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Abstract: T-cell immunoglobulin mucin-3 (Tim-3) is an important checkpoint that induces maternal–
fetal tolerance in pregnancy. Macrophages (Mϕs) play essential roles in maintaining maternal–fetal
tolerance, remodeling spiral arteries, and regulating trophoblast biological behaviors. In the present
study, the formation of the labyrinth zone showed striking defects in pregnant mice treated with Tim-
3 neutralizing antibodies. The adoptive transfer of Tim-3+Mϕs, rather than Tim-3−Mϕs, reversed the
murine placental dysplasia resulting from Mϕ depletion. With the higher production of angiogenic
growth factors (AGFs, including PDGF-AA, TGF-α, and VEGF), Tim-3+dMϕs were more beneficial
in promoting the invasion and tube formation ability of trophoblasts. The blockade of AGFs in
Tim-3+Mϕs led to the narrowing of the labyrinthine layer of the placenta, compromising maternal–
fetal tolerance, and increasing the risk of fetal loss. Meanwhile, the AGFs-treated Tim-3−Mϕs could
resolve the placental dysplasia and fetal loss resulting from Mϕ depletion. These findings emphasized
the vital roles of Tim-3 in coordinating Mϕs-extravillous trophoblasts interaction via AGFs to promote
pregnancy maintenance and in extending the role of checkpoint signaling in placental development.
The results obtained in our study also firmly demonstrated that careful consideration of reproductive
safety should be taken when selecting immune checkpoint and AGF blockade therapies in real-world
clinical care.
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1. Introduction

The establishment of successful placentation and maternal–fetal tolerance are the
basis of a successful pregnancy. Extravillous trophoblasts (EVTs) are the dominant cell
type involved in the process of placentation, invading deeply into the maternal decidua
and uterine blood vessels, dissolving the extracellular matrix, remodeling the uterine
vasculature, and coming into direct contact with the maternal decidua immune cells (DICs).
The precise regulation of EVT invasion and remodeling of spiral arteries are key events
of placentation [1]. As a result of placentation, the maternal immune system has to adapt
to tolerate the semi-allogeneic fetus while maintaining maternal immune competence.
Inadequate placental development and impaired tolerance induction have been found to be
closely related to several pregnancy-associated diseases, including recurrent spontaneous
abortion (RSA), pre-eclampsia, and fetal growth retardation [2].

Interactions between fetal-derived EVTs and DICs are critical to placental development.
EVTs can modulate DICs to adopt a unique phenotype in order to tolerate the fetus [3,4].
Meanwhile, it has been noticed that DICs present in the vicinity of EVTs and play positive
roles in EVT invasion and vascular remodeling [5,6]. As the most important specialized
antigen-presenting cells in the decidua, macrophages (Mϕs) are the second most abundant
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leucocytes (comprising 10–20% of the DICs) at the maternal–fetal interface. On the one hand,
EVTs are able to modulate Mϕ polarization and alter the state of the maternal–fetal immune
microenvironment; on the other hand, Mϕs can affect the invasiveness and migration of
EVTs [7]. Mϕs can be polarized into type 1 Mϕs (M1) and type 2 Mϕs (M2) in the presence
of molecular mediators and environmental cues. With high expressions of IL-12, TNF-α,
CD80, and CD86, M1 shows greater effectiveness in antigen clearance and switching the
T-cell responses to the Th1 immune response. M1 has also been reported to compromise
the migration and invasion of trophoblasts [8]. In contrast, with a phenotype with high
expressions of IL-10, CD206, CD163, and CD209, M2 has a greater immunosuppressive
capacity and plays a constructive role in tissue remodeling, as well as promoting Th2
immune responses. M2 can induce trophoblast migration and invasion [9].

T-cell immunoglobulin mucin-3 (Tim-3) is a co-signaling molecule that is widely ex-
pressed on the surface of macrophages as well as many other immune cells [10]. The role of
Tim-3 in Mϕs is complicated and controversial under different microenvironment condi-
tions. For instance, it was reported that Tim-3 inhibits the autoantigen presentation of Mϕs
by suppressing MHC-II expression, inducing immune tolerance in multiple sclerosis [11].
Meanwhile, in diabetic nephropathy, Tim-3 was also found to promote Mϕ activation and
aggravate podocyte injury [12]. During pregnancy, Tim-3+ decidual Mϕs (dMϕs) led to the
Th2 and Treg bias of decidual CD4+T (dCD4+T) cells and improved pregnancy maintenance
through CD132 [13]. Furthermore, the Tim-3 blockade decreased the phagocytic properties
of the dMϕs and induced a failure to clear dead and apoptotic cells from the uterus [14].

Our previous study reported that, as a whole, DICs promote EVT function and placen-
tal development, and Tim-3 signals regulate this process [6]. We also described the role of
Tim-3 in dMϕs as a key factor affecting maternal–fetal tolerance in pregnancy. Nonetheless,
the interaction between the primary EVTs and specific maternal DIC subsets and the related
mechanisms require further study. As dMϕs can affect the biological functions of EVTs, can
Tim-3 affect placental development by regulating the function of dMϕs? If so, what is the
mechanism? With these questions in mind, we explored the role of Tim-3 in the crosstalk of
dMϕs and primary EVTs or HTR8/SVneo cells (immortalized human first-trimester EVTs
cell line) in vitro. The involvement of Tim-3/Mϕ in the maintenance of pregnancy and
development of the placenta was also explored in a normal pregnancy mouse model with
Mϕ depletion and adoptive transfer treatment.

2. Results
2.1. Effects of dMϕs on the Trophoblasts after Targeting Tim-3

Our study was primed by the discovered effect of the Tim-3 blockade on the labyrinth
of pregnant mice. Severe defects in the formation of the labyrinth zone were observed
in the pregnant mice that were challenged with Tim-3 blocking antibody (Figure 1A). As
dMϕs affect the biological behaviors of EVTs and Tim-3 signals regulate dMϕ function,
we decided to confirm whether the abnormal placental development caused by Tim-3
blockade was a result of dMϕ dysfunction. Firstly, we focused on the effects of the
dMϕs on the trophoblasts after targeting Tim-3. During EVT invasion, two important
gelatinases, matrix metalloproteinase-2 (MMP2) and MMP9, are involved in extracellular
matrix remodeling [15]. Here, we found that dMϕs upregulated the expression of MMP2
and MMP9 in the primary EVTs (Figure 1B). A transwell assay showed an increased number
of penetrating HTR8/SVneo cells in co-culture with the dMϕs (Figure 1C). As EVTs interact
directly with endothelial cells during spiral artery remodeling, we established a co-culture
system with human umbilical vein endothelial cells (HUVECs) to assess the tube formation
ability of the HTR8/Svneo cells. The dMϕs were observed to promote tube formation
by the HUVECs and HTR8/SVneo cells co-culture system, implying the ability of the
dMϕs to promote HUVEC capillary formation (Figure 1D). However, the anti-Tim-3 mAb
pretreatment notably attenuated the improvement of the trophoblast invasion and tube
formation capacity presented by the dMϕs (Figure 1B–D). These observations indicated
that, in addition to a direct influence on the immune function of the dMϕs themselves [13],
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Tim-3 blockade also further affected the interaction between the dMϕs and EVTs, resulting
in placental dysplasia.
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Figure 1. Effects of dMϕs on trophoblasts after targeting Tim-3. (A) Representative placental hemisec-
tions with H&E staining from GD 10.5 mice. Tim-3 blockade caused significantly narrowed placental
labyrinth zone (LZ), n = 3–6 mice per group. (B) MMP2 and MMP9 by extravillous trophoblasts
(EVTs) after treatment with dMϕs (pretreated with or without 10 µg/mL anti-Tim-3). (C) Matrigel
invasion assays after indicated treatment of HTR8/SVneo cells. (D) Immunofluorescent assay for
the 3D tubes formed by HTR8/SVneo cells (green) and HUVECs (red) following treatment with
dMϕs (pretreated with or without 10 µg/mL anti-Tim-3) at 4 h. Data represent the mean ± standard
error of the mean (SEM). ** p < 0.01, *** p < 0.001, **** p < 0.0001, compared with the control group.
# p < 0.05, ## p < 0.01, ### p < 0.001, #### p < 0.0001, compared with the group of dMϕ.

2.2. Tim-3+dMϕs Were More Beneficial in Promoting the Invasion and Tube Formation Abilities
of Trophoblasts

To further confirm that Tim-3 regulates dMϕs function, affecting trophoblast biological
behaviors and placental development, RNA-seq was performed to evaluate the differences
between the Tim-3+ and Tim-3−dMϕs. The enrichment analysis of the GO term showed
that, in addition to immune regulation, the significantly upregulated genes of Tim-3+dMϕs
were mainly enriched in angiogenesis, blood vessel development, sprouting angiogenesis,
and so on (Figure 2A). In comparison with the Tim-3−dMϕs, the Tim-3+dMϕs showed a
stronger capacity in promoting trophoblast invasion (Figure 2B,C) and the tube formation
of the HTR8/SVneo cells and HUVECs co-culture system (Figure 2D,E).

The effects of the Mϕ depletion and adoptive transfer of the Tim-3−Mϕs or Tim-
3+Mϕs on the labyrinth zone development were evaluated to provide direct visual insight
into the role of Tim-3+Mϕs in placental development in vivo. As shown in Figure 2D, the
depletion of Mϕs after conception caused a significant narrowing of the placental labyrinth
zone. Tim-3−Mϕs and Tim-3+Mϕs were isolated from the splenocytes of the pregnant mice
and transferred to Mϕ-depleted ones, and it was observed that the adoptive transfer of
Tim-3+Mϕs, rather than Tim-3−Mϕs, could significantly reverse the placental dysplasia
resulting from Mϕ depletion (Figure 2F).
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Figure 2. Tim-3+dMϕs were more beneficial to promote invasion and tube formation ability of
trophoblasts. (A) Enriched Gene Ontology term pathways of differential gene clustering between
Tim-3−dMϕs and Tim-3+Mϕs from human normal first-trimester pregnancy. (B,C) Matrigel invasion
assays of HTR8/Svneo cells following treatment of Tim-3−dMϕs or Tim-3+dMϕs. Data represent
the mean ± SEM. ** p < 0.01, *** p < 0.001, compared with the ctrl group. ### p < 0.001, compared
with the group of Tim-3−dMϕ. (D,E) Immunofluorescent assay at 4 h of the 3D tube formation by
HTR8/SVneo cells (green) and HUVECs (red) with indicated treatments. (F) H&E-stained placen-
tal hemisections from pregnant mice with Mϕ depletion and adoptive transfer of Tim-3+Mϕs or
Tim-3−Mϕs at GD 10.5, n = 3–6 mice per group.

2.3. Tim-3+dMϕs Promoted the Invasion and Tube Formation Ability of Trophoblasts through
Angiogenic Growth Factors

We considered why Tim-3+dMϕs are more beneficial in promoting the invasion and
angiogenesis of trophoblasts than Tim-3−dMϕs. There were 20 different angiogenesis- and
sprouting angiogenesis–related genes between the Tim-3+ and Tim-3−dMϕs (Figure 3A).
Among them, EPAS1 attracted our interest, as the protein product of the EPAS1 gene is
a hypoxia-inducible transcription factor (HIF)-2α. HIF-2α plays a critical role in regulat-
ing the cellular functions of trophoblasts [16,17]. Then, we confirmed the difference in
the expressions of HIF-2α between the Tim-3+ and Tim-3−dMϕs using flow cytometry
(Figure 3B). Furthermore, the frequency of HIF-2α+Tim-3+Mϕs in the RSA patients was
much lower than that in normal pregnancy (Figure 3C). However, for unknown reasons,
we failed to establish HIF-2α-knockdown cell models in both the primary dMϕs and
THP1-derived Mϕs.

HIF is critical to the upregulation of angiogenic growth factors (AGFs), including
vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), trans-
forming growth factor α (TGF-α), angiopoietins, and so on [18,19]. The production of
growth factors by the Tim-3+dMϕs and Tim-3−dMϕs was detected using a Multi-Analyte
Flow Assay Kit. We found that the Tim-3+dMϕs produced more PDGF-AA, TGF-α, and
VEGF than the Tim-3−dMϕs (Figure 3D). Meanwhile, the production of angiopoietin-2,
epidermal growth factor, placental growth factor, and PDGF-BB showed no differences
between the Tim-3+dMϕs and Tim-3−dMϕs (Figure S1).
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Figure 3. Tim-3+dMϕs promoted invasion and tube formation ability of trophoblasts through an-
giogenic growth factors. (A) Differential expression of angiogenesis- and sprouting angiogenesis–
related mRNAs between Tim-3+dMϕs and Tim-3−dMϕs from RNA microarray assay. (B) Flow
cytometry plots and quantifications of HIF-2α (the protein product of EPAS1 gene) by human Tim-
3+dMϕs and Tim-3−dMϕs (n = 9). * p < 0.05. (C) Flow cytometric analysis and quantification of
HIF-2α on human Tim-3+dMϕs between normal pregnancies (NP, n = 11) and patients diagnosed
with recurrent spontaneous abortion (RSA, n = 8). * p < 0.05. (D) Levels of PDGF-AA, TGF-α, and
VEGF in supernatants of Tim-3+ and Tim-3−dMϕs. * p < 0.05. (E,F) Matrigel invasion assays of
HTR8/SVneo cells following treatment with Tim-3+dMϕs (pretreated with or without anti-PDGF-
AA antibody, and/or anti-TGF-α antibody, and/or anti-VEGF antibody). (G,H) Immunofluorescent
assay at 4 h of the 3D tube formation by HTR8/SVneo cells (green) and HUVECs (red) with indi-
cated treatment. Data represent the mean ± SEM. ** p < 0.01, *** p < 0.001, compared with group a.
# p < 0.05, ## p < 0.01, compared with group b. a: Ctrl, b: Tim-3+dMϕs, c: Tim-3+dMϕs+α-PDGF-AA,
d: Tim-3+dMϕs+α-TGF-α, e: Tim-3+dMϕs+α-VEGF, f: Tim-3+dMϕs+α-PDGF-AA+α-TGF-α+α-VEGF.

Are these AGFs the reason why Tim-3+dMϕs could promote the invasion and tube
formation ability of trophoblasts to a greater extent than the Tim-3−dMϕs? As shown
in Figure 3E–H, the Tim-3+dMϕs pretreated with anti-PDGF-AA, anti-TGF-α, or anti-
VEGF antibody alone slightly attenuated the promoting effect of the Tim-3+dMϕs on the
invasion and tube formation ability of the HTR8/SVneo cells. Additionally, this effect was
especially conspicuous in the triple blockade of these AGFs. These observations indicated
that Tim-3+dMϕs promote the invasion and tube formation ability of trophoblasts in an
AGF-dependent manner.
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2.4. The Protective Effect of Tim-3+Mϕs on Murine Pregnancy Was Counteracted by
AGFs Blockade

The adoptive transfer of Tim-3+Mϕs could markedly alleviate the murine fetal loss [13]
and placental dysplasia (Figure 2D) induced by Mϕ depletion. We further checked out
whether the blockade of AGFs could regulate the effect of Tim-3+Mϕs adoptive transfer.
The blockade of the AGFs counteracted the protective role of Tim-3+Mϕs adoptive transfer
in the pregnancies of Mϕ-depleted mice. Compared with the group that underwent
transfer with Tim-3+Mϕs, the additional treatment with anti-PDGF-AA, anti-TGF-α and
anti-VEGF antibodies increased the risk of fetal loss (Figure 4A), with a higher rate of
embryo resorption (Figure 4B) and narrowed placental labyrinth zone (Figure 4C). The
flow cytometry analysis revealed an increased expression of CD80, CD86, and IL-23/23
in the dF4/80+ cells from the treated mice (Figure 4D). In addition, the blockade of the
AGFs also compromised dCD4+T-cell tolerance with the downregulated IL-4 and TGF-β1
expression and upregulated TNF-α and IL-17A expression of the dCD4+T cells. In general,
these data demonstrated the capacity of Tim-3+Mϕs for promoting placental development
and inducing Th2 and Treg bias in dCD4+T cells via AGFs, which is vital for maternal–fetal
tolerance and pregnancy maintenance.
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Figure 4. The protective effect of Tim-3+Mϕs on murine pregnancy was counteracted by AGF block-
ade. (A–C) Representative images of uterus (A), statistics of the percentage of fetal resorption (B), and
representative images of placental hemisections (H&E-stained) (C) of pregnant mice after Mϕ de-
pletion and adoptive transfer of indicated Tim-3+Mϕs. Fetal loss sites were identified as necrosis
and hemorrhagic spots (shown with red arrows). (D) Representative images of flow cytometry and
quantifications of surface molecule and cytokine expression of dF4/80+ cells from pregnant mice
after Mϕ depletion and the indicated adoptive transfer. (E) Cytokine expression of dCD4+ T cells of
pregnant mice after Mϕ depletion and the indicated adoptive transfer. Data represent mean ± SEM
(n = 5–11). * p < 0.05, ** p < 0.01, *** p < 0.001, compared with group 1.
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2.5. AGFs-Treated Tim-3−Mϕs Enhanced the Invasion and Tube Formation Ability of Trophoblasts
and Resolved Murine Fetal Loss Induced by Mϕ Depletion

The pretreatment with Tim-3−dMϕs combined with recombinant PDGF-AA, TGF-α,
and VEGF significantly enhanced the invasion of the HTR8/SVneo cells (Figure 5A,B)
and the tube formation of the co-culture system of HTR8/SVneo cells and HUVECs
(Figure 5C,D). However, the promotion effect of any single AGF treatment was not obvious.
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Figure 5. AGFs-treated Tim-3−Mϕs enhanced the invasion and tube formation ability of tro-
phoblasts. (A,B) Matrigel invasion assays of HTR8/SVneo cells treated with indicated Tim-3−dMϕs
(pretreated with or without PDGF-AA, and/or TGF-α, and/or VEGF). (C,D) Immunofluorescent
assay at 4 h of the 3D tube formation by HTR8/SVneo cells (green) and HUVECs (red) with indicated
treatment. Data represent the mean ± SEM. * p < 0.05, ** p < 0.01, compared with the group a.
# p < 0.05, ### p < 0.001, compared with group b. a: Ctrl, b: Tim-3−dMϕs, c: Tim-3−dMϕs+PDGF-AA,
d: Tim-3−dMϕs+TGF-α, e: Tim-3−dMϕs+VEGF, f: Tim-3−dMϕs+PDGF-AA+TGF-α+VEGF.

The pretreatment with Tim-3−Mϕs combined with recombinant PDGF-AA, TGF-α,
and VEGF also resolved the fetal resorption and narrowing of the placental labyrinth zone
induced by Mϕ depletion (Figure 6A–C), accompanied by increased IL-10 expression by
the dMϕs (Figure 6D) and IL-4 and TGF-β1 expression by the dCD4+T cells (Figure 6E).
Meanwhile, the CD80, CD86, and IL-23/23 expression by the dMϕs (Figure 6D) and TNF-α
and IL-17A expression by the dCD4+T cells were decreased (Figure 6E). Taken together with
our data obtained in vitro and in vivo, Mϕs play important roles in the regulation of EVT
biological behaviors and maternal–fetal tolerance, and Tim-3 may participate in Mϕs-EVTs
crosstalk through AGFs and thus play a regulatory role in pregnancy maintenance.
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Figure 6. AGFs-treated Tim-3−Mϕs also alleviated murine fetal loss resulting from Mϕ depletion.
(A–C) Representative images of uterus (A), statistics of the percentage of fetal resorption (B), and
placental hemisections (H&E-stained) (C) of pregnant mice after Mϕ depletion and adoptive transfer
of indicated Tim-3−Mϕs. (D) Representative images of flow cytometry and quantifications of surface
molecule and cytokine expression on dMϕs from pregnant mice after Mϕ depletion and adoptive
transfer. (E) Cytokine expression of dCD4+ T cells from pregnant mice after Mϕ depletion and the
indicated adoptive transfer. Data represent mean ± SEM (n = 4–8). * p < 0.05, ** p < 0.01, *** p < 0.001,
compared with group 1.

3. Discussion

Successful pregnancy is a complicated process involving interactions between the fetal
trophoblasts and maternal immune system, which requires maternal tolerance toward the
semi-allogeneic fetus as well as sufficient placental formation. It has been recognized that
dMϕs are stimulated while maintaining the critical equilibrium between functionality and
the suppression of excessive inflammation and, ultimately, promoting EVT invasion and
placental development [20]. dMϕs are recognized as M2 in normal pregnancy. However,
an increasing wealth of evidence indicates that the initial classification scheme of dMϕs is
an over-simplification [21,22]. We previously reported that Tim-3+dMϕs and Tim-3−dMϕs
were neither precisely M1 nor M2. Compared to Tim-3−dMϕs, Tim-3+dMϕs produced
more cytokines (both anti-inflammatory and inflammatory) [13]. These results seemed
to contrast with the widely accepted notion that the maternal–fetal interface is mainly
an anti-inflammatory environment. However, our finding aligned more closely with the
hypothesis that immune activation is required to facilitate the invasion of EVTs.

In the current study, we employed primary EVTs from human first-trimester preg-
nancies and the well-characterized cell line of HTR8/SVneo cells, demonstrating that
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Tim-3+dMϕs, rather than Tim-3−dMϕs, were more effective in promoting the invasion
and tube formation ability of trophoblasts. The adoptive transfer of Tim-3+Mϕs reduced
the resorption rate that resulted from Mϕ depletion via the improvement of placental
development and promotion of the maternal immune responses toward Th2 and Treg
bias, further confirming the notable role of the Tim-3+dMϕs in regulating EVT biological
behaviors and maternal–fetal tolerance, leading to the harmonious maternal–fetal crosstalk.

Further investigations showed that the expression of the EPAS1 gene was higher
in Tim-3+dMϕs than that in Tim-3−dMϕs. The protein product of the EPAS1 gene is
HIF-2α, which is associated with the activation of Mϕs [23], placenta development, and
angiogenesis [16,17]. However, for unknown reasons, we failed to establish cell models
with HIF-2α-knockdown in both the primary dMϕs and THP1-derived Mϕs. Although
EPAS1+/− mice exist, plasmids or lentiviruses that can efficiently knock down HIF-2α in
human dMϕs require further development.

The differentially expressed HIF-2α inspired us to perform further analyses, as HIF
is critical for the upregulation of AGFs [18,19]. We found that the Tim-3+dMϕs produced
more AGFs, including PDGF-AA, TGF-α, and VEGF, than the Tim-3−dMϕs. These AGFs
are reported to take part in the angiogenic process of placentation [24,25]. The promotion
effect of the Tim-3+dMϕs on the invasion and tube formation ability of the HTR8/SVneo
cells and the protective role of the Tim-3+Mϕs in murine pregnancy was notably attenuated
by the triple blockade of these AGFs. Meanwhile, the AGF-treated Tim-3−Mϕs enhanced
the invasion and tube formation ability of the trophoblasts and reduced the murine fetal
loss that resulted from Mϕ depletion. In addition to the pro-angiogenic effect, VEGF can
also support the accumulation of Tregs and myeloid cells and facilitate the immunosup-
pressive activities of Tregs within tumors [26]. TGF-α and PDGF-AA were also reported to
partake in the regulation of antitumor immunity [27,28]. The present study confirmed that
PDGF-AA, TGF-α, and VEGF affected the tolerance of dMϕs and dCD4+T cells. Thus,
in our study, Tim-3+Mϕs contributed to pregnancy maintenance via AGFs not only by
promoting placental development but also by inducing maternal–fetal tolerance.

As novel strategies for the treatment of chronic infections and tumors, the blockade of
co-inhibitory receptors is widely used to improve immune cell responses [29,30]. Tim-3, cy-
totoxic T-lymphocyte-associated protein 4 (CTLA-4), and programmed cell-death receptor
1 (PD-1) are the major targetable checkpoints of the immune system. The lack of systematic
responses has been regarded as the limitation of co-inhibitory receptor blockade in cancer
therapies [31]. The crosstalk between the tumor vasculature and immune microenviron-
ment contributes to the immune evasion of tumors; thus, combined therapy regimens
targeting both checkpoints and vascular factors can provide a promising strategy for elic-
iting sustainable and potent antitumor immune responses. For example, injection with
combinable antibodies against both PD-1 and TGF-α prolonged the survival of melanoma-
bearing mice [28]. In cancer therapy, anti-VEGF treatment enhanced the efficacy of the
PD-L1 blockade by regulating either the T-cell responses or Mϕ-T-cell crosstalk [32,33]. In
pregnancy, anti-Tim-3 clearly suppressed placental development and maternal–fetal toler-
ance [13]. Although viable pregnancies were reported in patients treated with PD-1 and
CTLA-4 checkpoint inhibition [34,35], there was no clinical report regarding the application
of Tim-3 antagonists during pregnancy. Furthermore, growth factors derived from DICs are
also important for fetal development [36]. To sum up, it is undeniable that the reproductive
safety of the pregnancies must be taken into consideration, especially during combined
therapy targeting immune checkpoint and/or vascular factors.

In summary (Figure 7), we conclude that Tim-3 signals play regulatory roles in
the dialogue between Mϕs and trophoblasts in the immune microenvironment at the
maternal–fetal interface. EVTs promoted Tim-3+Mϕs expansion with the engagement of
HLA-C/G. With a higher expression of CD132 [13], Tim-3+dMϕs induced dCD4+T cells
toward Th2 and Treg bias. Here, Tim-3 was found to not only induce maternal–fetal toler-
ance but also promote the EVT function through Mϕs-EVTs crosstalk dependent on AGFs
(including PDGF-AA, TGF-α, and VEGF). These findings contributed to our knowledge of
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the important mechanism of the Mϕ regulation of EVTs during pregnancy, which helps us
to understand at least part of the complex processes of human implantation and pregnancy
maintenance. The current study also extended our knowledge of the role of checkpoint
signaling in placental development. Targeting immune checkpoints and AGFs are re-
garded as new strategies for antitumor therapy. Again, individualized decisions should be
made with careful consideration of the potential benefits and risks for reproductive safety,
with an awareness of the risk of adverse pregnancy outcomes and the unknown risk for
offspring development.
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Figure 7. Schematic diagram of functional regulation of Tim-3 on Mϕs-trophoblasts crosstalk during
pregnancy. Previously, we reported EVTs induced the higher Tim-3 expression on dMϕs in nor-
mal pregnancy in an HLA-C-dependent manner. With higher expression of CD132, Tim-3+dMϕs
induced dCD4+T cells toward Th2 and Treg bias and promoted pregnancy maintenance. The current
study revealed that Tim-3+dMϕs promoted invasion and tube formation ability of trophoblasts
through AGFs (PDGF-AA, TGF-α, and VEGF). These AGFs derived from Tim-3+dMϕs also helped
to promote Th2 and Treg bias in dCD4+T cells. The blockade of Tim-3 or AGFs resulted in placental
dysplasia and dysfunction of maternal–fetal tolerance. While AGFs-treated Tim-3−Mϕs could also
partially resolve the fetal resorption resulting from Mϕ depletion. Thus, Tim-3 not only promoted
maternal–fetal tolerance but also improved EVT function through Mϕs-EVTs interaction to promote
pregnancy maintenance.

4. Materials and Methods
4.1. Human Samples

Decidual and villous tissues of the uterine curettage and whole blood from the pe-
ripheral were collected from women who had miscarriages and were diagnosed with RSA,
excluding cases of genetic, anatomic, and endocrine abnormalities, infection, etc., (n = 8) and
women who underwent clinically normal pregnancies of human first-trimester pregnancies
that were terminated for non-medical reasons, with no history of spontaneous abortions
and at least one successful pregnancy (n = 55). Peripheral blood was also collected from
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normal non-pregnant women of childbearing age (n = 9). Primary trophoblast cells were
isolated from the freshly collected villi through digestion by trypsin-DNase I (Applichem,
Darmstadt, Germany) and discontinuous centrifugation with Percoll gradient, as described
previously [37]. DICs were isolated from the decidual tissues, which were subjected to di-
gestion by DNase I (150 U/mL; Applichem, Darmstadt, Germany) and collagenase type IV
(1.0 mg/mL, CLS-1; Worthington Biomedical, Lakewood, NJ, USA) in RPMI 1640 (HyClone,
Logan, UT, USA) supplement [37]. A magnetic affinity cell-sorting kit (MiltenyiBiotec,
North Rhine-Westphalia, Germany) was used for the CD14+ cells isolation. The cell sorting
of the Tim-3+ and Tim-3−Mϕs was conducted using either the BD FACSAriaTM III Cell
Sorter with FITC-conjugated anti-human CD14 antibodies and PE-conjugated anti-human
Tim-3 antibodies or the Monocyte Isolation Kit with anti-Tim-3 antibodies and Anti-Biotin
MicroBeads (MiltenyiBiotec, North Rhine-Westphalia, Germany).

4.2. Cell Treatment

The trophoblasts freshly isolated from the villi were seeded in 24-well plates, pre-
coated with diluent Matrigel (Corning, NY, USA) overnight, and cultured at a density of
2 × 105 cells/mL in high-glucose medium (Hyclone, Logan, UT, USA). The HTR8/SVneo
cells were cultured with DMEM/F12 medium (Hyclone, Logan, UT, USA) supplemented
with 100 U/mL penicillin, 1 µg/mL amphotericin B, 100 µg/mL streptomycin, and 10%
fetal bovine serum (FBS) at 37 ◦C with 5% CO2. The sorted Tim-3+Mϕs, Tim-3−Mϕs, or
dMϕs were cultured in RPMI 1640 medium (HyClone, Logan, UT, USA) with 100 U/mL
penicillin, 100 µg/mL streptomycin, 1 µg/mL amphotericin B, and 10% FBS at 37 ◦C with
5% CO2. In some cases, the dMϕs were pretreated with 10 µg/mL anti-Tim-3 antibodies
(clone F38-2E2, Biolegend, San Diego, CA, USA) or 5 µg/mL anti-PDGF-AA (PeproTech,
Cranbury, NJ, USA), 5 µg/mL anti-TGF-α (PeproTech, Cranbury, NJ, USA), and 5 µg/mL
anti-VEGF (PeproTech, Cranbury, NJ, USA), with all of these three antibodies or isotypes
as control. Meanwhile, Tim-3−Mϕs were treated with PDGF-AA (50 ng/mL; PeproTech,
Cranbury, NJ, USA), TGF-α (50 ng/mL; PeproTech, Cranbury, NJ, USA), VEGF (50 ng/mL;
PeproTech, Cranbury, NJ, USA), and all three of these growth factors or medium were used
as a control. The HUVECs were cultured with DMEM/F12 medium (HyClone, Logan,
UT, USA), supplemented with 100 U/mL penicillin, 1 µg/mL amphotericin B, 100 µg/mL
streptomycin, and 10% FBS at 37 ◦C with 5% CO2.

4.3. Matrigel Invasion Assay

The EVTs or HTR8/SVneo cells (1.6 × 104 in 200 µL of medium) were seeded in the
upper chamber (pretreated with Matrigel at 4 ◦C overnight) in a 24-well plate. In total,
2.5 × 105 Tim-3+Mϕs, Tim-3−Mϕs, or dMϕs (pretreated with recombinant cytokines or
antibodies as described earlier) were seeded with 500 µL medium in the lower chamber
and incubated at 37 ◦C for 48 h. The lower surfaces of the insert chambers were fixed with
4% paraformaldehyde and stained with hematoxylin. After the removal of the Matrigel
and non-invading cells on the upper surfaces of the chambers, images were taken with
a microscope (BX51tDP70; Olympus, Tokyo, Japan), and the cells were counted under a
100× magnification. The experiments were carried out in triplicate and repeated at least
two more times independently.

4.4. Tube Formation Assay

The cell tube formation assay was carried out using a 3D Matrigel scaffold in vitro to
determine the tube-forming ability of the cells. Pre-cooled Matrigel (9.9 mg/mL, 356234;
BD Biosciences, San Jose, CA, USA) at 50µL per well was carefully coated onto 96-well
plates and left for 30 min at 37 ◦C to polymerize. The HTR8/SVneo cells stained with
cell tracker green (C2927; Invitrogen, Waltham, MA, USA), which were pretreated with
recombinant growth factors or antibodies, as described earlier, and HUVECs fluorescently
stained with cell tracker red (C2925; Invitrogen, Waltham, MA, USA), were both seeded at
2.0 × 104 cells per well with 100 µL DMEM/F12 medium. After 4 h of incubation, the cells
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were visualized under a microscope, and representative images were taken. The images
were later analyzed for junction point counts and tube counts using Image J software
(National Institutes of Health, Bethesda, MD, USA). The experiments were carried out in
triplicate and repeated at least three times independently.

4.5. RNA-Seq Data Analysis

The RNeasy Mini Kit (Qiagen, Hilden, Germany) was used to extract the total RNA
of the sorted Tim-3+dMϕs or Tim-3−dMϕs, and the purity and integrity of RNA were
measured using an Agilent Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA, USA).
The enriched cDNA libraries were sequenced through an Illumina Hi-seq 2500 platform.
Sequence alignment between sequenced genes and the human reference genome was
performed using STAR. The gene count was acquired using HTSeq-count, and differential
expression between Tim-3+dMϕs and Tim-3−dMϕs group was analyzed using DE-Seq.
The threshold of significant difference was defined as p < 0.05. The related signaling
pathways enriching differential genes were performed through gene ontology analysis.

4.6. Mice

Eight-week-old CBA/J females from Huafukang Bioscience Co. (Beijing, China) were
mated with BALB/c males from SLAC Laboratory Animal Co. (Shanghai, China) to induce
normal pregnancy (NP). Vaginal plugs inspected in the morning were viewed as indicators
of mating, and that morning was regarded as day 0.5 of pregnancy (GD 0.5). Isotype IgG or
anti-Tim-3 antibodies (clone RMT3-23, Biolegend, San Diego, CA, USA) i.p. were applied to
some pregnant females at dosages of 500, 250, and 250 mg on GD 4.5, GD 6.5, and GD 8.5,
respectively, based on our previous publications [13].

For further investigation, Mϕ depletion and subsequent adoptive transfer were con-
ducted. Clodronate liposomes were applied to deplete the Mϕs at GD 0.5 (200 µL i.p.)
and GD 3.5 (100 µL i.p.). Splenocytes of the pregnant CBA/J mice (GD 7.5) were collected
and sorted for Tim-3+ and Tim-3−F4/80+ cells using the BD FACSAriaTM III Cell Sorter.
The sorted cells were resuspended and injected through the tail vein of the Mϕ-depleted
pregnant mice at GD 4.5. Some of the sorted Tim-3+Mϕs were treated with anti-PDGF-AA
purified (5 µg/mL; Abcam, Waltham, MA, USA), anti-TGF-α purified (5 µg/mL; Santa
Cruz, CA, USA), and anti-VEGF (5 µg/mL, clone 2G11-2A05; Biolegend, San Diego, CA,
USA). The Tim-3−Mϕs were stimulated with PDGF-AA (50 ng/mL; PeproTech, Cranbury,
NJ, USA), TGF-α (50 ng/mL; PeproTech, Cranbury, NJ, USA), and VEGF (50 ng/mL; Pe-
proTech, Cranbury, NJ, USA) for 48 h in vitro before they were used for the transfer. The
pregnant mice were monitored on GD 10.5. The embryo absorption rate was calculated as
follows: % of resorption = R/(R + V) × 100 (R: the number of hemorrhagic implantations;
V: the number of viable, surviving fetuses).

The DICs of the mice were isolated from the freshly collected uteri through digestion
by DNase I and collagenase type IV as described previously [13]. For the further flow
cytometry of the cytokines, ionomycin (1 µg/mL, Biolegend, San Diego, CA, USA), PMA
(50 ng/mL, Biolegend, San Diego, CA, USA), and brefeldin A (10 mg/mL, BioLegend, San
Diego, CA, USA) were added 4 h before the intracellular analysis of the T cells.

4.7. Hematoxylin and Eosin (H&E) Staining of Placental Hemisections

Paraffin-embedded placentae were sagittally cut into 3 µm thick sections after being
fixed in 4% paraformaldehyde overnight at 4 ◦C. The major sections near the middle of
the placentae were prepared for H&E staining. Labyrinth vascular regions were observed
using a fluorescence microscope (Olympus, Tokyo, Japan). An average of labyrinth vas-
cular regions of each placenta was measured according to labyrinth vascular regions of
five sections at an interval of at least 40 µm.



Int. J. Mol. Sci. 2023, 24, 1538 13 of 15

4.8. Flow Cytometry

Flow cytometry was applied to analyze the cell surface molecule expression and intra-
cellular cytokine expression. The antibodies used were as follows: FITC-conjugatedanti-
mouse CD4; F4/80; TNF-α; IFN-γ; anti-human CD14; eFluor® 488-conjugated anti-mouse
TNF-α; PE-conjugated anti-mouse CD8; Tim-3; TGF-β1; IL-10; anti-human Tim-3;
PerCP/Cy5.5-conjugated anti-mouse IL-17A; PE/CY7-conjugated anti-mouse F4/80; IL-10;
TNF-α; IL-12/23; APC-conjugated anti-mouse F4/80; Tim-3; TNF-α; IL-10; Brilliant Violet
421-conjugated anti-mouse TGF-β1; CD206; TNF-α; IL-4; Brilliant Violet 510-conjugated
anti-mouse CD86; TNF-α; CD4; Brilliant Violet 605-conjugated anti-mouse IL-17A; CD4 (Bi-
olegend, San Diego, CA, USA). The HIF-2α antibody (Santa Cruz, CA, USA) was pretreated
with the Lightning-Link APC Conjugation Kit (Innova Biosciences, Cambridge, UK). Before
intracellular staining, a Fix/Perm kit (Biolegend, San Diego, CA, USA) was used to fix and
permeabilize cells. Flow cytometry was carried out using a Beckman-Coulter CyAn ADP
cytometer (Beckman-Coulter, Bria, CA, USA) and analyzed using FlowJo software (Tree
Star, Ashland, OR, USA).

The production of Angiopoietin-2, EGF, FGF, TGF-α, PDGF-AA, PDGF-BB, and VEGF
by EVTs was evaluated using a Multi-Analyte Flow Assay Kit (Human Growth Factor
Panel, Biolegend, San Diego, CA, USA).

4.9. Statistical Analysis

Throughout the study, all the variables were distributed normally. The variables
were presented as means with standard errors. Statistical analyses were conducted using
GraphPad Prism 5 or 8 software (GraphPad, San Diego, CA, USA). One-way analysis of
variance (ANOVA) was applicated to evaluate the differences. In addition, p < 0.05 were
considered statistically significant. In cases where p < 0.05 in ANOVA, we also performed
the post-hoc Dunnett t-test to determine the differences between each group.
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