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Abstract: The partition coefficients of drug and drug-like molecules between an aqueous and organic
phase are an important property for developing new therapeutics. The predictive power of computa-
tional methods is used extensively to predict partition coefficients of molecules. The application of
quantum chemical calculations is used to develop methods to develop structure–activity relationship
models for such prediction, either based on molecular fragment methods, or via direct calculation
of solvation free energy in solvent continuum. The applicability, merits, and shortcomings of these
developments are revisited here.
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1. Introduction

The importance of the accurate prediction of physicochemical properties is quintessen-
tial, not only in drug development efforts but also toward applications in material science
for molecules with desirable properties. The importance of quantitative structure ac-
tivity/property relationships (QSAR/QSPR) is undoubtedly essential in chemistry and
biology [1–4]. The linear free energy relationship (LFER) approach often provides a model
system based on molecular topologies to relate with biological properties. It is, however,
difficult to have a correct QSAR/QSPR for almost all of the cases, although a working
relationship is of great demand in the pharmaceutical industry [5,6]. The essential com-
ponents of such relationships depend on correct knowledge of solvation properties of a
target molecule in multiple solvents of interest, with solvent polarities spreading across a
broad scale. This is important for determining whether target molecules are adequate to get
absorbed in an organ of interest. The important biophysical properties that help a drug to
enter the body and distribute across various biological barriers consist of solubility, stability,
and permeability [7,8]. The property of interest, lipophilicity, is the ability of a drug or
drug-like molecule to dissolve in fat-like substances such as oils or non-polar solvents
(toluene, cyclohexane, chloroform etc.). It is well recognized for the successful development
of drug candidates, since the introduction by Hansch and Fujita’s method to correlate
biological activity with chemical structures [9]. Hydrophobic (water-fearing) drugs prefer
to be in the hydrophobic organelles/compartments, such as the lipid bilayers of a cell, while
the hydrophilic (water-loving) drugs will prefer to be dissolved in the blood serum (see
Figure 1). In general, logP ≤ 0 means high hydrophilicity, and logP > 0 means increased
lipophilicity [10]. As per the well-known Lipinski’s “rule of five” for drug-likeness, an
orally active molecule has no more than one violation of the following criteria: (i) not more
than five hydrogen bond donors (N/O atoms) with one or more hydrogen atoms, (ii) not
more than ten hydrogen bond acceptors (N/O atoms), (iii) molecular weight under 500
Daltons, and (iv) logP coefficient of less than five [11]. The final criterion is based on the par-
titioning of molecules between organic and aqueous phase as in n-octanol/water mixture,
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traditionally expressed as the negative logarithm of partition coefficient (logPOrganic-Water
or simply logP) [12]. A study using Caco-2 cell monolayers has shown that the optimal
permeability of drugs occurs at ClogP values between 4 and 5, while an increase in ClogP
value from this range decreases the permeability of drugs [13].

From a physical chemistry perspective, for non-ionic and neutral forms of compounds,
logP is expressed as in Equation (1), where R is the molar gas constant and T is the
temperature in K.

logP =
−∆Gtrans f er

RT ln10
,

where
∆Gtransfer = ∆Gsolvation − ∆Ghydration (1)

Whereas, for ionic compounds, whose overall ionization in solution is pH dependent,
often logD is used instead of logP. The logD determines the ratio of the sum of the concen-
trations of all ionized and unionized forms of the compound in each of the two phases of
interest (Equation (2)).

logDOrganic-Water = log

(
[Solute]neutral,Organic

[Solute]neutral,Water + [Solute]ionic,Water

)
, (2)

For molecules whose aqueous ionization constants are known, logD is related to logP
via Equation (3). The significance of logD values becomes clear if one looks into the vast
range of physiological pH values in the human body, e.g., stomach: ~2; plasma: 7.4; small
intestine: ~5–6.8. [14].

logDOrganic-Water = logPOrganic-Water − log
(

1 + 10(pH−pKa)∆i
)

(3)

where ∆i = +1 for acids and ∆i = −1 for bases [15].
Evidently, the solvation free energy terms are guiding forces here to determine the

ability of a molecule to pass through different biological barriers before reaching the target
receptor(s). While the distribution of a compound between n-octanol and water mixture
(expressed as logPOW) was traditionally used as a measure of the lipophilicity and/or
hydrophobicity of compounds, strictly speaking the hydrophobicity can be defined as
the aggregation propensity of substances in aqueous medium, and n-octanol very poorly
represents lipid bilayers. For passive diffusion of drug molecules, which is considered as
one of the major pathways of drug absorption, the partition coefficient between aqueous
phase and organic phase is directly related to membrane permeability (see Figure 1a for
possible fates of a drug inside the human body after ingestion). To gain knowledge of
solvation properties, experimental studies are the most reliable; however, for a large molec-
ular dataset, it is a tremendous effort to explore these properties in multiple solvents. This
is often not so useful from an industrial point of view, as many compounds fail to clear
the initial screening processes based on solvation properties; rendering initial molecular
screening expensive. The other and most efficient method is the application of computa-
tional methods to explore molecular solvation properties. The use of computational and
theoretical tools in understanding molecular solvation is a well-researched area, and is
continuously evolving based on need [16]. In the context of logPOW calculation/prediction
using theoretical and computational techniques, empirical, semi-empirical, and quantum
chemical calculations-based theories have been applied [17–19]. The QSAR computed
values of logP are often used instead of expensive experimental studies. This is a very effec-
tive technique for high throughput virtual screening (HTVS), although they can generate
significant inaccuracies, and potential compounds can be rejected, or false positive results
may skew efforts [20–22].
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Figure 1. (a) Possible fates of a drug molecule inside human body; (b) the physical process of distri-
bution of a drug molecule between two phases. 
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scope of implementing and validating QSAR/QSPR models has become a part of routine 
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tion/validation. The latest in this field is the application of machine learning protocols 
(random Forest, support vector machine) for building non-linear QSAR/QSPR models and 
principle component analysis [30–33]. 

The solvation properties are a direct outcome of the electronic structure of a molecule, 
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Figure 1. (a) Possible fates of a drug molecule inside human body; (b) the physical process of distribution
of a drug molecule between two phases.

2. Methods for logP Empirical Predictions

The logP prediction methods are broadly classified into two categories, viz. the sub-
structure (or fragment) based methods, and the whole molecule approach. The fragment-
based approach is guided by the principle of averaged contributions of simple fragments
corrected against large experimental datasets [23,24]. An excellent example of an improved
version of this methodology is the clogP program module [25]. The whole molecule ap-
proach develops upon molecular lipophilicity potential (MLP), topological indices, and/or
molecular quantities to predict logP. While these two methods are complementary to
each other as they try to circumvent the shortcomings of each other, they have their own
limitations and efficiency considerations [26,27]. For a comparison of logP methods on
an extensive set of molecules, see references [5,28]. With phenomenal improvements in
computer hardware, and with the advent of logic-high programing languages, the scope
of implementing and validating QSAR/QSPR models has become a part of routine de-
velopment [29]. The earlier studies of linear regression analysis were eventually refined
using neural networks and genetic algorithms-based computing schemes for logP predic-
tion/validation. The latest in this field is the application of machine learning protocols
(random Forest, support vector machine) for building non-linear QSAR/QSPR models and
principle component analysis [30–33].

The solvation properties are a direct outcome of the electronic structure of a molecule,
and therefore, electronic structure calculations seem to be an excellent starting point for
calculation of logP. The use of quantum chemical methods is applied for two very spe-
cific regimes of methods: first, for the development of descriptors to assist in compu-
tation of logP using the whole molecule-based approaches; and second, direct calcula-
tion of solvation free energy using different continuum solvation models. The following
discussion is divided into two sections, viz. applications of quantum mechanics based
molecular descriptors for logP prediction, and direct prediction of logP via free energy of
solvation calculations.

3. Applications of Quantum Mechanics Based Molecular Descriptors for
logP Prediction

Since the first demonstration by Hanch and Fujita, that logP can be calculated using
a linear correlation method, several similar methods were reported for various purposes,
mostly for QSAR/QSPR analysis (see Figure 2 for information on different types of de-
scriptors used in logP prediction modules). The Hansch–Fujita method predicts logP of
a compound with substitution of H with X, using a relation with the unsubstituted form
as π = logPX − logPH where the parameter π is obtained by regression analysis against
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standard databases. This simple looking equation leads to a plethora of models involving
molecular properties, and more significantly intrinsic electronic properties, which can be
partitioned over atoms present in a molecule. The application of empirical and quantum
chemical (QC) methods to derive such descriptors have become very popular. The QC
methods were more accurate and well suited for calculating atomic partial-charges, molec-
ular orbital (MO) energies, dipole moments, and many other properties. In earlier days,
the demand for heavy computational resources to generate molecular wave function had
restricted the use of the QM descriptors; however, semi-empirical calculations became quite
popular, which were developed within the mathematical framework of molecular orbital
theory, but with more generalizations and approximations (SCF-MO). There are several
semi-empirical methods available which have been benchmarked against experimental
atomic and molecular data to be used for generation of molecular descriptors [34]. The first
descriptor to be used for logP prediction were the atomic charge densities. The method
is based on building a linear relation for the set of 61 compounds covering hydrocarbons,
alcohols, ethers, carbonyls, amines, nitriles, and amides [35]. The squared atomic charges,
calculated using semi-empirical MNDO/3 Hamiltonian method, are used to develop a
correlation equation as

logP = 0.344 + 0.2078nH + 0.093nC − 2.119nN − 1.937nO − 1.389Σq2
C

−17.28Σq2
N + 0.7316Σq2

O + 2.844NA + 0.910NT + 1.709NM,

resulting in a statistical correlation of n = 61, r2 = 0.985, s = 0.15.
The parameters used in this relation are nH, nC, nN, and nO, and represent the numbers

of hydrogen, carbon, nitrogen, and oxygen atoms, respectively; qi is the atomic charge on
the corresponding atoms; NA, NT, and NM are numbers of carboxy, cyano, and amide
groups, respectively. Interestingly, this approach yielded better results than fragment-
based methods, despite being simplistic. A subsequent development was made involving
curvature of molecular surface, molecular surface area, and dipole moment. This new
model predicted logP with very good correlations for 118 molecules [36,37]. For a series of
substituted phenols, the logP prediction scheme was reported using HOMO and LUMO
energy gaps, molecular volume, total surface area, molar mass, refractivity, melting point,
charge on oxygen atom, and polarizability of the molecule, with excellent success [38]. For
a larger dataset of 592 molecules, an excellent QSAR model was developed using only
polarizability and partial atomic charges on nitrogen and oxygen. This three-parameter
based model is simple and covers a vast molecular space [39]. The van der Waal volume was
incorporated in a more recent model computed using density functional theory (DFT) based
B3LYP, functional with a double-ξ quality basis set. The authors have used multivariate
analysis revealing differences between the chemical classes in terms of their electronic
properties, and importance of the frontier MOs in logP prediction [40]. A theoretical
development of heuristic molecular lipophilicity potential, using quantum chemically
calculated electrostatic potential (ESP) as a unified solvent-philicity potential was reported
by Du et al. [41]. The resultant linear regression analysis has the form of:

logP =
a × LM + b × HM

RT ln10
+ c

where molecular lipophilicity (LM) and hydrophilicity (HM) indices were calculated using
quantum chemical calculation (semi-empirical, ab initio Hartree-Fock, and DFT-B3LYP
levels). For an overview of the lipophilicity predictions, based on QSAR models in drug
design, please see reference [41]. There are numerous reports on development of QSAR
models and logP predictions based on QM-methods, although the basic number and types
of molecular descriptors that were employed are limited in number as to make the model
easier to compute and accessible. The use of QM-methods has often overcome deficiencies
of force-field based computation schemes.
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4. Direct Prediction of logP via Free Energy of Solvation Calculations

The accuracy of implicit solvation methods for solvation free energy calculations, and
the role of molecular conformations are two major limitations that handicap applications
of direct logP estimations using electronic structure calculations. The positive sides of
implicit solvation models are (i) reduced computation time in comparison to an explicit all
atom calculation, (ii) inherent parameterization to reproduce experimental macroscopic
properties of small molecules and ions, and (iii) for an arbitrary geometry of solute “ . . .
continuum models automatically give configurationally sampled solvent effect” [42]. One
should note that in the case of flexible molecules, the single conformation implicit solvation
free energy may not correctly represent conformational ensembles in different phases.
Amongst implicit quantum chemical solvation models, the most prominent ones are (i) the
polarization continuum models based on the extension of the ‘Integral Equation Formalism’
(IEF), (ii) Minnesota solvation models developed by Truhlar, Cramer, and coworkers tradi-
tionally designated as SMD, and (iii) COnductor like Screening MOdel for Real Solvents
(COSMO-RS). The description of the molecular solvation theory and other derivatives of it
are beyond the scope of the present review. In short, all these methods depend on gener-
ating a molecular shaped cavity to place the solute molecule inside a solvent continuum.
The deviations in calculating molecular electronic properties as well as solvation energy
are mostly arising from the choice of atomic radii sets, which varies significantly between
different methods, and calculation of electrostatic field. The electrostatic calculation based
on the Density Functional Theory (DFT) grid with a cavity radius of ~1.2 × van der Waals
(vdw) radii is a reliable starting point for molecules covering diverse molecular space.

The accurate prediction of hydration free energy by Minnesota solvation model (SMn
series; n = 5, 6, 8, 12 etc.) was an encouraging step towards using an implicit solvation
model for logP prediction, as well as using hydration free energy as a descriptor in drug
design [43,44]. In a study by Kolar and coworkers on the accuracy of implicit solvation
methods in calculating logPOW of 20 neutral drug molecules, the best performers were
SMD and COSMO-RS methods, whereas molecular mechanics (MM) based methods per-
formed poorly [45]. The authors also found significant deviations between computed and
experimental logP for flexible molecules, when a single rigid conformation is used for com-
putation. In a recent work, the applicability of the Onsager equation for realistic systems
has been questioned [46]. Indeed, the computational complexity in calculating ∆Gsolvation
is often the limiting step for correct prediction of the partition coefficients. The COSMO-RS
method can use a priori prediction of solubilities of a large class of compounds. The first
report of training COSMO-RS on a 150 drug-like compound database and testing on a
pesticides database containing 107 entries provided rms deviation of 0.66–0.61 log units [47].
One of the best applications of COSMO-RS in predicting cyclohexane–water distribution
coefficients in SAMPL5 dataset was reported by Klamt and coworkers [48]. Ouimet and
Paluch made a reference database from Drugbank for a large number of fragments based on
4-amino quinazoline structure with experimental logP values in order to develop a calibra-
tion curve for logP prediction of select SAMPL6 compounds, using the Minnesota solvation
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models [49]. These authors found building a training set did not improve prediction for the
SAMPL6 set. Their best results were from untrained SM8 solvation level calculations at
the M06-2X/6-31G(d) level. Kundi and Ho calculated logP of two sets of compounds, viz.
34 organic compounds and 55 fluorinated alkanols and carbohydrates using implicit and
explicit solvents [50]. These authors found that implicit solvent models performed better
than the explicit solvent models with a mean absolute deviation of 0.6 log units using the
COSMO-RS continuum model. The best results in this study are obtained from empirical
fragment-based predictions (ALOGP and miLogP) with a mean deviation in the range
0.2–0.4 log units. Fluorinated compounds receive a lot of attention in drug development
owing to their use as hydrophobicity modulating moiety (e.g., -CF3, p-F3C-C6H4-). Very
recently, Patel and Roy reported a systematic analysis of the effect of atomic radii on logP
calculations of 56 fluorinated drug molecules using DFT functionals [51]. The standard
SMD model is found to outperform the conductor like the polarizable continuum model,
while used in combination with various density functionals. These authors reported no
significant basis set size issues in logP calculations. The use of the dispersion corrected
density functionals did not improve logP predictions in comparison to those computed by
non-dispersion corrected ones, as reported by Patel and Roy [51].

A direct logPOW calculation for a large set of compounds using semi-empirical quan-
tum chemical methods with dielectric continuum models found significant deviations
between computed and experimental data [52]. An improved prediction was obtained by
using multiple linear regression analysis based on structural and constitutional features
of the molecules in the same database. A back propagating neural network model was
proposed by Briendl et al. for logP prediction for 104 organic molecules based on AM1 and
PM3 semi-empirical MO calculations [53]. Fizer et al. reported a detailed analysis of the
performance of a combination of different electrostatic charge generation schemes with
semiempirical, Hartree-Fock, and DFT level computations for hydrophilic/lipophilic index
and logP calculations of 50 mono-charged organic ions [54]. For this set of ions, the authors
obtained the best results with the semi-empirical AM1 Ford–Wang parametric electrostatic
potential charges. The performance of the natural population with DFT also resulted in
optimal performances.

Amongst physics-based methods, the three-dimensional reference interaction site
model (3D-RISM) theory has also been applied successfully toward prediction of parti-
tion coefficients. The theory uses first principle statistical mechanics to describe proper-
ties of molecular solvents using modest computational resources. The theory has been
extended significantly to apply in quantum-chemical calculation using the RISM-SCF
method [55,56]. The RISM-SCF method is used for the calculations of molecular aggregates,
solvation free energy, and hydration of organometallic systems [57–61]. Successful appli-
cations of the 3D-RISM theory with Kovalenko-Hirata (KH) closure relation in predicting
cyclohexane–water partition coefficients for SAMPL5 and logPoctanol-water were reported
by Kovalenko and co-workers [62,63]. It is obvious at this point that the need for good
computational/theoretical solvation models is essential at present to address solvation
modeling. The physics-based methods, relying on quantum chemical description of sol-
vation, are far away from direct applications in logP calculation based on pure hydration
free energy. Methods such as 3D-RISM(KH) and its variants are a suitable replacement;
although, they are often plagued with issues related to calculation convergence, system
size, and parallelization.

5. Conclusions

It is important to address the suitability of a choice of logP calculation/prediction
based on a case specific manner. For similar molecular structures to be used for high
throughput virtual screening, the empirical logP predictions based on atom/fragment
addition approaches may often suffice. Thus, QSAR/QSPR approaches are adequate here.
However, this is clearly not the case for systems with novel and/or exotic fragments,
which is often the case for development of new pharmaceuticals. The descriptor-based
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methods should be developed with special care so as to have a minimum of five times more
compounds in the training database, than the number of molecular descriptors used. The
whole molecule-based methods may work very well for such a scenario. It is worth, for
such cases, to treat the molecular descriptor in the most accurate way possible. For instance,
an error in calculating atomic charges and resultant multiple moments would result in
significant deviation of molecular dipole moment from the actual value, and would interfere
with all subsequent calculations based on these descriptors. The semi empirical AM1
method-based charges are often a good choice to start with. Further desired improvements
should be guided by necessity and available computational resources. The quantum
chemical calculations are an excellent choice for specific solvation property calculations
and should be used judiciously. For small molecular sizes, electronic structure calculations
with explicit solvation methods are the best; moreover, for a relatively larger system size, a
hybrid approach is recommended. Deploying a hybrid approach is non-trivial and requires
understanding of the amount of explicit solvent molecules to be added per molecule of
substrate to represent the solvation shell, before immersing the entire supramolecular
structure in a dielectric continuum model. The molecular solvation theory-based methods,
such as 3D-RISM, should be properly standardized for their use in different solvents before
setting off to use them for large molecular databases [64]. Of course, if experimental results
are available for a reasonable number of systems, then multiple methods/models should
be evaluated for correctness before finalizing the method of choice.
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