Skip to main content
. 2023 Jan 14;23(2):982. doi: 10.3390/s23020982

Table 2.

Initial study of pycaret.

Model MAE MSE RMSE R2 RMSLE MAPE
CatBoost 1383.53 8,258,035.897 2842.3398 0.92 3.368 1.4268
Light Gradient
Boosting Machine
1425.90 8,645,953.306 2917.0007 0.9167 3.1948 1.444
Gradient Boosting 1525.33 9,042,987.79 2973.3297 0.9129 3.4837 1.9477
Random Forest 1387.55 9,132,938.701 2988.8308 0.9122 1.4369 1.3502
Extreme Gradient
Boosting
1528.08 9,132,115.59 2989.7954 0.912 3.5136 1.9225
Extra Trees 1371.164 9,370,078.345 3032.71 0.9091 1.4207 1.2388
K Neighbors 1995.01 14,418,032.69 3783.2075 0.8593 1.8795 3.2709
AdaBoost 2658.09 16,246,782.77 4011.6881 0.8427 4.5131 3.6487
Decision Tree 1823.12 18,487,851.69 4231.6982 0.8231 1.7356 1.2967
Linear 3320.22 21,609,347.74 4633.5979 0.7902 5.0483 6.1362
Lasso 3321.05 21,609,322.51 4633.5942 0.7902 5.0499 6.1158
Bayesian Ridge 3328.44 21,619,397.04 4634.7018 0.7901 5.0601 6.103
Ridge Regression 3330.88 21,622,794.72 4635.0831 0.79 5.0622 6.0973
Lasso Least Angle 3341.40 21,757,851.6 4649.9118 0.7888 5.0506 5.7934
Random
Sample Consensus
3260.63 21,838,823.48 4657.6009 0.7878 5.0006 6.0694
TheilSen Regressor 3436.71 22,350,259.85 4713.5883 0.7825 5.1132 6.0852
Huber Regressor 3054.06 23,610,757.4 4837.1228 0.7706 4.615 4.3961
Passive Aggressive 3018.56 26,104,737.57 5088.1992 0.747 4.1218 3.0214
Elastic Net 4701.35 37,866,615.25 6143.6763 0.6359 5.2276 8.0117
Orthogonal
Matching Pursuit
4881.56 38,453,549.95 6193.5956 0.6299 5.3537 5.5916
Least Angle
Regression
5456.26 63,265,660.21 7134.0762 0.4037 5.4275 10.456
Support Vector
Machine
6928.34 147,606,069.7 12,099.8444 -0.3985 4.5004 1.4865