black background only (see Figure 8). The third dataset, SPIE-AAPM-NCI-BreastPathQ,
contains 3698 images, while the fourth dataset, BreCaHAD, contains 162 images; each
image is partitioned into six patches to become 972 images (see Figure 9). The process of
partitioning the images into patches was performed due to the large image size, which may
cause image distortion when resized to a smaller size. Partitioning was performed only for
the unclassified images because the purpose of the unclassified images is to extract features
relevant to the target disease. All datasets, from the first to fourth dataset, are resized to
299 × 299 to match with input size for all models, and all data format is changed to jpg.
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In addition, some modifications are applied to the target dataset for skin cancer. The
ISIC2020 dataset contains 32,542 images of the benign class and 584 Image of the malignant
class; 9000 images of the benign class are taken for training for the purpose of checking
how the model performs with a limited dataset. As for breast cancer, the target dataset
contains the ICIAR 2018 (BACH) dataset, which contains 400 images, 100 images for each
class; the images are resized to 299 × 299.

2.2.2. Data Augmentation

The proposed system employed several data augmentation techniques, such as rota-
tion, shifting, brightness, shearing, zooming, and flipping, as shown below, to overcome
the problem of unbalanced data and to increase the number of samples in the dataset. Data
augmentation includes a set of techniques that improve the attributes and size of datasets
(see Figure 10). Thus, DL models can perform better when using these technologies. Table 2
shows some of the data augmentation parameters that are used in the proposed work.
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Table 2. Data augmentation parameters.

Augmentation Parameter Value Description

Rotation range 10 Random rotation between 0 and 10.
Width shift range 0.2 Randomly shifts images in the horizontal direction by 0.2
Height shift range 0.2 Randomly shifts images in vertical direction by 0.2
Brightness range [0.1, 1.5] Randomly changes the brightness of the image.
Shear range 0.2 Shear the image by 20%.
Zoom range 1.2 Zoom in 20% from the center.
Vertical flip True Randomly flip the image in vertical direction.
Horizontal flip True Randomly flip the image in horizontal direction.
Fill mode nearest Fills the empty values by the closest pixel value.

For skin cancer, the data augmentation techniques are applied to the target dataset,
and to the malignant class, only to increase the number of samples from 584 to 8988 for
the purpose of balancing the source datasets. As for breast cancer, the technique of data
augmentation is applied to datasets A and B to increase the number of samples in the
dataset. Table 3 shows the application of the data augmentation technique to datasets.

Table 3. Data augmentation to increase the samples of the datasets after the data preparation step.

Dataset Class Before Data Augmentation After Data Augmentation

ISIC2020/target dataset Benign 9000 Not applied
Malignant 584 8988

ISIC2019/source dataset Unlabeled 33569 Not applied

ISIC2020/source dataset Unlabeled 33126 Not applied

Derm7pt/source dataset Unlabeled 1937 Not applied

PH2/source dataset Unlabeled 200 Not applied

PAD-UFES-20/source dataset Unlabeled 2298 Not applied

MED-NODE/source dataset Unlabeled 170 Not applied

BreakHis/source dataset Unlabeled 15818 31635

IDC/source dataset Unlabeled 8262 30581

SPIE-AAPM-NCI BreastPathQ/source dataset Unlabeled 3698 22187

BreCaHAD/source dataset Unlabeled 972 8607

ICIAR 2018/target dataset

Invasive
carcinoma 100 5093

In situ carcinoma 100 5098
Benign 100 5085
Normal 100 5089

2.2.3. Data Splitting

After performing the process of preparing the data and the data augmentation tech-
nique, the datasets are separated into two sets: the training set for the purpose of training
the model, and the test set for the purpose of testing the efficiency of the model’s perfor-
mance on the classification, as shown in Table 4. Regarding skin cancer datasets, the source
dataset (with 71,300 images) is split into 70% (56,594) images for the training set and 30%
(14,706 images) for the testing set. The target dataset, which has 17,988 images, is divided
using the same ratio that is used for splitting the source dataset, so the training set and the
testing set will have 12,591 images and 5397 images, respectively.
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Table 4. Splitting the datasets.

Datasets Dataset Type Total Samples 100% Training Set 70% Testing Set 30%

Source dataset Skin cancer 71,300 56,594 14,706
Target dataset Skin cancer 17,988 12,591 5397
Source dataset Breast cancer 93,010 65,104 27,906
Target dataset Breast cancer 20,365 14,254 6111

The same splitting procedure that it is applied to split skin cancer datasets is followed
for splitting breast cancer datasets; the source dataset, containing 93,010 images, is divided
into 65,104 images for the training set and 27,906 for the testing set. As for the target dataset,
which contains 20,365 images, it is divided into 14,254 images for the training set and
6111 images for testing set.

2.3. Select CNN Models Trained on ImageNet

In this proposed work, different models in terms of complexity and number of layers
are tried, such as VGG 16, Xception, ResNet50, and MobileNetV2. Furthermore, the
ImageNet dataset on which these models are trained contains natural, non-medical images,
and since the early layers learn generic features such as edges and shapes, and the last
layers learn specific features to the target task, so freezing the early layers and unfreezing
the last layers, as shown in the following sub-sections, is done for the purpose of fine-
tuning the models on unlabeled medical images from the same target domain, and for
fine-tuning part of the last layers on labeled images of the target dataset. This method
differs from the traditional transfer learning methods in that the pre-trained models are
trained on natural images (ImageNet) and not medical images. Therefore, part of the last
layers trained on these images are unfrozen to retrain them on medical images of the same
type of disease. Moreover, this method does not require training the layers of the unfrozen
models on classified images, but rather on unclassified images of the same disease to
extract relevant features from the disaggregated dataset, thus greatly reducing the need for
classified images. In addition, the proposed method does not require training the models
on unclassified images from scratch (as L. Al-Zubaidi et al. performed). Only the last layers,
specialized in extracting the features assigned to the target task, are trained, which reduces
the need for many images and speeds up the process of training models. These models
will be applied for the purpose of classifying skin cancer images, identifying the model
that performs best for the purpose of classifying breast cancer images, and demonstrating
that the proposed approach can be applied to any medical image task for which there are
insufficient labeled images and largely unlabeled images available.

Modification of the Models for Classification Tasks

All models (Vgg16, Xception, ResNet50, MobileNetV2) were modified as shown in
Figure 11.

In Phase#1: the model’s classifier for all models was replaced with a new one that
fits the new task, and the early layers were frozen to save the weights; the first 11, 115,
165, and 143 layers were frozen for Vgg16, Xception, ResNet50, and MobileNetV2 models,
respectively, the rest of the layers were unfrozen to train them on the source dataset.

In Phase#2: two layers were added to the classifier of each model, which is a dense
layer with 256 nodes to increase classification efficiency, and a dropout layer by 50%, to
reduce overfitting. After that, the first 15, 126, 171, and 149 layers of Vgg16, Xception,
ResNet50, and MobileNetV2 models were frozen, respectively, and the rest of the layers
were unfrozen to be trained on the target dataset.
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2.4. Transfer Learning Process

The transfer learning process of the proposed models for the classification of skin
cancer images is carried out in two scenarios, and the same two scenarios are repeated for
the classification of breast cancer images, except replacing the sigmoid activation function
in the last layer with SoftMax for multiclass classification.

Scenario1: Transfer learning is performed to train the classifier of the models on target
dataset without fine-tuning the models on source dataset and target dataset.

Scenario2: In this scenario the training process for the proposed approach to DTL is
conducted in two phases:

Phase#1: At this phase, the transfer learning process of the four models is performed on
unclassified images of the same disease that were collected in the source dataset,
as shown in Figure 12. This step is important for the convergence of the domain
between the source domain and the target domain, and to reduce the effect of
ImageNet. This step is important for extracting features that are close to the target
task.

Phase#2: After conducting the transfer learning process in Phase#1, the transfer learning
process is performed in this phase on classified images of the target task that
were collected in the target dataset, as shown in Figure 13, for the purpose of
classifying skin cancer images into two classes: benign and malignant.
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3. Results and Discussions

After performing the training of the proposed models, the testing process is performed
to test the ability of these models to correctly classify the disease by testing them on the
testing set within target dataset. The most common metrics were used for such cases,
such as accuracy, precision, recall (sensitivity),specificity, and F1-score, to measure the
performance of the models [35].

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

Specificity =
TN

TN + FP
(4)

F1-score = 2 × (Precision × Recall)
(Precision + Recall)

(5)

This section is divided as follows: Section 3.1 presents the experimental results of
Breast Cancer Image Classification task. In Section 3.2, the experimental results of the
Breast Cancer Image Classification task are presented. Finally, in Section 3.3, the obtained
results are compared with other related work.

3.1. The Experimental Results for the Classification of Skin Cancer Images in the ISIC2020 Dataset

In this section, the transfer learning performance of the four models (VGG16, Xception,
ResNet50, and MobileNetV2) using Scenario1 and Scenario2 on the testing set of the target
dataset for the skin cancer classification task will be demonstrated. Moreover, performance
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will be compared with three different sampling cases: Firstly, performance without aug-
mentation techniques and without balancing classes; secondly, performance without data
augmentation and with balancing classes; and thirdly, performance comparison with data
augmentation techniques.

Hyperparameters, shown in Table 5, are selected to train the models for both scenar-
ios. Two layers are added to all the model’s classifier, which is a dense layer containing
256 nodes to better improve the performance of the classifier. This number of nodes is
selected according to the experiments that are applied to a different number of nodes
(2048, 1024, 512, 256 and 128), and the models’ performance was better with 256 nodes.
In addition, a 50% dropout layer has been added to reduce overfitting, as it is found to
be the best one after experimenting with the two most used ratios in the literatures (20%
and 50%) in a dropout layer. The number of trainable layers and the number of frozen
layers is selected according to experiments, and the values are fixed accordingly. The batch
size of 64 is chosen to pass 64 images for each iteration during the training process, after
trying different batch sizes (32, 64 and 128). Experiments proved that the batch size of 64
is the best one, because the batch size of 32 increases the number of iterations for each
epoch, which slows down the training process, while a batch size of 128 requires more
memory. The number of epochs was 30 after conducting several experiments on several
different epochs. During the experiments, the selected number of epochs is proven to
be good to produce good results and prevent overfitting. A learning rate of 0.0001 for
Scenario1 and 0.000001 for Scenario2 are chosen because of the unfreezing of the last layers
in Scenario2 for the purpose of training, which requires a lower learning rate for fine-tuning.
These values are chosen based on experiments. To prevent overfitting, early stopping with
patience 8 is added after trying different values (4, 5, and 8). Experiments have shown
that early stopping with patience of 8 is good for preventing the occurrence of overfitting
and giving an opportunity for the model to improve. The following subsections describe
experimental results.

The results in Figures 14 and 15 show the improvement of all the proposed models,
which proves that the use of the proposed DTL has significantly improved the performance
of the four models for classifying skin cancer images. The fine-tuning of the last layers of
the model on a large number of unclassified images of the same disease, and the transfer
learning procedure in the second stage on a small number of classified images as a result
of the domain convergence, reduced the effect of ImageNet features. In addition, the
design of the new models helped improve the performance of classifiers and provided
better prediction by adding a hidden layer with 256 nodes, while solving the problem of
overfitting using dropout layers by 50%, and as shown in Figure 16. Scenario2 improved the
performance of the VGG16 model by 0.28%, the Xception model by 10.96%, the ResNet50
model by 15.73%, and the MobileNetV2 model by 10.4% without data augmentation. It
improved the VCG16 model by 19.66%, the Xception model by 34.76%, the ResNet50 model
by 31.76%, and the MobileNetV2 model by 33.03% with data augmentation.

The slight improvement in the VGG16 model is attributed to the high number of
parameters of the model, which require a large number of images to perform better.

The obtained results show that the Xception model performed the best compared to
the remaining models when classifying skin cancer images in the ISIC2020 dataset, as it
obtained an accuracy of 96.83%, a precision of 96.919%, a recall of 96.826%, an F1-score of
96.825%, a sensitivity of 99.07%, and a specificity of 94.58%. To prove that the results of this
model did not come from the effect of random weights, the process of implementing the test
was repeated for five times, as shown in Table 6, which shows the convergence of the results,
which indicates the stability of the model in the prediction process. Figure 17 shows benign
and malignant images correctly predicted by the classifier of the proposed approach.
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Table 5. Hyperparameters selection for Scenario1 and Scenario2.

Models Parameters Scenario1
Scenario2

Phase#1 Phase#2

VGG16

Total layers 21 21 23
Trainable layers 4 10 6
Batch Size 64 64 64
Epochs 30 40 30
Learning Rate 0.0001 0.000001 0.000001
Early Stopping 8 patience 8 patience 8 patience
Optimizer Adam Adam Adam

Xception

Total layers 134 134 136
Trainable layers 2 19 10
Batch Size 64 64 64
Epochs 30 40 30
Learning Rate 0.0001 0.000001 0.000001
Early Stopping 8 patience 8 patience 8 patience
Optimizer Adam Adam Adam

ResNet50

Total layers 177 177 179
Trainable layers 2 12 8
Batch Size 64 64 64
Epochs 30 40 30
Learning Rate 0.0001 0.000001 0.000001
Early Stopping 8 patience 8 patience 8 patience
Optimizer Adam Adam Adam

MobileNetV2

Total layers 156 156 158
Trainable layers 2 13 9
Batch Size 64 64 64
Epochs 30 40 30
Learning Rate 0.0001 0.000001 0.000001
Early Stopping 8 patience 8 patience 8 patience
Optimizer Adam Adam Adam
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Table 6. Repeated tests to measure the performance of the Xception model for classification of skin
cancer images.

Execution
No.

Precision
(%) Recall (%) F1-score

(%)
Accuracy

(%)
Sensitivity

(%)
Specificity

(%)

Execution1 96.759 96.676 96.680 96.68 98.77 94.58
Execution2 96.709 96.621 96.625 96.62 98.77 94.47
Execution3 96.759 96.676 96.680 96.68 98.77 94.58
Execution4 96.784 96.696 96.695 96.7 98.88 94.51
Execution5 96.919 96.826 96.825 96.83 99.07 94.58
min_scale 96.709 96.621 96.625 96.62 98.77 94.47
max_scale 96.919 96.826 96.825 96.83 99.07 94.58
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3.2. The Experimental Results for the Classification of Breast Cancer Images in the ICIAR2018
Dataset

After training the model as shown in Figure 18 on the training set that contains
14,254 images (70% of 20,365 images) within the ICIAR2018 source dataset after data
augmentation, the obtained results are: Accuracy of 82.48%, precision of 82.798%, recall
of 82.840%, F1-score of 82.764%, sensitivity of 74.04%, and specificity of 85.77% using
scenario1, and accuracy of 99%, precision of 99.003%, recall of 98.995%, F1-score of 99%,
sensitivity of 98.55%, and specificity of 99.14% using Scenario2 when tested on 6111 images
(30% of 20,365 images) within the testing set as shown in Table 7.

These results demonstrate the success of the proposed approach to transfer learning,
with regard to model fine-tuning on unclassified images of the same disease, with the fine-
tuning of a number of final layers on classified images within the target dataset, which helps
with the convergence of the features of the source domain with the target domain compared
to the features extracted from ImageNet, as shown in Figure 19. In addition, the entire
process of preserving the image without partitioning it into patches helped in saving some
important information that may be lost when partitioning the images into small patches,
by working to increase the images only by using data augmentation techniques that have
proven their efficiency to solve the problem of lack of images and avoid overfitting.
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Table 7. Results of Scenario1 and Scenario2 for the breast cancer classification task on dataset
ICIAR2018.

Method Class Precision
(%) Recall (%) F1-Score (%) Support Accuracy

(%)
Sensitivity

(%)
Specificity

(%)

Scenario1 with
Xception

invasive 79.4 74.04 76.63 5093

82.48 74.04 85.77

in situ 84.67 82.35 83.49 5098
benign 82.12 88.08 85 5085
normal 85 86.9 85.94 5089

macro-avg 82.7975 82.8425 82.765 20365
weighted-avg 82.798 82.840 82.764 20365

Scenario2 with
Xception

invasive 98.88 98.55 98.72 5093

99 98.55 99.14

in situ 99.6 98.56 99.08 5098
benign 98.06 99.6 98.83 5085
normal 99.47 99.27 99.37 5089

macro-avg 99.003 98.995 99 20365
weighted-avg 99.003 98.995 99.000 20365
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3.3. Compare Our Results with Other Related Work

This section compares and discusses the results obtained using the proposed approach
with the most recent related work.

3.3.1. Comparison of Skin Cancer Image Classification Results with Other Works

The comparison and discussion the of results of the proposed approach with the
related works to classify skin cancer images on the ISIC2020 dataset has been presented.
Table 8 shows that the proposed approach ranked second after L. Alzubaidi et al. (2021) [10],
where they obtained an accuracy of 98.57%, a precision of 99.18%, a recall of 97.90%, and
an F1 score of 98.53%. Z. M. Arkah (2021) [18] ranked third with an accuracy of 93.7%, a
precision of 95.7%, a recall of 94.6%, and an F1-score of 95.1%. V. Shah et al. (2020) [15] came
in fourth, with an accuracy of 93.96%, a precision of 94.11%, a recall of 93.96%, an F1-score
of 93.24%, a sensitivity of 99.7%, and a specificity of 55.67%. R. Kaur et al. (2022) [19]
came in fifth place, with an accuracy of 90.42%, a precision of 90.48%, a recall of 90.39%,
an F1-score of 90.41%, and a specificity of 90.39%. R. Zhang (2021) [17] and C. Li et al.
(2021) [16] ranked sixth and seventh, with AUC-ROC 0.917 and 0.909, respectively.

Table 8. Comparison of the results of the proposed approach with related works for the classification
of skin cancer images in the ISIC2020 dataset.

Author Method Precision
(%)

Recall
(%)

F1-Score
(%)

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

AUC-
ROC

V. Shah et al.
(2020) [15]

Transfer learning on
ResNet50 using fine-tuning 94.11 93.96 93.24 93.96 99.7 55.67 N/V

C. Li et al.
(2021) [16]

Transfer learning on
EfficientNet-B4 N/V N/V N/V N/V N/V N/V 0.909

R. Zhang (2021)
[17]

Transfer learning on
EfficientNet-B6 N/V N/V N/V N/V N/V N/V 0.917

Z. M. Arkah
(2021) [18]

Transfer learning on
ResNet50 (Training the
model from scratch on

unclassified images then
performing transfer learning

on classified images)

95.7 94.6 95.1 93.7 N/V N/V N/V

L. Alzubaidi
et al. (2021)

[10]

Transfer learning on DCNN
(Training the model from

scratch on unclassified
images then performing

transfer learning on
classified images)

99.18 97.90 98.53 98.57 N/V N/V N/V

R. Kaur et al.
(2022) [19] Transfer learning on DCNN 90.48 90.39 90.41 90.42 N/V 90.39 N/V

Proposed
approach with

Xception

Transfer learning on
Xception (Training the last

layers on unclassified
images then training the

classifier on
classified images)

96.919 96.826 96.825 96.83 99.07 94.58 0.9896

According to V. Shah et al. (2020), C. Li et al. (2021) and R. Zhang (2021) used
traditional transfer learning methods based on the use of pre-trained models on ImageNet
as feature extractors. These old methods suffer from field mismatch between the target field
images and features extracted from ImageNet images, and in addition to that, their models
suffer from an overfitting problem. Thus, Z. M. Arkah (2021) and L. Alzubaidi et al. (2021)
conducted a different study to solve the domain mismatch problem, whereas M. Arkah
(2021) used the ResNet50 model and trained it from scratch on unclassified images and then
carried out transfer learning on classified images of the target task to get rid of the effect of
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the features extracted from the ImageNet and to take advantage of the extracted features
of unclassified images of the same disease. L. Alzubaidi et al. (2021) performed the same
method used by M.Arkah, but by building a deep convolutional neural network inspired
by different models. It is expected that these methods will lead to higher performance due
to the large convergence of the field between the source field and the target field, but it
needs a huge amount of unclassified images to train the models from scratch; they trained
the model on (200,000 unclassified images). In addition to that, it takes a long training
time and requires high computational power to train the models. Therefore, the proposed
method for transfer learning based on a DTL procedure for the modified models is an
excellent solution that does not require such a huge amount of unclassified images. In
addition, it does not require a long training time, by performing fine-tuning of the models
on unclassified images (71,294 images) for the last layers only after unfreezing them, instead
of training from scratch, taking advantage of the features extracted from the early layers
trained on ImageNet as generic feature extractors, and thus we have achieved excellent
results with the least number of unclassified images. In addition, modifying the models
with the new design significantly improved the performance of classifiers predictors and
solved the problem of overfitting. Moreover, previous studies were not comprehensive of
all performance measures, as our work is comprehensive of all important measures used to
measure the performance of models. It is worth mentioning that all the comparisons are
conducted using the same preprocessing method with different transfer learning methods.

3.3.2. Comparison of Breast Cancer Image Classification Results with Other Works

The results in Table 9 demonstrate the superiority of the proposed approach to classify
breast cancer images for the ICIAR2018 dataset, as our proposal ranked first with an
accuracy of 99%. L. Alzubaidi et al. (2021) [10] came second with an accuracy of 97.51%.
T. Kausar et al. (2019) [21] ranked third with an accuracy of 94.3%. S. H. Kassani et al.
(2019) [20] ranked fourth with an accuracy of 92.5%. C. P. Nguyen et al. (2019) [22]
ranked fifth with an accuracy of 78%. All the comparisons are conducted using the same
preprocessing method with different transfer learning methods.

The results show the strong performance of the proposed approach at all metrics,
compared to all of the researchers who relied on the accuracy metric only in evaluating
their models; this does not give a comprehensive insight of the nature of the predictors of
the classifier between the classes. The obtained results indicate the success of the proposed
work in preserving the whole image without partitioning it into small patches, in order to
preserve the important information that could be lost when partitioning it into patches. In
addition, to solve the problem of the small number of images, we used data augmentation
techniques, which generate new images with different angles of rotation, flipping, and
zooming from the original images, which can occur from tissue imaging by specialists.

In most studies, there are some limitations that can be solved in future research. This
research includes some limitations because of the scope of the study. The limitations of this
research are:

1- The proposed models for classifying skin cancer images still incorrectly predicted
some images; this is because some skin cancer images contain thick hair covering
the affected area, in addition to the presence of some color labels next to the affected
area and the presence of some light reflections on the surface of the skin, as shown in
Figure 20, which hinders the process of interpretation image.

2- Even when using the proposed approach, there is still a problem of biasing classifiers
to the category with the largest number of samples when using an unbalanced dataset.
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Table 9. Comparison of the results of the proposed approach with related works for the classification
of breast cancer images in the ICIAR-2018 dataset.

Author Method Precision
(%)

Recall
(%)

F1-Score
(%)

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

S. H. Kassani et al.
(2019) [20]

Transfer learning on Xception
(They combined the features from

the layers (26, 36 and 126) and
then applied a GAP to the

extracted features, and then
combined them together to

produce the final feature vector)

N/V N/V N/V 92.5 N/V N/V

T. Kausar et al.
(2019) [21]

Transfer learning on vgg16 (The
FC layers are removed in the

original model so that this model
can accept images of random size
They applied process (GAP) over
the output features of convolution

layers C3_3, C4_3, and C5_3.)

N/V N/V N/V 94.3 N/V N/V

C. P. Nguyen et al.
(2019) [22]

CNN is taken from the design
principle of DenseNet N/V N/V N/V 78 N/V N/V

L. Alzubaidi et al.
(2021) [10]

Transfer learning on DCNN
(Training the model from scratch

on unclassified images then
performing transfer learning on

classified images)

N/V N/V N/V 97.51 N/V N/V

Proposed
approach with

Xception

Transfer learning on Xception
(Training the last layers on

unclassified images then training
the classifier on classified images)

99.003 98.995 99 99 98.55 99.14
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Figure 20. Misclassified images by the classifier of the proposed approach.

4. Conclusions and Future Work

This study presented a proposed approach to solve the problem of the lack of labeled
medical images by including transfer learning methods on pre-trained models on ImageNet
(VGG16, Xception, ResNet50, MobileNetV2). To obtain the extracted features that are closer
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to the target task, the last layers of the models are unfrozen and trained on a set of unlabeled
images for the same type of disease, and part of the last layers on labeled images, to better
improve performance, in addition to the use of data augmentation techniques to increase
the number of images and for balancing the classes of the dataset. The proposed approach
is applied to classify the images of the ISIC2020 skin cancer dataset into two classes, benign
and malignant, and to classify the images of the ICIAR 2018 breast cancer dataset into four
classes: invasive carcinoma, in situ carcinoma, benign tumor, and normal tissue.

The obtained results showed an improvement in the performance of the models after
fine-tuning them on a large set of unlabeled images and on a small set of labeled images
for skin cancer image classification tasks, where the performance of the VGG16 model
improved by 0.28%, the Xception model by 10.96%, the ResNet50 model by 15.73%, and
the MobileNetV2 model by 10.4% without data augmentation, while improving the VCG16
model by 19.66%, the Xception model by 34.76%, the ResNet50 model by 31.76%, and the
MobileNetV2 model by 33.03% with data augmentation. The Xception model obtained
the highest performance compared to the rest of the models when classifying skin cancer
images in the ISIC2020 dataset, as it obtained accuracy of 96.83%, precision of 96.919%,
recall of 96.826%, F1-score of 96.825%, sensitivity of 99.07%, and specificity of 94.58%. To
prove that the proposed approach is applicable to more than one type of medical image, the
approach is applied to classify the images of the ICIAR 2018 dataset for breast cancer. The
Xception model obtained accuracy of 99%, precision of 99.003%, recall of 98.995%, F1-score
of 99%, sensitivity of 98.55%, and specificity of 99.14%. We compared this with the use of
traditional transfer learning methods with data augmentation technology, which obtained
accuracy of 82.48%, precision of 82.798%, recall of 82.840%, F1-score of 82.764%, sensitivity
of 74.04%, and specificity of 85.77%, which proves the success of the proposed approach in
all our experiments.

The suggestions for future work: For better performance, a larger number of the last
layers can be unfrozen and trained on a larger number of unlabeled images. Executing
fine-tuning on the models by training the last layers on images like the target images,
for example, microscopic images of colon and bone cancer, can be used to improve the
performance of the tasks of classifying breast cancer images due to the similarity of the
images in the histological structure, which can be used to extract features that are like the
features of breast cancer. Some improvements could be made to skin cancer images, such as
removing hair from the image, cropping the background, and keeping the area of interest.
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