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Abstract: Genome integrity is critical for proper cell functioning, and chromosome instability can lead
to age-related diseases, including cancer and neurodegenerative disorders. Chromosome instability
is caused by multiple factors, including replication stress, chromosome missegregation, exposure to
pollutants, and viral infections. Although many studies have investigated the effects of environmental
or lifestyle genotoxins on chromosomal integrity, information on the effects of viral infections on
micronucleus formation and other chromosomal aberrations is still limited. Currently, HIV infection
is considered a chronic disease treatable by antiretroviral therapy (ART). However, HIV-infected
individuals still face important health problems, such as chronic inflammation and age-related
diseases. In this context, this article reviews studies that have evaluated genomic instability using
micronucleus assays in the context of HIV infection. In brief, HIV can induce chromosome instability
directly through the interaction of HIV proteins with host DNA and indirectly through chronic
inflammation or as a result of ART use. Connections between HIV infection, immunosenescence
and age-related disease are discussed in this article. The monitoring of HIV-infected individuals
should consider the increased risk of chromosome instability, and lifestyle interventions, such as
reduced exposure to genotoxins and an antioxidant-rich diet, should be considered. Therapies to
reduce chronic inflammation in HIV infection are needed.

Keywords: antiretroviral therapy; chromosomal aberration; DNA damage; immunosenescence;
inflammation; chromosome instability; HIV; micronucleus

1. Introduction

The maintenance of genome integrity is a key factor in proper cell functioning and
disease prevention. An accumulation of DNA damage accelerates aging by impairing cell
metabolism, causing senescence and immunosenescence, apoptosis, stem-cell exhaustion,
and inflammation, among other deleterious effects to cells, thus increasing the risk of
age-related diseases [1,2]. Genomic instability, which is the tendency of the genome to
undergo mutation or chemical modification [1], is caused by replication stress, chromosome
missegregation via defective mitosis, impaired homologous recombination, environmental
insults (e.g., exposure to pollutants, pesticides, or radiation), and lifestyle factors (e.g., diet,
physical activity, smoking, and alcohol consumption). Genomic instability can result in a
loss or amplification of genes, rearrangements, extrachromosomal DNA, and micronuclei
formation, among other molecular breakdowns, with multiple pathological consequences,
including various types of cancer [3–5].

The micronucleus (MN) is a small and rounded DNA-containing nuclear structure
observed to be isolated in the cytoplasm, located adjacent to the main nucleus. Mitotic
errors or DNA damage can produce lagging chromosomes or chromosome fragments,
which are deposited in the cytoplasm in the form of a MN [6]. Increased MN frequency
is associated with age, occupational exposure to genotoxins, a heavy smoking habit, and
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cancer [7,8]. Micronuclei are well-accepted biomarkers of DNA damage and chromosomal
instability in multiple organisms, including humans [9].

The rupture of the nuclear envelope of a MN and the consequent exposure of DNA
to the cytoplasm has deleterious consequences for cells, such as inflammation and chro-
mothripsis [6]. Of note, chromothripsis is a mutational process that promotes cancer
development due to tumor suppressor loss, oncogenic translocations, or oncogene ampli-
fication [10]. Inflammation derived from MN formation and rupture is an increasingly
recognized issue, associated with various diseases. Therefore, micronuclei are biomarkers
of DNA damage and chromosomal instability, as well as inducers of hypermutation and
inflammation [9].

Viruses can also damage the genetic material and impair DNA repair processes in
host cells directly by interaction with DNA and the proteins of DNA repair machinery, and
indirectly by the production of reactive oxygen species (ROS) and oncoproteins, replication
stress, exacerbation of inflammatory responses, and impairment of cellular integrity or
function. Viruses are therefore recognized inducers of genome instability in host cells,
with some viral species (Epstein–Barr virus, hepatitis B virus, Kaposi’s sarcoma-associated
herpesvirus, and human papillomaviruses, among others) inducing carcinogenesis in
humans [11,12].

Retroviruses damage DNA through multiple mechanisms, including genome inte-
gration, replication, inflammation, and the direct interaction of viral proteins with DNA.
For example, HIV-1 lentiviral protein Vpr induces single-strand DNA breaks (SSBs) and
double-strand DNA breaks (DBSs), potentially by inducing replication fork collapse after
the inhibition of DNA replication [13]. In addition to promoting SSBs and DBSs, Vpr and
other HIV-1 proteins (Tat and Vif) may damage DNA by other mechanisms, including by
repressing DNA damage response (DDR) and DNA repair [13]. As a consequence, HIV Vpr
can induce MN formation and other chromosomal aberrations [14,15]. Of note, HIV pro-
teins Tat, Vif, and Vpr promote cellular arrest, potentially benefiting viral replication, and
latent HIV-infected cells are more susceptible to DNA damage [13]. Figure 1 summarizes
the connections between HIV proteins and MN formation.
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DNA break; DSB: double-strand DNA break; DDR: DNA damage response. 
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0.74‰ (95% CI 0.52–1.05) [8]. The BMCyt assay is commonly called the “MN test” or 
“MN assay”, and variations of this technique also exist, including the evaluation of mi-
cronuclei and other nuclear anomalies in non-buccal epithelial cells (e.g., nasal and cer-
vical cells) [9]. 

Figure 1. Effects of HIV proteins on DNA integrity and micronucleus formation. SSB: single-strand
DNA break; DSB: double-strand DNA break; DDR: DNA damage response.

HIV drugs are also associated with chromosome instability [16]. People living with
HIV, even on antiretroviral therapy (ART), suffer from chronic diseases and conditions
associated with aging (e.g., cancer and cardiovascular and neurodegenerative diseases) at
an increased rate compared to uninfected people. This indicates that HIV facilitates the
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occurrence of age-related diseases, independently or in association with other risk factors,
potentially through the exacerbation of chronic inflammation, cellular senescence, mito-
chondrial dysfunction, telomere attrition, stem-cell exhaustion, DNA damage, and genomic
instability [17]. Chronic inflammation is a major issue for HIV-infected individuals, and is
caused by dysbiosis, microbial translocation, co-infections, and residual HIV replication,
among other factors. As mentioned above, these conditions are commonly observed even
in HIV-infected individuals undergoing ART [18–21].

Micronuclei formation and the release of DNA into the cytosol can trigger inflamma-
tory cascades [22]. Infection-related inflammation produces reactive oxygen species (ROS)
and reactive nitrogen species which, on one hand, are important in protecting the host from
pathogens but, on the other hand, cause DNA damage. Consequently, DNA damage and
DDR trigger further inflammation, creating a vicious circle of inflammation and genetic
damage [22]. Other cellular processes also influence MN formation during HIV infection.
Autophagy promotes cellular recycling [23,24] and can limit the amount of cytoplasmic
DNA derived from DNA insults (e.g., MN can be degraded by the autophagy–lysosomal
pathway), thus determining cell fate following genomic instability events. In brief, au-
tophagy is a protective mechanism against MN formation and related consequences [25,26]
and this can explain, at least partially, the “genome-stabilizing effects of autophagy” [27].
Autophagy also contributes to the maintenance of the innate immune homeostasis, pro-
tecting humans from inflammatory conditions [24]. HIV can inhibit autophagy [23,28–30]
and, consequently, such inhibition contributes to chromosome instability and chronic in-
flammation. Deciphering the connections between viral infection, genome instability, and
DDR can help understandings of viral pathogenesis and the development of better antiviral
therapies [13].

The buccal micronucleus cytome (BMCyt) assay is a method used to study chromo-
somal instability, DNA damage, and cell death using cells exfoliated from oral mucosal
tissue, based on the microscopic analysis of cytoplasmic and nuclear morphology [31].
The BMCyt assay is considered a minimally invasive method [31]; therefore, it is widely
used by laboratories from different parts of the world to evaluate genetic damage in
human populations [8]. The BMCyt assay yields the quantification of the frequency of
chromosome breakage or loss due to incorrect mitosis (observed microscopically in the
cytoplasm as a MN), gene amplification (viewed as nuclear buds), cytokinesis failure or
arrest (observed as binucleated cells), and cell death (observed as condensed chromatin,
karyorrhectic, pyknotic, or karyolitic cells) [8,31]. Of note, MN frequency in exfoliated
buccal cells highly correlates with MN frequency in peripheral blood lymphocytes [8]. The
estimated spontaneous MN frequency in (healthy) human buccal exfoliated cells is 0.74‰
(95% CI 0.52–1.05) [8]. The BMCyt assay is commonly called the “MN test” or “MN assay”,
and variations of this technique also exist, including the evaluation of micronuclei and
other nuclear anomalies in non-buccal epithelial cells (e.g., nasal and cervical cells) [9].

Considering the information mentioned above and the poorly explored connections
between HIV infection, inflammation, and chromosomal instability, we reviewed studies
from multiple countries that evaluate genomic instability, using MN as a biomarker, in the
context of HIV infection. This narrative review also discusses the connections between HIV
infection, immunosenescence, and age-related diseases.

2. Impacts of HIV Infection and Treatment on Chromosomal Integrity: A Focus on
Human Studies

In Brazil, Lima et al. [32] investigated micronuclei in exfoliated oral cells of HIV-
infected individuals undergoing ART and non-infected controls (n = 30 each group). In
addition to measuring MN frequency, the authors separated micronuclei into two categories:
(I) single MN and (II) multiple micronuclei. The total number of micronucleated cells and
the MN number were not statistically different between groups, and no statistical correlation
between CD4+ T cell counts, and MN frequency was observed. Considering the two MN
categories mentioned, a statistically significant increased mean of single MN in the cells of
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the controls compared to those of HIV-infected individuals and a non-significant increase
in the occurrence of multiple micronuclei in the cells of the HIV group compared to the
controls were reported. However, the small sample size of this study and the absence of
difference in overall MN frequency between the groups may limit interpretations of these
findings [32].

In South Africa, Baeyens et al. [33] evaluated the chromosomal radiosensitivity of
HIV-infected individuals (n = 49) and controls (n = 29) using the MN assay. Blood samples
from both groups were exposed to doses of 6 MV X-rays in vitro, ranging from 1 to 4 Gy.
MN frequencies were significantly higher in irradiated lymphocytes of HIV-infected indi-
viduals compared to the controls at all exposure doses (1, 2, 3, and 4 Gy), which can be at
least partially attributed to differences in CD4+/CD8+ T cell ratios between HIV-infected
individuals and controls, in addition to the direct effects of HIV on chromosomal instability
(increased DNA damage and impaired DNA repair and apoptosis, among others). In brief,
this result suggests that cells of HIV-infected individuals have increased radiosensitiv-
ity [33]. Subsequently, other studies confirmed these findings, also describing increased
MN frequencies in the blood cells of South African HIV-infected individuals exposed
to radiation in vitro [34,35]. Increased radiosensitivity can be problematic, especially in
HIV-infected individuals with cancer who need to undergo radiotherapy [35].

Zizza et al. [36] evaluated MN frequency in peripheral blood mononuclear cells of HIV-
infected individuals undergoing ART (n = 52) and non-infected controls (n = 55), and both
groups were from Italy. They found an increased MN frequency in the HIV-infected group,
with HCV co-infection and HIV-RNA load being risk factors for increased MN frequency.
Individuals with undetectable viremia showed a reduced MN frequency compared to those
with uncontrolled viremia. These results indicate that MN in HIV-infected individuals
undergoing ART is not a feature exclusively derived from ART or HIV infection per se,
but that it is also due to problems associated with chronic infection (i.e., co-infections).
However, the absence of a group composed of HIV-infected but ART-naive individuals
precludes the inferring of the degree of contribution of HIV infection and ART use on MN
frequency, separately [36].

Several in vitro studies, as well as studies performed in animals, have evidenced
genotoxic effects (e.g., formation of MN and nucleoplasmic bridges) of various drugs used
to treat HIV infection, including zidovudine, tenofovir disoproxil fumarate, lamivudine,
and efavirenz. Taken together, these reports indicate that HIV drugs can indeed induce
clastogenic and aneugenic effects on chromosomes [16,37–41].

Zidovudine-based ART is commonly used to prevent mother-to-child HIV transmis-
sions. In this context, Witt et al. [42] evaluated chromosomal damage in children exposed
to zidovudine (transplacentary and post-partum) in a study performed in the USA. Mi-
cronucleated reticulocyte frequencies were evaluated by flow cytometry in children (n = 16,
all subjects received prophylactic post-partum zidovudine for 6 weeks) and mothers on
zidovudine-based ART (n = 13) or ART without zidovudine (n = 3, a small control group)
pre-natal. In women, samples were obtained from venous blood. In children, samples were
obtained from both cord blood at birth and subsequently from venous blood. Controls
were obtained from HIV-negative cord-blood samples (n = 10). A 10-fold increase in mi-
cronucleated reticulocyte frequencies was observed in mothers and children pre-natal with
zidovudine-based ART compared to the controls [42]. These results confirm, in humans,
the genotoxic effects of zidovudine observed in vitro [37] and in animals [38].

In India, Shah et al. [43] evaluated MN frequency in oral cells of HIV-infected women
undergoing ART and healthy controls (n = 25 each group) using Papanicolaou staining
smears. The HIV-infected group showed a significant increase in MN rate (~two-fold)
compared to the controls. Papanicolaou stain is considered effective in detecting and
evaluating micronuclei [43]. However, it is important to stress that an abnormal increase
in MN frequency can be observed in non-DNA-specific stains. For example, Giemsa and
aceto-orcein stains can produce higher MN frequencies. Feulgen-Fast Green is considered
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the most specific and versatile DNA-specific staining method; therefore, it is the standard
staining method used in the BMCyt assay [8].

In Mexico, Gutiérrez-Sevilla et al. [44] evaluated genomic instability markers in HIV-
infected individuals undergoing ART (n = 46, with two sub-groups, each receiving a
specific ART combination), HIV-infected but ART-naive individuals (n = 13), and HIV-
negative controls (n = 8). Genomic instability markers were accessed by nuclear abnormality
analyses (MN, binucleated cells, nuclear buds, karyorrhexis, karyolysis, and pyknosis) of
buccal mucosal samples using the BMCyt assay [31]. No difference in MN frequencies
was observed between the groups. However, higher frequencies of binucleated cells and
nuclear buds were observed in both HIV-infected ART-naive individuals and HIV-infected
individuals undergoing ART compared to the HIV-negative control group. This result
suggests that the effect of HIV on genomic instability can occur independently of ART.
However, differences in genomic instability caused by variations of ART regimens can
occur. Karyorrhexis, binucleated cells, and nuclear buds were found to be increased in the
subgroup of HIV-infected individuals receiving reverse transcriptase inhibitors (RTIs) as
ART compared to the controls. Such a difference was not observed between the subgroup
of HIV-infected individuals receiving protease inhibitors (PIs) and controls. This suggest
that ART based on PIs can produce less cytotoxic damage than RTIs. Finally, the authors
also found a positive correlation between the nuclear buds and CD4+/CD8+ ratio among
the HIV-infected individuals, suggesting a role of CD4+ T cells in genomic instability
occurrence [44].

As mentioned previously [16,37–41] and reinforced by the results of Gutiérrez-
Sevilla et al. [44], different antiretroviral combinations have varying toxic effects on DNA.
Since the United States Food and Drug Administration (FDA) approved Zidovudine in 1987
for the treatment of HIV infection [45], many other antiretrovirals have been developed and
HIV therapy has greatly advanced, with important improvements in terms of decreased
toxicity and side effects. However, even modern antiretrovirals have some cellular tox-
icity, damaging DNA and mitochondria to some extent. Maraviroc is an antiretroviral
approved for clinical use in 2007. This drug inhibits HIV infection by interfering with virus
interaction with the human C-C chemokine receptor type 5 (CCR5), the main HIV-1 co-
receptor [46]. Other new CCR5 antagonists for the treatment of HIV infection and other con-
ditions (i.e., cancers) are under investigation, including Vicriviroc and Leronlimab [47,48].
The main function of CCR5 is to regulate the activity of inflammatory cells [46], but it
has recently been demonstrated that CCR5 also participates in the control of DNA re-
pair [47]. Consequently, CCR5 antagonists (i.e., Maraviroc, Vicriviroc, and Leronlimab)
can lead to genomic instability by impairing DNA repair and through other CCR5-related
mechanisms [47–49]. However, it is important to emphasize that evidence of the participa-
tion of CCR5 in DNA damage/repair comes from cancer studies, in which the participation
of other drugs is present [47–49]. The clinical significance of this effect of CCR5 antagonists
on DNA damage in HIV-infected individuals is still speculative. Beyond CCR5 antagonists,
other HIV drugs (e.g., Dolutegravir) can cause mitochondrial ROS production, mtDNA
damage, mitochondrial dysfunction, and cell death [50–53].

Lazarde-Ramos et al. [54] observed, also in Mexico, an increased frequency of MN
and other nuclear abnormalities (binucleated and karyorrhectic cells) in HIV-infected in-
dividuals (n = 22) undergoing ART (ATRIPLA: efavirenz, 600 mg; emtricitabine, 200 mg;
and tenofovir disoproxil fumarate, 300 mg) compared to a control group (n = 22) using
the BMCyt assay. In this same study [54], the administration of ART in combination with
aqueous (n = 22) or methanolic (n = 23) extracts of rosemary (Rosmarinus officinalis, a plant
species with anti-inflammatory and antioxidant properties [55]), significantly reduced the
frequency of MN (in the methanolic extract group) and abnormally condensed chromatin,
karyorrhexis, and binucleated cells (in both the methanolic and aqueous extract groups),
compared to the use of ART alone. These findings suggest that the prescription of antiox-
idants or plant extracts with antioxidant properties could be beneficial for HIV-infected
individuals undergoing ART [54]. However, more studies on these aspects need to be per-
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formed before any clinical recommendation, especially considering the potential adverse
effects of herbal medicines and herb–drug interactions. Finally, Table 1 summarizes the
impacts of HIV infection and treatment on chromosomal integrity based on human studies
cited in this section.

Table 1. Summary of the impacts of HIV infection and treatment on chromosomal integrity based on
studies with humans.

Country Cell Type Investigated Main Findings References

Brazil Exfoliated oral cells

Increased mean of single MN in cells of
controls compared to those of HIV-infected
individuals; non-significant increase in the

occurrence of multiple micronuclei in cells of
HIV group compared to controls

Lima et al. [32]

South Africa Blood cells
MN frequencies were significantly higher in
irradiated lymphocytes from HIV-infected

individuals compared to controls

Baeyens et al. [33];
Herd et al. [34];
Herd et al. [35]

Italy Blood cells

Increased MN frequency in the HIV-infected
group (HCV co-infection and HIV-RNA load

being risk factors for increased MN
frequency); HIV-infected individuals with
undetectable viremia showed reduced MN

frequency compared to those with
uncontrolled viremia

Zizza et al. [36]

USA Reticulocytes

A 10-fold increase in micronucleated
reticulocyte frequencies was observed in

mothers and children pre-natal with
zidovudine-based ART compared to controls

Witt et al. [42]

India Exfoliated oral cells
HIV-infected individuals showed
significantly increased in MN rate
(~two-fold) compared to controls

Shah et al. [43]

Mexico Exfoliated oral cells

Higher frequencies of binucleated cells and
nuclear buds in both HIV-infected ART-naive

individuals and HIV-infected individuals
undergoing ART compared to HIV-negative
controls; karyorrhexis, binucleated cells, and
nuclear buds were found to be increased in a

subgroup of HIV-infected individuals
receiving RTIs as ART compared to controls

Gutiérrez-Sevilla et al. [44]

Mexico Exfoliated oral cells
Increased frequency of MN and other nuclear

abnormalities in HIV-infected individuals
undergoing ART compared to controls

Lazarde-Ramos et al. [54]

MN: micronucleus. RTIs: reverse transcriptase inhibitors.

Potential Lifestyle and Nutritional Interventions to Be Used in Association with ART

In addition to the potential benefits of plant-based extracts highlighted by Lazarde-
Ramos et al. [54], some lifestyles and nutritional habits can help to control genome insta-
bility, thus benefiting HIV-infected individuals undergoing ART. For example, reduced
MN frequency is associated with daily fruit consumption [8]. In this sense, proper intake
of micronutrients (e.g., antioxidant vitamins, selenium), regular physical activity, and
other behavior interventions (e.g., UV protection, cessation of tobacco smoking, and ade-
quate sleep/rest) can help reduce oxidative stress and HIV-related aging manifestations,
including genome instability [1,2,17,56,57]. Specifically concerning micronutrients, it is
essential to consider the potential deleterious effects of some nutrients, especially when
used in inappropriate doses. For example, selenium in excess can be detrimental (even
toxic) to humans [58,59]. High vitamin D levels can trigger inflammation in HIV-infected
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individuals [60], and vitamin D supplementation in individuals with proper plasma levels
of this micronutrient does not provide health benefits [61]. Recommendations for the
therapeutic use of micronutrients during HIV infection should be made by a qualified
health professional (e.g., physician, nutritionist), and it is essential to pay special attention
to the prescribed doses for each micronutrient.

Some studies suggest that a diet rich in anti-inflammatory compounds (food-derived
fibers, ω-3, magnesium, flavonoids, and carotenoids, among others), commonly observed
in Mediterranean diet patterns and ‘plant-based foods’, may help to control chronic inflam-
mation [62,63], being potentially beneficial for HIV-infected individuals undergoing ART
concerning inflammatory, metabolic, and immune markers [64–67]. However, therapeutic
strategies (from nutritional therapy to regular drugs) to control inflammation in chronic
HIV infection are still limited, indicating the need for more studies to focus on this issue.

3. Immunosenescence, HIV Infection and Chromosome Instability

The concept of immunosenescence includes a set of processes that culminate in a weak-
ening of the immune system following the course of aging, associated with increased mor-
bidity and mortality risks [68–70]. Immunosenescence-related processes include changes in
the innate and adaptive immune systems, with atrophy or involution of the thymus being
the first observed and best characterized process related to immunosenescence [69,70].
Thymus involution leads to a decrease in the production of naive T cells, which results
in an activation of further replication of pre-existing memory T cells in an attempt to
maintain a meaningful and still diverse repertoire [71,72]. Such increased replication re-
sults in ‘replicative senescence’, in which cells lose the ability to replicate over time until
they reach exhaustion [69,70]. T cell exhaustion also occurs when cells are chronically
exposed to high levels of antigens, leading to severe T cell dysfunction. This exhaustion
state triggers a deficient immune control of HIV infection. Consequently, chronic HIV
infection creates a vicious circle of infection-associated antigen production and a loss of
control of HIV infection [73]. Of note, inhibitory signals of T cell activation (e.g., PD-1,
TIGIT, LAG-3) [73] are linked to T cell exhaustion, persistent HIV infection, and disease
progression, even in individuals undergoing ART [74–76]. Following thymus involution,
the secretion of pro-inflammatory cytokines occurs, which correlates with a state of chronic
inflammation and, at the same time, a greater susceptibility to infections, autoimmunity,
and cardiovascular diseases, as well as other outcomes present in elderly individuals. Fur-
thermore, HIV-infected individuals with immunosenescence features show an acceleration
of progression to AIDS [69,70].

The profile of immune cells can be used as indicators of aging and to determine the
immunosenescence state [77]. The epigenetic clock (i.e., DNA methylation data, DNA
methylation-based estimate of telomere length) is a useful biomarker in detecting HIV-
related aging, a marker that usually indicates accelerated aging in HIV-infected individ-
uals [78,79]. Furthermore, telomere length is a pivotal marker of replicative history and
an indicator of biological aging, and telomere shortening is associated with chromosome
instability and immunosenescence [80–82]. In this context, multiple studies have shown
that inflammation, immune activation, and other factors related to HIV infection are as-
sociated with telomere shortening, which can contribute to immunosenescence, aging,
and age-related diseases in HIV-infected individuals [80,83–88]. The ‘oxi-inflamm-aging
theory’ is a concept of aging that describes this biological process as an association of
chronic, low-grade inflammation in association with oxidative stress, which prejudices the
homeostasis of the nervous, endocrine, and immune systems. This culminates in higher
morbidity and mortality [89].

Many causes of ‘inflamm-aging’ are related to chromosome instability, such as defec-
tive autophagy/mitophagy, the activation of inflammasome by cell debris and misplaced
self-molecules, and DDR activation [90]. Cell senescence is, at least partially, a result of
chromosomal damage accumulation and defective cell-cycle functioning. Genome instabil-
ity, expressed by nuclear anomalies and chromosomal aberrations, can lead to defective
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cell division, apoptosis, cell-cycle arrest, and carcinogenesis [91–93]. Furthermore, MN
frequency increases with aging and is associated with less proliferative lymphocytes [94].
Additionally, increased genomic instability and MN formation have an impact on lympho-
cyte function and immunosenescence [93]. Chromosome instability and immunosenescence
are therefore connected processes that can form a vicious circle, which can be aggravated
by HIV infection.

Immunoscenence is also associated with insertions of mitochondrial sequences into
the nuclear DNA of T lymphocytes, which increased progressively with aging [93]. ROS
generation in the mitochondria (mitROS) could damage/fragment mtDNA, with such
fragments accumulating into the nuclear genome. mtDNA insertions may compromise
chromosome segregation and cause increasing genomic instability and MN formation
in lymphocytes, forming cells with a reduced proliferation capacity and an increase in
apoptosis, which are typical immunosenescence markers. These processes may affect the
balance of cell division, differentiation, senescence, and death, which is essential for the
maintenance of tissue homeostasis. These processes could be a major contributing factor
to aging and even cancer formation [93,95,96]. A robust body of evidence supports the
occurrence of increased mtDNA damage and mitochondrial dysfunction in different cell
types of HIV-infected individuals, including neuronal cells [97–103]. It is worth noting that
mtDNA damage may be associated with HIV-related neurocognitive disorders [100,101].

The immune system in the context of HIV infection is severely weakened in individu-
als who progress to AIDS, usually in the absence of ART. However, even in individuals who
receive adequate treatment and maintain an undetectable viral load, there are important
and broad health consequences that cannot be overlooked [69,104]. In the context of im-
munosenescence, there is an acceleration of the processes that lead to the premature aging
of the immune system, mainly because there is an increased activation of the response
mechanisms due to the infection and associated features (e.g., co-infections, inflamma-
tion, and comorbidities). This increased activation results in greater cell replication and
death associated with antiviral responses, which lead to the exhaustion of the immune
system [105,106]. Furthermore, even the main pathway that leads to immunosenescence,
which is thymus involution, is present at an early stage in HIV-infected individuals, as well
as other damages in tissues that are important for the proper functioning of the immune
system, such as bone marrow and liver tissue. Taken together, there is a prominent and
premature aging of the immune system in HIV-infected individuals, with young people
sometimes presenting clinical signs or immune features of individuals in their 40s [69].
This reverberates on multiple health aspects, including increased chromosome instability
and associated risks.

4. Conclusions

The impact of HIV infection on chronic inflammation and chromosome instability is an
emerging topic, especially because HIV infection is currently considered a chronic disease
in many countries. In conclusion, both HIV and ART can cause chromosome instability,
leading to MN formation and other chromosome aberrations (Table 1). Inflammation and
immunosenescence are both the cause and consequence of chromosome instability. HIV
infection also triggers inflammation by other mechanisms. Age-related diseases result,
directly or indirectly, from (I) chromosome instability, (II) inflammation, and (III) HIV
infection. These connections are summarized in Figure 2. Of note, these connections must
be interpreted while taking into account classic environmental and lifestyle factors that can
also trigger chromosomal instability, inflammation, and associated diseases (smoking habits,
heavy metals, pollutants, and obesity, among many others) [8,107–109]. Dietary and lifestyle
interventions, including reduced exposure to genotoxins and an antioxidant-rich diet, could
be considered to mitigate the deleterious effects of HIV infection on DNA integrity.
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