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Abstract: Endometrial cancer has the highest incidence of uterine corpus cancer, the sixth most typical
cancer in women until 2020. High recurrence rate and frequent adverse events were reported in either
standard chemotherapy or combined therapy. Hence, developing precise diagnostic and prognostic
approaches for endometrial cancer was on demand. Four hypoxia-related genes were screened for
the EC prognostic model by the univariate, LASSO, and multivariate Cox regression analysis from the
TCGA dataset. QT-PCR and functional annotation analysis were performed. Associations between
predicted risk and immunotherapy and chemotherapy responses were investigated by evaluating
expressions of immune checkpoint inhibitors, infiltrated immune cells, m6a regulators, and drug
sensitivity. The ROC curve and calibration plot indicated a fair predictability of our prognostic
nomogram model. NR3C1 amplification, along with IL-6 and SRPX suppressions, were detected
in tumor. High stromal score and enriched infiltrated aDCs and B cells in the high-risk group
supported the hypothesis of immune-deserted tumor. Hypoxia-related molecular subtypes of EC
were then identified via the gene signature. Cluster 2 patients showed a significant sensitivity to
Vinblastine. In summary, our hypoxia signature model accurately predicted the survival outcome
of EC patients and assessed translational and transcriptional dysregulations to explore targets for
precise medical treatment.

Keywords: endometrial cancer; hypoxia; tumor microenvironment (TME); prognosis; risk model;
immune cells; chemotherapy; targeted treatment

1. Introduction

Endometrial cancer (EC) has a high incidence rate among the subclassification of
uterine corpus cancer until 2020 [1]. Unfortunately, early screening mainly focused on
abnormal bleeding and might require additional evaluations like the pipelle method with
high accuracy but sampling difficulty [2–4]. Patients diagnosed with stage III or IV endome-
trial cancer achieved a locoregional recurrence rate of 20% while treated with standard
chemotherapy (doxorubicin-cisplatin (AP)) [5]. Additionally, In a randomized phase 3 trial,
58% of cases were reported with adverse events in chemo-radiotherapy and 63% of cases
were reported in chemotherapy-only [6]. Hence, there is a growing need for developing
endometrial cancer diagnostic and prognostic approaches.

While targeted therapies for endometrial cancer regarding glucose metabolism and
the PI3K/Akt/mTOR pathway have been developed, there are rising concerns about a
synchronous disturbance on other biological pathways of drugs [7,8]. Therefore, a high
recurrence rate of endometrial cancer after radiotherapy and chemotherapy can be a result
of tumor cell proliferation and angiogenesis [9]. According to previous studies, endometrial
cancer was stratified into copy-number high, DNA-polymerase epsilon, microsatellite
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instability hyper mutated, and copy number low [10,11]. Moreover, the sequencing-based
classification shows a potential association between molecular characteristics under hypoxia
and adjuvant treatment for patients with high-grade tumors.

The hypoxic tumor microenvironment always leads to poorer clinical results as tumor
cells adapt to conditions of low oxygen and nutrition and become resistant to radiation and
chemotherapy [12,13]. Recently, some studies indicated that hypoxia influences tumor cells
in metabolism and immunity, thus resulting in immune infiltration and acidosis [14,15].
Therefore, novel molecular subtypes capable of distinguishing patients with similar histo-
logic characteristics under hypoxic conditions is needed for customized treatments [16,17].

Specifically, targeting hypoxia in tumor cells gives rise to the development of im-
munotherapy via controlling immunosuppressive cells and effector T cells [18]. However,
whether the genes related to the hypoxic tumor microenvironment can systematically
contribute to the increased risk of endometrial cancer is unclear.

Our study obtained the gene and clinical-relevant data of endometrial cancer patients
from the Cancer Genome Atlas dataset. Several bioinformatic programs and packages were
used in analyses, including linear models for microarray data (limma), clusterProfiler r
packages and the Cell type identification by estimating relative subsets of RNA transcripts
(CIBERSORT) algorithm. Limma has recently become famous for identifying differentially
expressed mRNAs with thresholds of fold changes in an unsupervised clustering of sam-
ples [19,20]. In the annotation function analysis, the clusterProfiler package provides a
comprehensive way to compare essential biological pathways among the classified gene
set [21]. We established a hypoxia gene signature to calculate risk scores for patients and
identified particular molecular subtypes of endometrial cancer from the samples. The
nomogram consisted of risk scores, and several clinical characteristics were finally built
for prognosis. To look into the potential benefits of existing therapies and the new targets
of the treatment, we evaluated the immune cell infiltration by CIBERSORT algorithm,
immune checkpoints by Estimation of stromal and immune cells in malignant tumors using
expression data (ESTIMATE) algorithm, and the semi-inhibitory concentration (IC50) in
drug sensitivity of chemotherapy. CIBERSORT has great power over computing infiltrating
immune fractions with 22 immune cell types by the deconvolution of genetic microarray ex-
pression profiles and defining the immune phenotypes with signature genes from the TCGA
samples. In Wang et al., the authors investigated the tumor-infiltrated immune cell levels
and characteristics of tumor microenvironment for the constructed circRNA signature via
CIBERSORT and ESTIMATE algorithms [22]. Practically, phenotype-genotype-dependent
subtyping of EC provided an insight into the proper selection of suitable patients and their
follow-ups into personalized therapies.

2. Results
2.1. Differential Expression Profile and Gene Enrichment Analysis of Hypoxia-Related DEGs in EC

In the TCGA-EC cohort, 29 hypoxia-related differentially expressed genes (DEGs) with
FDR < 0.001 were retained for further analysis (Figure 1A, Table S1), including 12 genes
up-regulated and 17 down-regulated (Figure S1A). As explicitly shown in the heatmap,
differential expression profiles of the 29 DEGs related to hypoxia were exhibited in normal
or endometrial tumor cell types (Figure 1B). Several hypoxia-related DEGs showed a highly
correlated relationship to their expression levels in tumor samples, such as FOS and DUSP-1
(Figure 1C).

Function analysis results indicated that these DEGs could have immune-related roles
(Figure 1D). From Figure S1B, one of the most significant functions was the response to
steroid hormone, which involves seven DEGs. KEGG enrichment analysis results found that
one out of two EC-related signaling pathways were significantly enriched by these DEGs
(Figure S1C, Insulin resistance p-value = 0.008, Human T-cell leukemia virus 1 infection
p = 0.061).
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ate Cox regression analysis: Risk score = (0.062 × expression level of SRPX) + (0.016 × ex-
pression level of IL6) + (0.006 × expression level of HOXB9) + (0.155 × expression level of 
NR3C1) (Table S2). Based on the calculated risk scores, samples were divided into high- 
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tire sets illustrated a fit of the model (Figure S3A. center, right). From the boxplots, four 
genes were all expressed differentially in two risk groups (Figure 2A, p < 0.001). 

Figure 1. Differential expression profile of hypoxia-related genes in endometrial carcinoma.
(A) heatmap of differentially expressed hypoxia-related genes clustered in N (Normal) and T (Tu-
mor) cell types. (B) Differential expression of hypoxia related genes between N (Normal) and T
(Tumor) cell types. ** means p < 0.01, *** means p < 0.001. (C) Correlation matrix plot of hypoxia-
related differential expressed genes. (D) Gene Ontology (GO) Functional Annotation analysis of
29 hypoxia-related DEGs.

2.2. Construction of a Prognostic Four-Gene Model for EC

Through the Univariate Cox regression and least absolute shrinkage and selection
operation (LASSO) analysis, four out of twenty-nine prognostic significant DEGs were
obtained for constructing the hypoxia gene signature of EC (Figure S2). From the TCGA-EC
cohort, 256 samples were defined as the training cohort, and 256 samples were for model
testing. The four-gene signature prognostic model was constructed via Multivariate Cox
regression analysis: Risk score = (0.062 × expression level of SRPX) + (0.016 × expression
level of IL6) + (0.006 × expression level of HOXB9) + (0.155 × expression level of NR3C1)
(Table S2). Based on the calculated risk scores, samples were divided into high- or low-
risk groups. Principal components analysis (PCA) analysis for the testing and entire sets
illustrated a fit of the model (Figure S3A. center, right). From the boxplots, four genes were
all expressed differentially in two risk groups (Figure 2A, p < 0.001).
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ing set, and entire set (from left to right). 
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In order to study the related immune cells or pathways in EC, gene set variation anal-
ysis (GSVA) was performed to calculate the enrichment scores of low and high-risk 
groups of the EC patients in the TCGA cohort. In the gene enrichment of EC high-risk 
groups, human-activated dendritic cells (aDCs) and B cells were significantly differenti-
ated among all measured immune cells (up-regulated) (Figure 3A). In contrast, human 
immature dendritic cells (iDCs) were highly upregulated in tissues of low-risk patients. 

Figure 2. Development of prognostic model combining hypoxia-related gene signature and clinical
factors. (A) mRNA Expression of gene HOXB9, IL6, NR3C1, and SRPX compared between low and
high-risk groups. (B–D) The risk score rank (left) and distribution of survival status (right) of the
four genes in the training set, testing set, and entire set. Green for alive and red for dead in high-risk
groups. (E–G) Kaplan-Meier OS for high-risk group and low-risk group in the training set, testing
set, and entire set (from left to right).

Patients with increasing risk scores had an observed possibility of death status
(Figure 2B–D). Moreover, the K-M survival curves of the training, testing and entire sets
implicated the high-risk group’s lower OS rate (Figure 2E–G, p-value < 0.001). To note,
a drop was found between the 9th and 10th year of the high risk group, which may due
to the randomized division of samples or a batch effect while TCGA collecting patients’
survival information. We also computed the survival probability of subdivisions in clinical
factors in two risk groups and uncovered distinct patterns within the subdivisions of each
clinical factor (Figure S3B).



Int. J. Mol. Sci. 2023, 24, 1675 5 of 24

The risk score estimated from the four-gene signature was then incorporated with
the clinical characteristics for the further multivariate cox regression analysis. Moreover,
the univariate and multivariate Cox model of training dataset corroborated the adequate
predictability of the model with an independent variable, the stage factor (Table 1, p < 0.001).
This result could suggest a complex relationship among patients’ age, histological type,
grade, and hypoxia-related risk scores in EC. Consequently, the trained model was validated
by the entire set, which included three factors: Stage, grade, and risk score (p < 0.05).

Table 1. Univariate and multivariate Cox model result of the training set, testing set, and entire set.

Variable
Univariate Cox Model Multivariate Cox Model

HR HR.95L HR.95H p Value HR HR.95L HR.95H p Value

Training set
age 2.3010 1.1898 4.4499 0.0133 2.2176 1.1146 4.4121 0.0233

stage 3.6435 2.0219 6.5656 0.0000 3.3310 1.7492 6.3431 0.0003
histological_type 2.0604 1.1423 3.7165 0.0163 0.9318 0.4581 1.8952 0.8454

grade 2.1739 1.1239 4.2049 0.0211 1.3027 0.6030 2.8143 0.5010
riskScore 1.3662 1.1800 1.5817 0.0000 1.2244 1.0440 1.4360 0.0128

Testing set
age 1.3332 0.6821 2.6061 0.4003 0.9553 0.4598 1.9848 0.9025

stage 4.7100 2.5689 8.6357 0.0000 2.8626 1.5063 5.4402 0.0013
histological_type 4.6591 2.5439 8.5331 0.0000 2.0849 1.0231 4.2483 0.0431

grade 7.5966 2.7083 21.3077 0.0001 3.9697 1.3121 12.0107 0.0147
riskScore 1.3974 1.1728 1.6649 0.0002 1.1233 0.9240 1.3657 0.2433
Entire set

age 1.7782 1.1121 2.8432 0.0162 1.5240 0.9300 2.4974 0.0946
stage 4.1162 2.7000 6.2754 0.0000 3.0942 1.9669 4.8676 0.0000

histological_type 3.0435 2.0032 4.6242 0.0000 1.3605 0.8292 2.2323 0.2231
grade 3.3973 1.9765 5.8397 0.0000 1.9294 1.0493 3.5478 0.0345

riskScore 1.3956 1.2489 1.5596 0.0000 1.1991 1.0610 1.3552 0.0036

In the receiver operating characteristic curves (ROC) analysis, the one-, three-, and
five-year AUC were shown in Figure S3C. It is recommended to use the risk score model
for facilitating molecular subtype-based diagnosis.

2.3. Evaluations of Immune Cells and Highlighted mRNA Modifications between Risk Groups
of EC

In order to study the related immune cells or pathways in EC, gene set variation
analysis (GSVA) was performed to calculate the enrichment scores of low and high-risk
groups of the EC patients in the TCGA cohort. In the gene enrichment of EC high-risk
groups, human-activated dendritic cells (aDCs) and B cells were significantly differentiated
among all measured immune cells (up-regulated) (Figure 3A). In contrast, human immature
dendritic cells (iDCs) were highly upregulated in tissues of low-risk patients. Two immune
pathways achieved elevated enrichment scores in EC high-risk groups: Parainflammation
and Type I IFN response (Figure 3B). Recent studies showed that B cells could be a good
indicator for the prolonged survival of high-grade EC patients. Besides, IgA regulation
mediated by plgR in the EC tumor cells enhances the activation of inflammatory pathways
involving IFN signaling and the hindrance to DNA repairing [23].

By the ESTIMATE algorithm, 22 types of immune cells were evaluated and eight
were found significantly associated with the hypoxia gene signature (Figure S4A, p < 0.05).
Specifically, gamma delta T cells and memory B cells were upregulated in the high-risk
group with a high correlation (Figure 3C: p < 0.001, p = 0.001, Figure 3D: p = 0.00028, p =
0.0012), and Macrophages M1 was upregulated in the high-risk group with a correlation
of p < 0.005 (Figure 3C: p = 3.47 × 10−5). Gene SRPX was highly expressed in the T cells
gamma delta and Macrophages M1, which was consistent with the result of the GSVA
(Figure 3D). Then, we calculated the correlation between the DEG expression profile in the
signature and the immune cells in TCGA (Figure 3E).
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between two risk groups. ** means p < 0.01; *** means p < 0.001. (B) The differences in thirteen
immune pathways between two risk groups. (C) Abundance of 22 infiltrating immune cell types
between two risk groups. (D) Correlation plot of 22 infiltrating immune cell types with four hypoxia-
related DEGs in TCGA-EC cohort. (E) Correlation plot of 22 infiltrating immune cell types with
four genes from the prognostic signature in TCGA-EC cohort. (F) Estimated Patterns of stromal
cell scores (up-left), immune cell scores (up-right), ESTIMATE scores (down-left), and tumor purity
(down-right) based on risk scores.

The high-risk group in EC has a moderately higher occupancy of stromal cells
(Figure 3F(up-left), p < 0.005). However, neither high nor low-risk group showed sig-
nificant differences between the immune cell fractions (Figure 3F(up-right)). Moreover,
the undifferentiated estimate score and estimated tumor purity can be explained by the
genetic heterogeneity of endometroid type or serous tumor (Figure 3F(down)). Besides,
the subtype-specific immune cell expression clustered in levels of stromal, immune, and
estimate scores, plus tumor purity, was presented (Figure S4B). To depict stemness featured
in risk groups in EC samples, mRNA expression-based stemness index (mRNAsi) and
epigenetically regulated mRNAsi (EREG-mRNAsi) were evaluated, and no significant dif-
ferences were shown (Figure S4C). It suggested that the risk progression of the tumor was
neither characterized by undifferentiating expression of cells nor co-expression regulations
related to immune invasion but rather by simple stromal invasions resulting in the ectopic
endometrial-like epithelium and stroma [24]. As a result, molecular mechanisms of stromal
invasion in tumor tissues during pathogenesis are worth investigation for EC patients.

We later examine the expression level of the N6-methyladenosine (m6a) regulators
compared between two risk groups. There were five m6a regulators significantly expressed
in tumor tissues of high-risk patients, indicating possible epigenetic modifications or
transcriptional dysregulations during EC tumorigenesis (Figure S4D).

2.4. Assessment of Tumor Microenvironment in Different Risk Groups of EC Samples

Among 17 immune checkpoints, IDO1, ICOS, PD-L2, B7-H3, CD40, LAG3, CD86,
PD-L1, and CD270 were differentially expressed in the low and high-risk groups of EC
samples (Table 2, p < 0.05; Figure S5). Since PD-L1 and PD-L2 were reported to be promis-
ing candidates for immunotherapy [25,26], we therefore investigated expression profiles
of immune checkpoint inhibitors (ICIs), PD-L1 and PD-L2 on patients in high and low
risk-group from the TCGA cohort. The expression of PD-L1 and PD-L2 were positively
correlated with patients’ risk scores with p < 0.005 (Figure 4A,B). Additionally, as indicated
in the boxplots, the high-risk group achieved a relatively predominant expression of PD-L1
and PD-L2 (Figure 4C,D).

Table 2. The expression difference of immune checkpoints between low and high-risk groups.

Gene p-Value

IDO1 0.0326
CD27 0.2540
CD58 0.5882

CTLA4 0.3644
ICOS 0.0129
PD-L2 0.0000
B7-H3 0.0153
B7-H4 0.9876
TIGIT 0.1388
PD-1 0.3375
CD40 0.0000
LAG3 0.0061
TIM-3 0.1870
CD86 0.0214
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Table 2. Cont.

Gene p-Value

PD-L1 0.0023
CD70 0.1660
CD270 0.0239
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Figure 4. Immune checkpoint and immunosuppressive cytokine gene expression levels in high-
and low-risk groups. (A) Scattered plot illustrating a correlation between the expression level
of Immune checkpoint PD-L1 and risk scores in TCGA cohort. (B) Scattered plot illustrating a
correlation between the expression level of Immune checkpoint PD-L2 and risk scores in TCGA
cohort. (C) Expression level of PD-L1 compared between low and high-risk groups. (D) Expression
level of PD-L2 compared between low and high-risk groups. (E) Heatmap of distinct immune
checkpoint inhibitor marker expressed between low and high-risk groups. (F) Differential gene
expression of the immunosuppressive cytokines in two risk groups from the TCGA-EC samples.
* means p < 0.05; ** means p < 0.01; *** means p < 0.001.
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The following heatmap illustrating the risk-specific expression of immune checkpoint
suppressors showed the complex modification of immuno-pathways, which can contribute
to the pathological process and tumorigenesis (Figure 4E).

Cytokines functioned in inflammatory pathways and were reported to actively par-
ticipate in EC pathogenesis. The high-risk group of EC samples disclosed substantial
enrichment of CXCL11, CXCL16 and CCL20, while CXCL10 were upregulated in the
low-risk group (Figure 4F).

2.5. TMB Evaluation and Chemotherapeutic Sensitivity Analysis in Prognostic Risk Groups

In the TCGA-EC cohort, 241 samples were sorted as high-risk, whereas 253 samples
were as low-risk (Figure 5A). Eight genes were found for highly differential mutation
frequencies between high and low-risk groups (p > 0.05). Tumor mutation burden (TMB)
is significantly higher in the low-risk group indicating better prognostic immunotherapy
benefits for EC cases in the low-risk group (Figure 5B). The correlation line with a p-value
of 0.08999 (Figure S6, correlation index = −0.076). Thus, the prognostic model using
only the risk score is recommended as a diagnostic tool and it is worthwhile to consider
incorporating the clinical factors into the model.

Specifically, 97.51% of samples in the high-risk group had gene alterations, including
missense mutation, such as mutations at gene TP53, while 94.47% of low-risk samples had
gene alterations (Figure 5C,D and Figure S7).

Previous reports discovered influenced sensitivity of drugs Bleomycin, cisplatin, dox-
orubicin, and doxorubicin when either in a hypoxic condition or acidic conditions associated
with hypoxia [27–29]. After patients’ responses to the chemotherapy were tested in terms
of hypoxia-related genes signature, Bleomycin, Docetaxel, and Vinblastine displayed rela-
tively higher sensitivity in high-risk EC samples (Figure 5E,G,I, p < 0.05). Treatments with
Cisplatin and Doxorubicin displayed a lower sensitivity in high-risk samples (Figure 5F,H,
p < 0.05). According to an article by Deschoemaeker et al., cisplatin resistance can be in-
verted with the removal of acidic stress, which resembles reoxygenation [30]. However,
when compared with a normoxic condition, EC cells under hypoxic condition showed
reduced sensitivity [31]. Therefore, while the majority of the chemotherapy results were
validated, other sensitivity results need more studies related to hypoxic conditions to
confirm in the endometrial cancer cases.

2.6. Definition of Hypoxia Molecular Subtypes in EC for Diagnosis

Accounting for the expression levels of four hypoxia-differentiated DEGs, EC samples
were grouped from TCGA via The ConsensusClusterPlus package in R software. The
consistent cumulative distribution function (CDF) graph and the delta region graph decided
the optimal value of k, which is the cluster number (Figure 6A,B). When starting from k = 2,
the consensus CDF curve is stable enough, corresponding to the insignificant delta area
changes. Figure S8A explicitly illustrated the samples in TCGA allocated into CLUSTER
1 and CLUSTER 2 subtypes of EC and other possible clustering. Therefore, the heatmap
in Figure 6C exhibited the consensus matrix when k = 2 in simplicity. The PCA and t-
distributed stochastic neighbor embedding (t-SNE) results also agreed with our clustering
outcome of two subtypes (Figure S8B,C). Further analysis of the tumor microenvironment
and targets of adjuvant therapies featured with the hypoxia-related molecular subtypes
will serve as suggestions for diagnosis use under the complex hypoxic TME. The alluvial
diagram demonstrates the distribution overlap of the EC samples between risk score and
molecular subtype (Figure S8D). CLUSTER 1 achieved a close ratio of two risk groups in
the samples, while the distribution of CLUSTER 2 subtype samples was mainly confined to
high risk scores.
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(D) Mutation profile of the low-risk group. (E–I) Box plot of the estimated IC50 values for Bleomycin,
Cisplatin, Docetaxel, Doxorubicin, and Vinblastine with two risk groups.
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Figure 6. Consensus clustering of molecular subgroups in EC based on hypoxia-related DEGs
(A) Cumulative distribution function (CDF) curve from k = 2 to k = 9. (B) CDF Delta area curve. The
horizontal axis represents the number k and the vertical axis represents the relative change in the area
under the CDF curve. (C) Consensus matrix heatmap of two clusters (k = 2) and the correlation area.
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2.7. Expression Profile of Prognostic DEGs Clustered by Subtype and Clinical Factors

To investigate the relative gene expressions of the four prognostic DEGs, the forward
and reverse primer sequence of genes SRPX, IL6, HOXB9, and NR3C1 was shown as fol-
lows (Table 3). The mRNAs for the four genes were measured by real-time quantitative
polymerase chain reaction (RT-qPCR). Endometrial tissues were treated with TRIzol reagent
(Invitrogen, Waltham, MA, USA) for total-RNA extraction. Therefore, we explored the
gene expressions of these four hypoxia-related genes in the subdivisions of the clinical
categories as well as the total risk scores calculated compared between the subdivisions
(Figure S9A). Expression of the prognostic genes were also compared between paratu-
mor tissues and tumor tissues (Figure S9B). Summaries of differential expression of each
prognostic DEG classified by age, histological type, grade, and stage was illustrated in the
heatmap (Figure S10).

Table 3. PCR results of four hypoxia-related genes in the EC prognostic model.

Primer Primer Sequence (5’ to 3’) Base Pairs

SRPX F ATCAAGGTGAAGTATGGGGATGT 23
SRPX R GTTTGACTGGCAGATCAGTAGG 22

IL6 F ACTCACCTCTTCAGAACGAATTG 23
IL6 R CCATCTTTGGAAGGTTCAGGTTG 23

HOXB9 F CCATTTCTGGGACGCTTAGCA 21
HOXB9 R TGTAAGGGTGGTAGACGGACG 21
NR3C1 F ACAGCATCCCTTTCTCAACAG 21
NR3C1 R AGATCCTTGGCACCTATTCCAAT 23

Furthermore, the EC samples obtained from the training cohort were classified into
four typical clinical categories under each subtype (Figure 7A). The K-M OS curves of
the two subtypes showed a significant prognostic difference in the TCGA-EC cohort that
CLUSTER 1 has a higher survival probability compared to CLUSTER 2 (p = 0.004; Figure 7B).
However, we observed no stage differences between CLUSTER 1 and CLUSTER 2, while
these two molecular subtypes can be distinguished among survival probability patterns of
age, histological type, and grade (Figure 7C).

2.8. Identification of Potential Targets for Immunotherapy and Chemotherapy in EC
Molecular Subtypes

We compared the amount of non-epithelial cells in each TCGA sample tissue between
two molecular subtypes via the ESTIMATE algorithm. Patterns of Immune score, stromal
score, and estimate score were increased in CLUSTER 1 with a decreasing Tumor purity
(Figure 8A–D, p < 0.05). High immune and stromal scores indicated an enriched level
of immune-reactive as well as mesenchymal expression [24]. Furthermore, low tumor
purity indicates better prognostic outcomes. Several methods were used to compare the
substantial differences in immune cell expressions in the two clusters (Figure S11).

To explore potential immunotherapy responses of patients under hypoxia, immune
checkpoint expressions in different molecular subtypes were assessed. Classic differentially
expressed immune checkpoints like CD27, CD70, CTLA4, and PDCD1 were included
(Figure 8E).

In terms of the chemotherapy, two drugs traditionally used in adjuvant chemotherapy
for EC were evaluated for their subtype-specific sensitivity, respectively. A higher IC50
score of Doxorubicin was related to C1 (Figure 8F, p = 0.028). A lower IC 50 score of
Vinblastine was related to Cluster 1 (Figure 8G, p = 0.0057).

2.9. A Nomogram Predicting Overall Survival for EC Patients by Subtype-Specific Signature and
Clinical Factors

A nomogram was developed to further accurately predict the clinical outcomes by
integrating the four-gene signature with two selected clinical characteristic variables (grade
and stage) (Figure 9A). The prediction accuracy of prognostic models using risk score only
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and two independent clinical factors only or models using two clinical factors together and
risk score with two clinical factors were compared by the multi-ROC analysis (Figure 9B).
Additionally, calibration of the nomogram further validated a high consistency between
the predicted survival probabilities of one-, three- and five-year OS and the observed data
(Figure 9C). For this reason, the nomogram developed from our prognostic model should
improve the prognostic result’s predictive power for EC patients compared to the previous
signature model.
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main clinical factors (age, histological type, grade, and stage).
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EC molecular subtypes. * means p < 0.05, ** means p < 0.01, *** means p < 0.001. (F) Box plot
displaying the estimated IC50 values for Doxorubicin from the two molecular subtypes. (G) Box plot
displaying the estimated IC50 values for Vinblastine from the two molecular subtypes.
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Figure 9. Predictive significance of signature verified in the nomogram model incorporating hypoxia-
related gene signature and clinical characteristics. (A) Construction of a nomogram combining
the four-gene signature and clinical features for the prediction of OS. (B) 1-,3-,5-year multi-ROC
analysis for the final decision of the prognostic models. (C) Calibration plots displayed the actual and
nomogram-predicted probability of one- (up), three- (middle), and five-year OS (down). (D) Decision
curve analysis (DCA) curves of the nomogram for OS in HCC.
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Importantly, the DCA plot showed no significantly higher net benefit between the risk
score model, the clinical factor model, and the combined prognostic model (Figure 9D).
Therefore, three models can be utilized under consideration of different applications.

3. Discussion

While histo-pathological tumor characteristics have been widely utilized for making
clinical decisions in the past decade, the molecular subtype-based diagnostic and prognostic
approaches are developing rapidly and have achieved advances in decision-making on
targeted adjuvant therapies [32]. Some studies have pointed out that hypoxia commonly
occurred during tumorigenesis and caused therapy resistance, which may influence the
differentially expressed gene regulation in metabolic and immune systems [15,33]. In this
study, we built a hypoxia gene signature to investigate the hypoxic TME’s association with
tumor recurrence and to provide suggestions to both risk-based prognosis of EC patients
and subtype-based diagnoses of EC progression.

Four DEGs (HOXB9, IL6, NR3C1, and SRPX) were selected as the predictor variables
in the prognostic gene signature for an estimation of risk scores for the EC patients from
the TCGA. According to our hypoxia-related gene signature, somatic gene alterations,
especially PTEN mutation, were highly active regardless of a high or low risk score. During
the development of EC in low grade, PTEN gene mutation is one of the most frequent
mutations that tend to co-occur with PIK3CA and PIK3R1 gene mutations. Patients with
PTEN mutation were susceptible to developing cancers like breast cancer, kidney cancer,
and skin cancer [34]. Besides, loss of PTEN tended to cooperatively happen with CTNNB1
missense mutation and PIK3CA activation to boost myometrial invasion and thus form
EC [35]. Another prominent mutation in our result was found at ARID1a, usually known
as the tumor suppressor gene. It is reported that loss of ARID1a up-regulated PTEN in
terms of the tumor cell proliferation in endometrial glands [36–38]. TP53 mutation is
often associated with ECs in higher grades. However, the mutual occurrence of TP53
mutation and PTEN mutation is unique in USCs, which is closely related to our high-risk
group [39–41]. Therefore, EC tumor cells in the hypoxic microenvironment gained specific
somatic mutations including TP53 in high-risk patients, which promoted cell proliferation
and lymph node metastasis. Nevertheless, the molecular mechanisms behind it were
unclear and require further studies aided by animal models.

To look into the abnormalities at the transcriptional level, we explored the mRNA
modification over the low and high-risk groups in EC samples. High level modifications in
protein translation during the development of EC tumors were due to abnormal higher
expression of m6A “readers” and “writers” [42,43]. Expressions of three m6A “readers”,
YTHDF1, YTHDF3, and FMR1, as well as two m6A “writers,” KIAA1429 and WTAP, were
enhanced in EC with predicted higher risks.

Gene ontology analysis disclosed a relationship between hypoxia-related DEGs and
immune response, especially inflammatory, via regulations over macrophages or other
cytokine receptors. One of the most active GO pathways in EC tissues was the response
to the steroid hormone, which explained the effects of sex hormones interacting with
insulin-like growth factors on EC tumorigenesis [44].

From the PCR results of the risk-predictor genes, we speculated high expression levels
of NR3C1 in tumor tissues and expressions of IL-6 and SRPX converged in paratumor
tissues. Previously known, amplification of HOXB9 in EC was correlated with poorer
overall survival and EC progression [45]. IL-6, identified as a pro-inflammatory cytokine
during inflammation and tumorigenesis, is related to microbial communities involved in
immune responses [46]. NR3C1 was involved in the activation and enrichment of infiltrated
immune cells including naive B cells, M1 macrophages, neutrophils, CD4 memory resting
T cells, follicular helper T cells, gamma delta T cells, and regulatory T cells (Tregs) [47,48].
All four DEGs’ expressions were enhanced in high-risk EC patients.

Consistent with the previous studies, we also found that three out of four DEGs in
hypoxia signature, SRPX, IL6, and HOXB 9 were positively associated with naive B cells,
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CD4 memory resting T cells, gamma delta T cells, M1 Macrophages, and resting Mast cells.
Except for functions in innate immunity and autoimmunity, the immune cells mentioned
were reported to have a role in modulating viral and bacterial [49,50]. CD4 memory
resting T cells engaged in the secretion of C-X-C motif chemokine ligand (CXCL)10 during
viral infection [49]. This interaction is consistent with a significantly higher expression
of (CXCL)10 in high-risk EC patients. Aside from this, SRPX and IL6 were negatively
correlated with regulatory T cells (Tregs). Tregs were recognized as a subset of T cells
that suppresses immunity in sterilization and anti-tumor [51], thus SRPX and IL6 can be a
novel target for recovering immune response in EC tumor cells. Moreover, Ryan, R et al.
reasoned that SRPX also plays a part in the cell metabolism relating to the glucocorticoid
GO pathway [52]. Consequently, our prognostic signature model could precisely predict
the potential risk of EC patients by detecting aberrancies in the genome and proteomes.

Surprisingly, gathering results of ESTIMATE scores, high profiles of stromal cells and
unique neuroendocrine-like immune cells bridged our hypoxia signature to an immune-
desert molecular subtype of ovarian cancer determined by quantitative immune pheno-
types [53]. “Cold” tumor subtype was defined as scarce CD8+T cells and identified in
pancreatic, gastric, and ovarian cancer [54–56]. In details, a smaller number of T cells
driven by CD8 were associated with higher risk in EC patients. TME of desert subtype
explored in pancreatic cancer was proved to have enriched B cell expression [54], which was
also supported by infiltrated neuroendocrine-like immune cell including human-activated
dendritic cell (aDC) and B cell enrichments in the EC high-risk group. In Zhang B et al.
study, the desert subtype was found consistent with the m6a modification patterns, which
confirmed that desert sub-TMEs has a close relationship with immune ignorance and loss
of T cells [55]. KIAA1429, among all m6a regulators, were positively associated with sub
TMEs of desert or non-infiltrated subtype in gastric cancer, which is consistent with the
high-risk group predicted with hypoxia signature. Noticeably, either desert-dominant or
co-occurred subtype was correlated with a poorer survival outcomes [55]. However, further
identification including the definitive measurement and spatial distribution of CD8+ T-cell
versus stromal cells were required.

Standard treatments on EC are confined to excision surgeries on the lesion [54,57]. Along
with the deepened insight into EC’s staging and histological classifications, patients diag-
nosed with higher grades will be treated with systemic therapies mixed with radiotherapy,
and low-grade will be treated with chemotherapy and targeted therapies for trials. Several
chemo-drugs were previously studied regarding EC treatments [58]. Gebbia V et al. tested
a combination including Cisplatin and Vinorelbine and insisted that the regimen was
preferable to the classical Anthracycline [59]. Another drug, Docetaxel was reported to
have considerable efficacy and a bearable range of toxicity in two phase II trials [51,60].
The significant chemotherapeutic sensitivity of Vinorelbine and Docetaxel in the high-risk
group proved their fit for patients with high risk even encountering the hypoxia-raised
therapy resistance.

Emerging targeted medications include ICI anti-PD-1/PD-L1 and chemotherapy [35,61].
PD-L1 and PD-L2 displayed positive relationships with hypoxia DEGs prognostic risks,
which indicated anti-PD-1/PD-L1 and anti-PD-1/PD-L1 treatment should be a good choice
explicitly targeting the predicted high-risk group. Present studies further supplemented
that increasing number of mutations gave rise to a growing class of neo-antigens, which
could be targets for T-cell attack [62,63]. Tumor mutation burden was therefore considered
an index of patients’ response to immunotherapy [64,65]. We figured out a higher TMB for
low risk group indicating higher immunotherapy benefit by targeting various checkpoints
in terms of advanced prevention, although PD-1/PD-L1 immunotherapy was effective in
the high risk group.

Two molecular subtypes were characterized upon the hypoxia gene expressions. An
overlap between distributions of molecular subtype and risk groups was discovered in
TCGA dataset. CLUSTER 2 was majorly high-risk, while CLUSTER 1 had a subtly higher
ratio distributed in low-risk than high-risk. Significantly higher immune score, stromal
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score and estimate score calculated on CLUSTER 1 subtype explained the abundance of
immune cells and stromal cells in tumor tissues. CLUSTER 1 was also estimated with a
lower tumor purity, which suggested a less complex tumor microenvironment and better
clinical result. Our chemotherapeutic sensitivity results also revealed relatively significant
effects of Vinorelbine over CLUSTER 1, compatible with results of high-risk patients. As
a result, subtype-based diagnosis recommended surgery and targeted chemotherapy on
patients in CLUSTER 1, while more personalized medications on patients in CLUSTER 2.

The hypoxia gene signature was eventually coupled with clinical factors, which were
selected by the univariate and multivariate hazard analysis, to build a prognostic model. We
constructed a nomogram for the model, which was validated for the improved predictive
power and thus was recommended for EC prognosis.

Due to the research subjects’ particularity, and ethical reasons, our study still had
some limitations. Firstly, although a large sample size and quality control were obtained,
data resources were limited to TCGA, and more evidence of hypoxia signature from other
databases can be sought for confirmation. Secondly, as a cross-sectional retrospective study
without longitudinal follow-up data, we cannot confirm whether TME changes occurred
after the recorded histology and stages. However, our model showed a superiority over
other prognostic models solely comprising gene signature. Additionally, we have provided
some auxiliary analysis regarding m6A regulators and cancer cell stemness, which can be
supportive evidence for cancers progressions associated with metabolic reprogramming.

Recent studies have found several gene mutations, including PTEN, TP53, PIK3CA,
and classified four major genomic classes of endometrial cancer. However, the scope of
prominent mutations can be narrowed to identify the target with the most direct relationship
with tumor cell growth and cancer progression. Besides, our study proposed a possible
relationship with immune-desert subtype. Future investigation can be directed to the
differential responses to chemotherapy and immune checkpoint inhibition for three immune
subtypes with the consideration of hypoxic TME.

4. Methods and Materials
4.1. Data Collection and Preprocessing

There were 200 hypoxia genes chosen from The Molecular Signatures Database v7.2
(https://www.gsea-msigdb.org/gsea/msigdb, “HALLMARK_HYPOXIA”, accessed on
3 May 2022), which were found to be up-regulated in hypoxic condition via Gene Set
Enrichment Analysis v4.1.0 software [66].

We retrieved the data regarding somatic mutations and clinical factors (age, histologi-
cal type, grade, stage, and survival information) for EC from the TCGA public database
(http://cancergenome.nih.gov/, accessed on 6 May 2022). Therefore, 512 EC samples from
TCGA were randomly divided into the training and testing cohort with an approximately
1:1 ratio. The hypoxia-related differentially expressed genes (DEGs) were filtered by the
linear models for microarray data with FDR < 0.001 using the R limma package.

4.2. Functional Annotation Analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology
(GO) enrichment analyses were performed on hypoxia-associated DEGs between high and
low-risk cohorts by the R clusterProfiler package [21]. Gene enrichment analysis includes
three GO terms, biological process (BP), molecular function (MF), and cellular component.
GO terms and KEGG pathways were considered statistically significant with p < 0.05.

4.3. Establishment of a Hypoxia Gene Signature

To explore the prognostic significance of the 29 DEGs relating to hypoxia in EC, a
univariate Cox regression analysis was performed. Five prognosis-related DEGs with
p < 0.05 were screened in the training dataset. After the LASSO Cox regression analysis
by the glmnet R package [67], four out of five hypoxia-related DEGs were identified

https://www.gsea-msigdb.org/gsea/msigdb
http://cancergenome.nih.gov/
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(Figure S2). A multivariate Cox regression was performed to formulate a hypoxia-related
gene combination (Table S2).

4.4. Formulation and Validation of a Nomogram for the Prognostic Model

We further integrated the risk score evaluated by the hypoxia gene signature and the
clinical factors into a nomogram facilitating the OS prediction by the R rms package [68].
Based on the nomogram model, the total survival probability of each patient can be
calculated by summarizing the corresponding points of all variables. Calibration plots of
the nomogram were used to illustrate the fitness of the predicted 3-, 5-, and 10-year survival
compared to the observed value. The decision curve analysis (DCA) was used to check the
predictive power.

4.5. Quantitative Real-Time Polymerase Chain Reaction PCR after the RNA Isolation

The research was approved by the First Affiliated Hospital of Nanjing Medical Uni-
versity Ethics Committee. The participants entered the research cohort strictly provided
us with written informed consent. RNA was extracted from 15 EC and 15 normal sample
tissues with TRIzol reagent (Thermo Fisher Scientific, Waltham, MA, USA), and comple-
mentary DNA (cDNA) was synthesized using the total RNA via the high-capacity reverse
transcription kits (TaKaRa, Shiga, Japan) (Table S3). Assays were used to perform the
RT-qPCR based on SYBR Green PCR Kit (Thermo Fisher Scientific, Waltham, MA, USA).
The 2−∆∆CT method was applied on Light Cycler 480 (Roche, Basel, Switzerland). The
forward and reverse primer sequences used in qRT-PCR are listed in Table 3.

4.6. Genomic Alteration Analysis

We analyzed the gene variations from the Genomic Identification of Significant Targets
in Cancer v2.0 by the software, genePattern. Specifically, frequencies of somatic mutations
were calculated using the MutSigCV algorithm [69]. Moreover, we plotted the TMB score
for EC patients from the TCGA dataset to predict the immunotherapeutic impacts for
patients with varying risk scores. To determine the disparities in TMB levels, the Wilcoxon
rank sum test was employed.

4.7. Identification of Immune Cell Types and Assessment of Significant Immune Checkpoint Inhibitors

The infiltration levels of twenty-two kinds of immune cells were calculated utilizing
the Cell type identification by estimating relative subsets of RNA transcripts (CIBERSORT)
algorithm. We calculated immune infiltration variations between two molecular subtypes
through the Wilcoxon rank-sum test [70]. Besides, the correlation of the immune cell types
with hypoxia gene signature was evaluated with absolute value and p < 0.05.

4.8. Estimation of Immune and Stromal Cells in EC

Using expression profiles from TCGA samples, we evaluated infiltrating stromal and
immune cell levels in EC diseased cells by the Estimation of stromal and immune cells in
malignant tumors using the expression data (ESTIMATE) algorithm. By pooling stromal
and immune scores, the ESTIMATE score was subsequently evaluated. The tumor purity of
samples from each TCGA patient was then determined for the corresponding ESTIMATE
scores [24].

4.9. Expression Analysis of m6A RNA Methylation Regulators

According to recent papers, we chose twenty m6A RNA methylation regulators
(METTL3, HNRNPC, YTHDC1, ZC3H13, YTHDF2, FTO, YTHDF1, YTHDF3, YTHDC2,
METTL14, RBM15, WTAP, KIAA1429, FMR1, METTL16, HNRNPA2B1, and ALKBH5) for
further research. Using the CIBERSORT algorithm, the risk differences in expression profiles
of m6A regulators were compared for the EC tissues in TCGA samples with p < 0.001.
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4.10. Chemotherapy Sensitivity Test

To explore substantially different responses of chemotherapeutic drugs in the molec-
ular subtypes of EC and risk groups predicted by the hypoxia gene signature model, we
calculated the IC50 of drugs typically applied in regiments of ECs using the R pRRophetic
package. The sensitivity response of each patient in chemotherapy was predicted by
database extracted from the Genomics of Drug Sensitivity in Cancer (GDSC; https://www.
cancerrxgene.org/, accessed on 7 May 2022) [71].

4.11. Clustering Analysis

The consistent clustering identified molecular subtypes of EC samples from TCGA
via the ConsensusClusterPlus package in R software [72]. In the clustering analysis, we
used transcriptomic profiling data of four hypoxia-related signature genes, survival time,
survival status, predicted risk score, and risk groups as dimensions of each sample. Then,
we calculated the Euclidean squared distance metric and the K-means clustering algorithm
from k = 2 to k = 9. Besides, we performed the principal components analysis (PCA)
and t-distributed stochastic neighbor embedding (t-SNE) to perform multiples tests on
clustering results established on the transcriptome expression profile of the above hypoxia-
related genes.

4.12. Statistical Analysis

We predominantly performed data analysis with the aid of the R language v4.0.2
software throughout the study (https://www.r-project.org/, accessed on 7 May 2022).
Different hypoxia subtypes were compared by the Kruskal–Wallis test. The differential
survival time was figured out using the log-rank test with p < 0.05 and we applied Kaplan
Meier curves to illustrate the striking distinctions in survival time.

5. Conclusions

We portrayed two hypoxia-related molecular subtypes of EC based on the four screened
DEGs signature, which integrated with clinical factors to serve as a predictive model for EC
patients. The assessments on infiltrating immune cell types, immune checkpoint inhibitors,
and chemotherapy responses can be referred to as some insights into the hypoxic impacts
of the genome, methylome, and transcriptome on EC progression in the future.
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Abbreviations

aDCs human-activated dendritic cells
CIBERSORT Cell type identification by estimating relative subsets of RNA transcripts
DEGs differentially expressed genes
EC endometrial carcinoma
ESTIMATE Estimation of stromal and immune cells in malignant tumors using expression data
GDSC Genomics of Drug Sensitivity in Cancer
GSVA Gene set variation analysis
GO Gene Ontology
HR hazard ratio
ICI immune checkpoint inhibitors
IC50 the semi-inhibitory concentration
iDCs immature dendritic cells
KEGG Kyoto Encyclopedia of Genes and Genomes
LASSO least absolute shrinkage and selection operation
Limma linear models for microarray data
m6a N6-methyladenosine
OS overall survival
PCA principal components analysis
ROC receiver operating characteristic curves
TCGA The Cancer Genome Atlas
TMB tumor mutation burden
Tregs regulatory T cells
t-SNE t-distributed stochastic neighbor embedding
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