Skip to main content
. 2023 Jan 12;23(2):890. doi: 10.3390/s23020890
Algorithm 1. Proposed Model
Feature Optimization and CNN–GRU
Input:
      Data instances
Output:
      Confusion Matrix
      (Accuracy, precision, recall, FPR, TPR)
Dataset Optimization
      Remove the redundant instances
  Feature Selection
Using Pearson’s Correlation equation, compute the correlation of the attribute set Set Cf.
          if corr_value > 0.8
                add attribute to Cf
else
                increment in an attribute set C
return Cf
Classification
      Create training and testing sets from the dataset.
      Training set: 67%
      Testing set: 33%
      add model
            three Convolution layers (activation = ‘relu’)
            two GRU layers (activation = ‘relu’)
      model compilation
            loss function: ‘categorical_crossentropy’
            optimizer=‘adagrad’
      training CNN–GRU technique with training instances
      employing techniques to test instances
return Confusion Matrix Cmm