Skip to main content
. 2023 Jan 14;23(2):982. doi: 10.3390/s23020982

Table 1.

Pycaret pre-study.

Model MAE MSE RMSE R2 RMSLE TT
(s)
Light Gradient
Boosting
152.6337 141,232.3644 375.287 0.918 1.508 0.127
Gradient Boosting 155.4339 141,346.4811 375.4099 0.9179 1.6532 0.94
CatBoost 154.6182 143,318.3611 378.0807 0.9168 1.6128 2.963
Extreme Gradient
Boosting
157.3401 148,772.8508 385.1605 0.9136 1.5959 1.129
Random Forest 160.9863 152,788.12 10 390.4444 0.9113 1.3707 2.217
Extra Trees 166.4859 158,063.3209 397.1247 0.9082 1.3746 1.07
K Neighbors
Regressor
171.5040 165,489.9156 406.3238 0.9039 1.3991 0.024
Ada Boost 309.1532 246,932.7357 496.5982 0.8566 2.0464 0.088
Decision Tree 199.8973 277,651.8974 526.6256 0.8387 1.8514 0.049
Linear Regression 385.0205 283,773.3672 532.5063 0.8352 2.6316 0.425
Bayesian Ridge 385.0236 283,773.3669 532.5063 0.8352 2.6316 0.007
Ridge 385.0258 283,773.3562 532.5063 0.8352 2.6315 0.006
Least Angle 385.0206 283,773.3667 532.5063 0.8352 2.6316 0.008
Lasso 385.1961 283,776.5953 532.5101 0.8352 2.6312 0.007
Orthogonal
Matching Pursuit
385.9314 284,452.3678 533.1459 0.8348 2.6404 0.007
Huber Regressor 378.314 1 295,961.1937 543.7595 0.8281 2.7125 0.032
Passive Agg
ressive
378.0183 303,116.3767 550.2841 0.8239 2.768 0.014
Lasso LeastAngle 429.8264 316,211.4787 562.2203 0.8163 2.5564 0.016
Elastic Net 547.8478 444,773.0906 666.8626 0.7415 2.8225 0.007