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Abstract: Clean air in cities improves our health and overall quality of life and helps fight climate
change and preserve our environment. High-resolution measures of pollutants’ concentrations can
support the identification of urban areas with poor air quality and raise citizens’ awareness while
encouraging more sustainable behaviors. Recent advances in Internet of Things (IoT) technology
have led to extensive use of low-cost air quality sensors for hyper-local air quality monitoring. As a
result, public administrations and citizens increasingly rely on information obtained from sensors
to make decisions in their daily lives and mitigate pollution effects. Unfortunately, in most sensing
applications, sensors are known to be error-prone. Thanks to Artificial Intelligence (Al) technologies,
it is possible to devise computationally efficient methods that can automatically pinpoint anomalies
in those data streams in real time. In order to enhance the reliability of air quality sensing applications,
we believe that it is highly important to set up a data-cleaning process. In this work, we propose
AlrSense, a novel Al-based framework for obtaining reliable pollutant concentrations from raw data
collected by a network of low-cost sensors. It enacts an anomaly detection and repairing procedure
on raw measurements before applying the calibration model, which converts raw measurements to
concentration measurements of gasses. There are very few studies of anomaly detection in raw air
quality sensor data (millivolts). Our approach is the first that proposes to detect and repair anomalies
in raw data before they are calibrated by considering the temporal sequence of the measurements
and the correlations between different sensor features. If at least some previous measurements are
available and not anomalous, it trains a model and uses the prediction to repair the observations;
otherwise, it exploits the previous observation. Firstly, a majority voting system based on three
different algorithms detects anomalies in raw data. Then, anomalies are repaired to avoid missing
values in the measurement time series. In the end, the calibration model provides the pollutant
concentrations. Experiments conducted on a real dataset of 12,000 observations produced by 12
low-cost sensors demonstrated the importance of the data-cleaning process in improving calibration
algorithms’ performances.

Keywords: low-cost sensors; air quality sensors; air quality monitoring; anomaly detection; anomaly
repairing; multivariate time series

1. Introduction

Air pollution is currently the most significant environmental risk to human health,
and European citizens perceive it as the second-biggest environmental concern after climate
change [1]. Monitoring air quality is of primary importance to encourage more sustainable
lifestyles and plan corrective actions [2]. The essential tool for monitoring air quality is
a network of devices [3,4], usually organized in a wireless sensor network supported by
Internet of Things (IoT) technology [5]. Among the AQ devices, low-cost sensors are now
acknowledged as a unique means to gather high spatio-temporal air quality data through
dense monitoring networks thanks to their economic feasibility [6-8]. However, low-cost
sensors have many limitations: electrochemical gas sensors, very often used in air quality
monitoring, indeed, have high unit-to-unit variability and suffer from drift components
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such as aging and concept drift, depending on the calibration approach [9-11]. Therefore,
the need for a hyper-local sensing system able to monitor pollutants’ variations in urban
areas collides with the poor quality of measurements generated by low-cost air quality
sensors. This kind of sensor generally is not able to measure a pollutant concentration
directly; thus, they require a calibration process performed in the same environment
in which they will use to convert the raw measurements into pollutant concentrations.
The quality of the calibration process is of major importance in order to generate reliable air
quality data. The presence of anomalies in raw data negatively influences the performances
of data-driven calibration models [12]. However, removing anomalies increases the number
of missing values in the multivariate time series of raw measurements. Since these data-
driven models are often based on more than one feature, one for each of the measured
variables, the presence of a missing value or an outlier in one variable can compromise
the prediction of the entire observation. In the air quality monitoring context, anomaly
detection, data cleaning, and repairing methodologies have usually been applied on the
calibrated observations as post-processing techniques [13]. In our approach, the anomaly
detection and repairing are applied to the raw sensors readings (millivolts) captured by low-
cost sensors before the application of the calibration model. Only in a few studies have the
raw data been preprocessed to remove possible outliers, and generally this has been done
using statistical methods. In [14], for example, anomalies were removed using a filter based
on the computation of a local polynomial (R LOESS function) and the median absolute
deviation (MAD) between this polynomial and the measurements within a floating window.
In [15], the outliers were detected using a DBSCAN algorithm that slightly improved the
correlation between the target gas data and the sensors” data. Our approach goes beyond
mere statistical distributions and takes into account different characteristics of air quality
sensor data: the time dependence of the observation and the correlations among pollutants
and environmental measurements.

The AlrSense framework is a comprehensive solution to deal with low-cost sensor
data, from the collection of raw observations to the generation of reliable pollutants con-
centrations. Thanks to low-cost sensors and Artificial Intelligence (Al) techniques, we can
identify anomalies in the raw data measured by the sensors, remove them, and repair the
missing values. This data-cleaning pre-processing of the raw data allows the calibration
model to run on cleaned information, thereby improving the precision and reliability of the
air quality (AQ) monitoring system. AlrSense is able to provide location-specific, real-time
environmental data and actionable insights to public administrations and citizens to miti-
gate the effects of various threats from environmental factors, such as air pollution.

The contributions of this paper are as follows:

*  We propose and implemented a comprehensive solution for large-scale AQ sensing
systems: AlrSense. The proposed framework is simple, effective, and capable of
detecting and repairing anomalous data and is available as open source software
(https:/ / github.com/ChiaraBachechi/ AQAnomalyDetectionFramework (accessed on
30 December 2022)).

*  We performed anomaly detection through the application of three algorithms that take
into account different characteristics of air quality sensors: a univariate anomaly detec-
tion (the sliding window anomaly detection), a multivariate anomaly detection algo-
rithm (the forgetting factor iterative data capture anomaly detection), and an algorithm
based on the dependencies among pollutants measurements and the measurements of
temperature and humidity (the temperature and humidity based anomaly detection).

e We validated the results of the anomaly detection model following two approaches:
a supervised evaluation with the help of environmental experts and unsupervised
validation through the comparison with a well-known anomaly detection algorithm
considering two synthetic datasets: one with extreme outliers, and the other with
variance outliers.


https://github.com/ChiaraBachechi/AQAnomalyDetectionFramework
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*  The effects of anomaly detection and repairing have been evaluated on the calibration
models that estimate the pollutant concentration values; experiments based on a real-
world dataset demonstrated that the RMSE is significantly reduced by introducing
anomaly detection before calibration, and the accuracy was improved by adding the
repairing procedure.

The outline of the paper is the following. Section 2 summarizes the current state of
the art, and Section 3 describes the AlrSense framework. In Section 4, the algorithms for
anomaly detection are described in detail, and the results of their application are discussed
and validated. The anomaly repairing technique is disclosed in Section 5, along with its
application and results. Section 6 is devoted to the description of three experiments and
their evaluation, and in Section 7, conclusions are reported.

2. Related Work

Anomaly detection. Detection of anomalies in time series has received a considerable
attention in the literature [12,16-21]. With the diffusion and advancement of IoT tech-
nologies, the rapid processing of sensor data streams challenges traditional data-handling
solutions and asks for new approaches. The environment where IoT devices are devel-
oped makes them vulnerable to failure and malfunction, leading to the generation of
unusual and erroneous data [22-26]. On univariate or multivariate time series, anomaly
detection is mainly performed through clustering or distance-based techniques [27,28],
prediction [29-31], statistical approaches [32,33], deep learning methodologies using autoen-
coders [18,34,35], and neural networks [36-38]. In environmental datasets, the occurrence
of high concentrations of an unusual pollutant may indicate air quality problems. Thus,
a critical understanding of the behavior of anomalies is increasingly becoming very im-
portant for air pollution investigations. Several techniques have been explored in order
to detect outliers in gases or particle observations through functional analysis [39], the
probability finite-state-automata-based algorithm, statistical methods [40-42], or combined
methods [43].

Anomaly repairing. Removing detected anomalies creates some missing values that,
especially in the case of time-series data, bring the necessity of repairing techniques to fill in
the missing values. Repairing or gap filling allows one to patch the holes generated after the
removal of anomalies [44,45]. In [46], the problem of repairing dirty time-series data, given
the labeled truth of some data points, was studied, and it was demonstrated with several
experiments that adapting existing anomaly detection techniques to anomaly repairing
is inconsistent with the minimum change principle of data repairing. Thus, the authors
proposed an iterative minimum repairing algorithm, performing one minimum repair in
each iteration. In the context of geo-distributed sensor networks [47,48], anomalies can
be repaired by exploiting non-anomalous data measured by the sensors in nearby spatial
locations. This solution can be applied to pollutants” concentrations but does not apply to
low-cost air quality sensor raw measurements, since, as described in Section 3, the chemical
cells of different sensors are not comparable. For this reason, the correlations among close
sensors cannot be exploited to identify anomalies. This, instead, can be done for other kind
of sensors, such as traffic sensors [49,50]. Other solutions for gap filling are the “imputeTS”
package [51], which provides a collection of algorithms and tools especially tailored to
repair univariate time series and the Kalman filter [52], which is able to fill the gaps by
estimating past, present, and future values.

3. AlrSense Framework

The AlrSense framework is in charge of collecting the data produced by low-cost
sensors, finding anomalies and repairing them by defining the calibration model for each
sensor, and exploiting the model for providing gas concentrations, starting with the raw
measurements. Figure 1 reports the entire AQ monitoring process. We start with the
deployment of a sensor network, where each low-cost device needs to be registered in the
network (point 1, in the figure).
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Figure 1. The production of raw data, calibration, and export in the AlrSense framework (on the left)
and the anomaly detection and repairing procedure on raw data (on the right).

Data collection. In our case, we set up a long-range wide area network (LoRaWAN) [53],
a media access control protocol widely used in smart city applications. The networks
employ gateways, i.e., antennas, that receive broadcast messages from the AQ devices and
forward them to the LoRa server where the messages are interpreted. The raw data are
extracted and sent to the AlrSense database, which we developed following the approach
described in [54]. For each sensor, the calibration was performed by co-locating the sensors
close to legal stations for a certain period (point 2 in figure), called the calibration period (or
co-location period). During this period, we register the status of the device in “calibration”
mode. During the co-location, the values of pollutants concentrations measured by the
legal station and the raw observations of the low-cost sensors are collected and aggregated
every 10 min to generate a comparable dataset (point 3 in figure). The calibration period is
used to train a calibration model for each sensor (i.e., for each gas of each device). Once the
calibration model has been generated, the device can be moved anywhere in the city, and
the pollutant concentrations are calculated in real-time from raw observations by exploiting
the calibration model (point 4 in figure). During this period, we register the status of
the device in “running” mode. The lifetime of a sensor might be 3-5 years; however, its
monitoring performance degrades over time. Periodically, the devices are moved back
close to the legal station for a new calibration period, thereby re-calibrating the model and
improving the performance (from point 4 to point 2 in figure). All the data produced are
collected and stored in a database. Moreover, raw and calibrated data are available as
open data on the Emilia Romagna regional data portal (https://dati.emilia-romagna.it/
(accessed on 30 December 2022)) and also on the National and European data portals; the
hourly data of the legal stations are available on the ARPAE data portal (https://dati.arpae.
it/ dataset/qualita-dell-aria-rete-di-monitoraggio (accessed on 30 December 2022)); the
datasets discussed in Section 6 are available as open data (https://drive.google.com/drive/
folders/1LqZSVXA_2A1Hk_7tk9UwDOYEda-]J6qvG (accessed on 30 December 2022)) and
displayed in a dashboard [55,56].

Air quality sensors. Point 1 in Figure 1 shows the exterior and interior of a Decent-
lab sensor (https:/ /www.decentlab.com/products/air-quality-station-no2-no-co-ox-for-
lorawan (accessed on 30 December 2022)). These are the AQ devices we mainly employed
in the TRAFAIR project [57]. Inside the box, there is a sensor for air temperature and
humidity, and four AQ sensors for NO, NO,, CO, and Os. Each device provides two raw
measures in millivolt (mV) for each pollutant through the working (we) electrode and the
auxiliary (aux) electrode (also called channels), in addition to the air temperature (°C),
humidity (%), and battery voltage. Each raw measurement is a couple of variable and
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value (e.g., (NOyyx, 1050 mV)). In a specific moment, a device captures a raw observation
that is the set of 13 raw measurements (e.g., {(temperature, 13°C), (humidity, 45%), (NOgyx,
1050 mV), (NOye, 3450 mV)}).

Criticalities. It may happen that during the lifetime of an AQ device, some problems
arise, such as dirt or spiders entering the device; the device getting wet, falling, or being
damaged by vandalism; etc. In such cases, the environmental engineers responsible for
the installation and maintenance of the devices report the problems by setting the status of
the device to “broken”. Other more serious issues are malfunctioning or the breakdown
of a cell. This will require a replacement of the cell itself. During this period, the device’s
status is set to “off-line”. The cell replacement obviously will also have consequences for
the calibration model that must be recalculated, since every single cell is different and
requires an ad hoc calibration model. Even if sensors are located in the same position, it
is not possible to compare their raw data, since the chemical cells inside each sensor are
unique and can measure very different millivolt values for the same values of pollutant
concentrations in the air. For this reason, every single cell needs a specific calibration
model, and the anomaly detection procedure cannot be based on neighboring sensors. A
customized dashboard has been developed to allow environmental engineers to keep track
of all status changes and maintenance operations [58].

Data aggregation. The AlrSense framework starts with the collection of raw data
from AQ sensors. Raw measurements are thereafter aggregated every 10 min, as displayed
in Figure 1(3a), and a mean value is calculated in a 10 min interval. By performing anomaly
detection directly on raw data, anomalies are excluded from the raw measurements before
the aggregation process (Figure 1(3b)). Therefore, the mean value will not be affected by
these outliers (as reported on the left side of Figure 1(3b)), and the calibration model will
be trained on cleaned data, reducing the error on the estimated pollutant concentration.

Data repairing. In some cases, all the raw values in the 10 min interval may be labeled
as anomalies (as reported on the right side of Figure 1(3b)); therefore, a gap is created in
the time series of aggregated values. In order to avoid these gaps, the AlrSense framework
allows repairing by predicting the missing values based on the previous raw observations
(as reported on the right side of Figure 1(3c)).

Calibration. The calibration model translates a raw observation into a calibrated
observation that provides the pollutant concentrations. These sensor calibrated data are
created in real-time every 10 min, starting from the raw measurements in that interval.
In the literature, there are several examples of long short-term memory (LSTM) employed
for AQ prediction [59,60]. LSTM [61] is a recurrent neural network suitable for time-series
data, and can take into account an arbitrarily long past sequence to predict future values.
We used LSTM to generate the pollutant concentrations from the raw observations.

4. Anomaly Detection

Anomaly detection is performed through the application of a majority voting system
(MV) on the raw measurements. MV combines three algorithms: sliding window anomaly
detection (Section 4.1), the forgetting factor iterative data capture anomaly detection
(Section 4.2), and the temperature and humidity-based anomaly detection (Section 4.3).
For each gas, the algorithms consider the two channels of raw measurements (e.g., NOy;x
and NOy,) separately; if at least one of them is anomalous, then the gas measurement is
an anomaly. Each algorithm has the same weight in the ensemble method and detects
anomalies for each pollutant individually; thus, if at least two out of three algorithms
classify the pollutant measurement as anomalous, that measurement will be considered an
outlier. The three selected algorithms exploit different strategies and are based on diverse
correlations among data. Therefore, their combination allows classifying anomalies with
higher confidence than applying only one algorithm.
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4.1. Sliding Window Anomaly Detection: SWAD

The sliding window anomaly detection algorithm (SWAD) is a combination of the
differences-based algorithm and the interquartile range (IQR). This algorithm is an example
of univariate anomaly detection.

The differences-based algorithm evaluates the difference between two consecutive
values. The “difference threshold” corresponds to the maximum variation allowed in a
fixed period. Given the threshold e, if |x; — x;_1| > €, then x; is classified as anomalous.
Intuitively, the variation in observed values in a few minutes is expected to be small, since
pollutant measurements do not change rapidly. Defining the optimal value of the threshold
is tricky; it could be set to a constant by domain experts or calculated according to the input
data by statistical methods. The weak aspect of this method is the incapacity of finding
consecutive anomalies, since the difference between two anomalies is assumed to be small.
For this reason, this algorithm is combined with the study of the interquartile range (IQR).

The interquartile range (IQR) analyzes the distribution of the raw measurements and
is defined as the difference between the third quartile (43) and the first quartile (g1). By
using these values, the upper bound and the lower bound of the acceptable measurements
range is found as follows:

lower bound = q1 — q* IQR D

upper bound = q3 4+ q * IQR (2

The parameter g defines the width of the range, and it can be set to a custom value
according to the type of outliers we want to detect. The measurements out of the defined
range are labeled as outliers. High values of g4 produce a wide range for identifying only
extreme outliers.

SWAD takes in input the time series with the observations of each gas channel and
performs anomaly detection on a sliding window of a predefined size (k measurements).
Anomaly detection is performed on each channel separately. During the initialization
phase of this algorithm, given an array of k measurements {xy, ..., xx_1}, mean, standard
deviation, lower bound, and upper bound are calculated. When a new observation x;; is
received, the difference between x;1 and x; is calculated. If the variation is higher than the
“difference threshold”, then x;1 is classified as anomalous; otherwise, the instance gets
normalized using the mean and standard deviation previously calculated, as follows:

Xt41 — mean
standard deviation

Zi41 = (3)
If z; 11 is higher than the upper bound or smaller than the lower bound of the IQR range,
then x;1 is considered an outlier. ~Every time a new observation x;,1 is provided,
the window is updated by removing the oldest observation x;_; and adding x;1. Finally,
the parameters (mean, standard deviation, lower bound, and upper bound) are updated,
and the operations to check if the data in the window are anomalies are repeated. SWAD is
able to find anomalies in the measurement of each channel and gas and in temperature and
humidity data.

4.2. Forgetting Factor Iterative Data Capture Anomaly Detection: FFIDCAD

Forgetting factor iterative data capture anomaly detection (FFIDCAD) [62] allows
implementing a multivariate anomaly detection algorithm by studying the correlation of
two or more correlated features. The algorithm takes as input the values of the correlated
features and defines an ellipsoidal boundary around these. The observations out of bounds
are classified as anomalous. We ran five algorithms: one algorithm for each pollutant and
one for temperature and humidity. In our case, the correlated features for each gas were
the two channels” measurements, and for the last algorithm, the correlated features were
the measurements of temperature and humidity. The first four algorithms provide the
anomalies in the pollutant measurements, while the last algorithm detects anomalies in
temperature and humidity.



Sensors 2023, 23, 640

7 of 21

The hyper-ellipsoid on the correlated features is defined as follows:
el (my, S;l,t) = {xinR%| (x — mk)Ts,;l(x —my) < £2} 4)

where my is the array containing the mean of the features, x is the data point, t is the
confidence space of the data distribution, and S, !is the inverse of the covariance that can
also be defined as the precision matrix.

During the initialization phase of FFIDCAD, the mean of the first two data points
is calculated, and the precision matrix S is initialized to an identity matrix I with size
n x n, where n is the number of the analyzed features. In our case, S is a 2 x 2 matrix
and contains the values of the working and the auxiliary channels (or temperature and
humidity) of the first two consecutive observations of the time series. The diagonal elements
of precision matrix measure how the variables are clustered around the mean. The off-
diagonal elements measure independence, and their values are equal to 0 if features are
independent. Thus, the higher the diagonal elements’ values are, the more aggregated the
values are to the mean.

When a new observation xy, is available, the precision matrix gets updated as follows:

501, = Ilzs—kl[ B kz_l(xk-H — mk)(kar; tlmk)Tsil 5)
= (e — ) TS (xgn — my)
Additionally, the mean is updated incrementally:
mg = Amg_1+ (1 —A)x (6)
The new instance xj 1 is considered an anomaly if:
(xkr1 — me) TS (xper — mye) > bound @)

The bound value is calculated through the percent point function, taking the parameter
p as the percentage. p is the p-value identifies the confidence space: the range of values
considered non-anomalous. For example, if p = 0.98, then the ellipsoid will cover 98%
of the data. By assigning different values to p, we will obtain different confidence spaces.
The closer p is to 1, the fewer anomalies will be found. p can be set through a heuristic
computation, as follows: p = 1 — 107", Increasing the value of the exponent i, the value of p
approaches 1, and the number of detected anomalies decreases. At the end of each iteration,
the mean and precision matrix is updated considering the value of the new observation.

FFIDCAD exploits a forget factor A € (0,1) to update its parameters; it is introduced
since after several matrix elements have been processed. The difference between ;1 and
my. approaches zero, not allowing correct updating of the mean.

4.3. Temperature and Humidity-Based Anomaly Detection: THAD

The temperature and humidity-based anomaly detection algorithm (THAD) is based
on the dependencies among all the values measured by the sensor.

Before the implementation of this algorithm, we studied the dependency between
the pollutants measurements and other features: the status of the sensor, the season of the
year, and the values of humidity and temperature. The aim was to find the feature that
the working and the auxiliary channels are most dependent on. By analyzing our data, we
found that the working and auxiliary channels’ values of NO and NO, are more dependent
on the temperature value, whereas O3 depends more on the values of humidity; therefore,
the presence of anomalies was studied in relation to the value of temperature or humidity.
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During the training phase of THAD, the measurements for each channel and pollutant
were grouped into different ranges according to the values of temperature or humidity.
The raw data collected by working and auxiliary channels of NO and NO, were grouped
by six predefined temperature ranges; voltages measurements of O3 were grouped by five
predefined humidity ranges. For each group, mean and standard deviation of the pollutant
measurements were calculated separately, and the lower and upper bounds were evaluated
by using the IQR algorithm. There is a significant difference between this algorithm and
the previous ones. Indeed, in this case, the mean, the standard deviation, and the values of
lower and upper bounds are calculated only once (during the training phase), and they
are not updated after the analysis of a new observation. Therefore, the anomalies of this
algorithm really depend on the dataset provided for the initialization of the algorithm.
Thus, the training dataset should have a comprehensive range of both temperature and
humidity values, including all the seasons (one year of data).

During the detection phase, the measurement of each pollutant and channel is assigned
to a group according to its value of temperature or humidity. Then, it is normalized by
using the mean and standard deviation of that group. After that, the normalized value
is compared to the lower bound and the upper bound of the group. If the normalized
measure is out of the range, it is classified as anomalous. In this algorithm, the value of each
channel is analyzed individually: if at least one channel’s value is classified as anomalous,
both the measurements of that pollutant, in the corresponding observation, are considered
anomalous. Anomaly detection for temperature and humidity is performed by using the
IQR algorithm applied to the whole dataset. If the value of temperature or humidity is
anomalous, all the measurements of that observation are classified as anomalies. However,
the temperature and humidity sensors are more reliable than the other sensors (NO, NO,,
and O3), and anomalies are very rare.

4.4. Application and Results

The anomaly detection algorithms described in the previous sections have been ap-
plied to the raw measurements collected by our 12 low-cost sensors from August 2019 to
April 2021 (21 months). Each algorithm took as input the same dataset, which consists of
4,122,541 observations.

SWAD configuration. SWAD has been configured to use a window of 2000 observa-
tions; thus, the algorithm detects anomalies based on the data distribution of the previous
66 h, approximately. The “difference threshold” was set to 2000 to detect very different
consecutive observations. After some experiments, assuming that anomalies rarely occur
in our data, the parameter g of the IQR algorithm was set to 6, since this value showed the
expected rate of anomalies (0.1%).

THAD configuration. The only configuration parameter used by THAD is g, which
was set to 6.

FFIDCAD configuration. Some experiments were conducted to choose the exponent
i for the parameter p in FFIDCAD. The value of i which detected the expected rate of
anomalies was 16.

Results and comparison. Table 1 shows the number of anomalies for each gas de-
tected by each algorithm and the ones selected by the MV. As can be seen, there are few
anomalies among the values of temperature and humidity. This confirms the assumption
made in the implementation of THAD. A higher number of anomalies was detected by
SWAD for NO; and O3; FFIDCAD was the one that found the least anomalies among the
pollutants measurements. MV classified as anomalies on average 0.3% of the total number
of measurements. By analyzing these anomalies, we noticed that the anomalies of SWAD
were also detected by at least one of the other two algorithms. In particular, the percentages
of anomalies detected by SWAD compared to the anomalies included in MV were 99% for
NO, 100% for NO,, and 96% for Os3.
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Table 1. Anomalies detected by SWAD, FFIDCAD, and THAD.

NO NO; (0 Temperature Humidity
SWAD 16,720 35,436 38,986 1176 1176
FFIDCAD 6577 4705 5364 562 562
THAD 9050 14,606 26,978 0 0
MV 10,591 15,365 17,365 9 9
(% of total) (0.26%) (0.37%) (0.42%) (~0%) (~0%)

4.5. Validation

Validating the results can be challenging, since raw air quality measurements are
not human-readable and cannot be directly labeled as anomalous. We followed two
different approaches: supervised evaluation with the help of environmental experts and
unsupervised validation through the comparison with a well-known anomaly detection
algorithm on a synthetic dataset of observations.

Supervised evaluation considering sensor status. Environmental experts regularly
change the status of sensors when their behavior is not reliable; thus, to validate the
results of the MV, we checked the status of the sensors in the timestamp of the detected
anomalies. In 70% of cases, anomalies are related to “broken” status. This means that the
environmental experts labeled them as unexpected behavior of the sensor, and they are
likely to be real anomalies. Since we cannot know if environmental experts have recognized
all the anomalies of the sensors, we still need other proofs to guarantee the validity of our
methodology. For this reason, the results obtained by MV were compared with the ones
obtained by the LSTM (long short-term memory) [61] autoencoder.

The LSTM autoencoder exploits the ability of LSTM to learn long-term dependencies.
In general, autoencoders are trained to copy the input x to the output #. The input is
compressed into a lower-dimensional domain, and the autoencoder tries to reconstruct the
input from that compressed representation. To perform anomaly detection, the autoencoder
has to be trained to learn the normal behavior of the sensors. Therefore, the time series
taken as input by the algorithm should be anomaly-free. Then, the model is applied to
the test set and allows classifying as anomalies the observations with reconstruction error
greater than a pre-defined threshold. The autoencoder we used in our implementation
consists of a sequence of six layers: an LSTM layer, a dropout layer, a repeat vector layer,
an LSTM layer, a dropout layer, and a time-distributed layer. The first three layers are the
encoder, and the last three form the decoder. The autoencoder was trained by minimizing
the reconstruction error, and the used loss function was the mean absolute error (MAE).
The Adam algorithm was the optimizer. Following this procedure, one model for each
pollutant was generated. The number of timesteps (i.e., how many previous instances are
used to predict the anomaly in the current instance) was set to 12, the number of features
was 2 (i.e., the values provided by the working and auxiliary channels), and the rate of
dropout was set to 0.2. For each pollutant, the training dataset consisted of 5-months
data (from August 2019 to December 2019), excluding the data labeled as “broken” or
“off-line” by environmental experts. For each pollutant, one model was generated and
applied to the data collected from January 2020 to April 2021. For each measurement,
if the difference between the reconstructed value and the real value was greater than the
pre-defined threshold, the observation was classified as anomalous.

Generation of the synthetic dataset. In order to verify the ability of the algorithm to
identify anomalies in millivolt measurements, we built a synthetic dataset. The dataset was
obtained by removing from sensor observations all the measurements that were labeled
as outliers by at least one of the four anomaly detection techniques described: SWAD,
FFIDCAD, THAD, and LSTM autoencoder. We obtained a cleaned time series with some
missing observations; thus, we replaced the missing values with the hourly average of the
surrounding measurements. Finally, following the anomaly generator on time series (Agots)
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solution described in [63], we generated two different types of outliers: extreme outliers
and variance outliers. Extreme outliers are single-point measurements that are 10 times
the standard deviation from the local mean of the last 500 observations (the value can be
randomly lower or higher). Variance outliers are series of adjacent observations whose
differences from the surrounding measurements are 20 times higher than expected. We
generated two different synthetic datasets: one with 20 extreme outliers for each channel of
each pollutant, and the other with 2 variance outliers of 10 and 20 adjacent measurements
for each channel of each pollutant.

MYV and LSTM autoencoder comparison. The MV models and the LSTM autoencoder
models were tested on both synthetic datasets. The results are displayed in Table 2, where
the values of precision (P), recall (R), and F1-score (F1) are reported for each algorithm of
MYV, for the MV system, and for LSTM.

Table 2. Performance evaluation on synthetic datasets.

NO NO, (0}
2 2 2

2 8 g = 2 8 = 2 8 & =

= EES 2 2EEES 2 EEEGZ 3
R 015 03 0.2 042 0 0.34 0.64 0.25 0.95 0014 05 03 097 0
Extreme P 1 0.34 1 0.33 0.68 1 0.83 1 0.81 0 1 0.71 1 0.97 0
F1 0.26 0.32 0.34 0.37 0 05072 04 087 0 0.24 059 046 097 0
R 025 04 03 03 0 035 098 04 0.65 0.38 0.23 1055 05 053
Variance P 1 0.31 1 0.35 0.82 1 0.81 1 083 0.82 1 0.98 1 073 0.68
F1 04 0.35 0.46 0.32 0 0.52 0.89 057 0.73 0.52 0.37 0.99 0.71 0.59 0.6

On the extreme synthetic dataset, FFIDCAD outperformed the other two methods.
Moreover, it can be noticed that the combination of the three methods with MV always
outperformed the individual models, generating a higher Fl-score no matter the gas. In
Figure 2, the synthetic anomalies and the anomalies detected by FFIDCAD are compared.
The graphs represent the time series of the pollutant channels of the synthetic dataset,
with the real extreme outliers highlighted by orange squares and the detected anomalies
by blue spots. While synthetic anomalies were generated independently in each channel,
our methodology works simultaneously on both channels; therefore, a synthetic anomaly
in one channel does not always correspond to an anomaly in the other channel, though
the anomalies detected always appear in both channels. For this reason, the two channels’
graphs need to be observed together. If a blue spot is not associated with an orange square
in a channel, it may be associated with it (thus corresponding to a real extreme outlier)
in the other channel’s graph. It can be observed on the right of Figure 2 that there are no
false negatives (i.e., all the synthetic anomalies have been detected) and only a few false
positives. As can be observed by comparing the results of FFIDCAD in Figure 2 with the
results of SWAD and THAD in Figure 3, there is a major number of synthetic anomalies not
bring detected by these algorithms (i.e., orange squares not corresponding to blue spots);
thus, the best results are provided by the FFIDCAD algorithm, and the SWAD algorithm
has the worst performances.

On the variance synthetic dataset, the performances of the three methods are better
than the ones obtained on the extreme synthetic dataset (considering each gas separately).
However, this did not result in an increase in the performance of MV which, instead, had
an Fl-score lower than the one obtained on the extreme synthetic dataset. The reasons for
this stemmed from the fact that the three methods found fewer coincident anomalies than
in the case of the extreme dataset. Therefore, MV performed slightly worse than on the first
dataset. In Figure 4, we can observe that the FFIDCAD is able to detect the majority of the
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variance outliers but still misses some anomalies whose values are similar to the average of

the surrounding data.

Regarding MV and LSTM, the performances of the LSTM are always much worse than
those of the MV, except for the variance dataset for the gas O3, for which the two methods

are comparable. The LSTM autoencoder model failed to find the extreme outliers for NO,

NOgy, and O3. Although MV has a high F1-score for both NO, and O3, the performance for
NO needs to be ameliorated. In the case of variance outliers, the LSTM autoencoder still
did not find any outlier for NO but had better performances for NO; and O3. However,
MYV outperformed the LSTM autoencoder for all pollutants, even if the F1-score for the

variance of outliers is lower than the one for extreme outliers. This is due to the fact that

variance outliers are particularly challenging to detect, especially for SWAD, since they are
sequences of anomalous values.
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Figure 4. Variance synthetic anomalies detected by FFIDCAD for NO from 6 a.m to 6 p.m. of 24
June 2020.

5. Anomaly Repairing

Once the anomalies have been detected, they are excluded from the input data of
the calibration models. However, removing anomalies reduces the amount of input data
and creates gaps in the time series. This strongly impacts the performances of calibration
models (in our case, deep learning algorithms), which are negatively influenced by missing
values. For this reason, removing anomalies is not always a good solution. Averaging data
over a wider interval of time excluding anomalies can help to reduce the number of missing
values. However, aggregating values often means supposing that the missed values are
equal to the average of the values in the same time interval. This approximation does not
always fit the use case. In addition, if in the time interval, all the raw measurements are
labeled as anomalies, some gaps still remain in the aggregated time series.

In this section, the AlrSense methodology for anomaly repairing will be described.
The proposed solution is suitable for real-time applications, since it is based only on past
data and has a short execution time. Firstly, raw measurements are aggregated over a given
time interval (10 min, in our use case), while excluding anomalies. Then, the gaps are
repaired by forecasting the value with a vector autoregression (VAR) model trained on the
reliable previous raw observations, as described in Section 5.1. Finally, the predicted value
is substituted into the time series and used to forecast and repair future gaps in the data
sequence. This is repeated iteratively for each missing value (as described in Section 5.2).
The described methodology was applied to raw measurements coming from low-cost AQ
sensors. The results are discussed in Section 5.3.

5.1. VAR Model

Sensor raw observations are comprise a collection of values for each time instant,
which generates a multivariate time series. In the case of AQ sensors, the measured values
are correlated, since chemical cells are influenced by the presence of other pollutants
and weather conditions (temperature and humidity). VAR is a statistical model for the
simultaneously forecasting of all the variables in a multivariate time series. The time series
is modeled as a linear combination of its own past values. In the case of multivariate
time series, each variable forecast is evaluated considering its previous values and the
values of the other variables in the previous time instants [64]. Given a multivariate time
series Y with K variables that is composed of T observations, its values at the instant ¢ is
evaluated as:
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Yi=B+arYiq+ . +apYipte ®)

where B is a K x 1 intercept vector that depends on the season associated with t; &1 to
)y are the coefficients of the previous lags of Y till order p. Y; 1 to Yi—p are the 1 x K
vectors representing the p lags of Y used to predict the actual value of Y;. & is the normally
distributed error. Thus, the multivariate time series is modeled as a system of equations
with one equation per variable.

Verification of the assumptions. The VAR model is based on the assumption that each
variable in the time series is influenced by the others. Therefore, we executed the Granger
Causality test [65,66] on our data and verified this condition. The Granger causality test is
a statistical hypothesis test for determining whether one time series is useful for forecasting
another. A variable v; Granger-causes a variable v; if the past values of v; add power to
forecasting the actual value of v, after considering the past values of v, [67]. The Granger
causality tests the null hypothesis that the coefficients of the past values of the variable v;
in the regression equation are zeros. If the null hypothesis is neglected, then v; causes vs.
The test is repeated between each couple of variables. Moreover, to apply the VAR model,
time series should be stationary. We employed the augmented Dickey-Fuller (ADF) [68]
test to verify the stationarity of each time series. In a multivariate time series, the time
series associated with each variable is tested separately from the others to determine its
stationarity. However, if even only one variable is not-stationary, all the variables must be
differentiated. This is because differencing a single time series reduces its length for that
variable, losing the correspondence with the others.

Parameter evaluation. Finally, the VAR model can be applied to the multivariate
time series itself or a differentiated version. The value of p is evaluated considering the
value that generates a model with the lowest Akaike information criterion (AIC). The AIC
evaluates the quantity of lost information when the model is used to describe reality [69].
When the time series is differentiated, the forecast of the VAR model needs to be inversely
transformed, adding to the forecast the values of the last element of the time series.

5.2. The Iterative Repairing Procedure

The repairing procedure needs to be applied in real-time; therefore, in order to repair
missing values in a real-time data stream, we can only rely on past measurements. There
are two different types of missing values we need to deal with: the ones caused by the
inability of the sensor to measure a variable or communicate its value, and the gaps caused
by the presence of anomalies. The repairing procedure tries to repair both types of missing
values, but the first type may cause a long series of gaps for consecutive observations. The
repairing procedure is described in Figure 5.

VAR model fitting. For each raw observation with missing values, the past observa-
tions are taken into account to predict the value that is missing. As can be seen in point 1 in
Figure 5, the number of previous observations without missing values in similar conditions
(e.g., same position, same environment and same sensor status) must be higher than a
threshold (e.g., 10 observations), or the observation is not repaired. Then, all the previous
observations in similar conditions are used to fit a VAR model and predict the value of each
variable. Before fitting the model, the stationarity of the time series is verified, and if neces-
sary, the time series is differentiated a first and a second time. If after two differentiations,
the time series is still not stationary, the missing value is not repaired (point 2 in Figure 5),
and if in all the previous five observations there was a missing value, the observation is not
repaired. If in the previous five observations there was at least one observation without
missing values, the trained VAR model is used to predict the value, and the missing value
is replaced with the prediction (point 3 in Figure 5).
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Figure 5. The repairing procedure applied on each raw observation with missing values and restarted
when the sensor status change.

Evaluating the performance of the fitted model. When we obtained the VAR predic-
tion, we tried to evaluate the performance of the fitted model on the variables that were
measured by the sensor. When a value is missing for one or more variables, this does
not mean that all the observed variables are missing. If some variables in the missing
observation have an associated value, we can measure the error of the VAR forecast value
for that variable. The mean absolute percentage error (MAPE) was evaluated for all the
available variables. Since we had only one observation, the MAPE was evaluated as:

MAPE:lOO-‘FI_{R'

where F is the forecasted value and R the real value. A value of MAPE is obtained for each
variable; MAPEs are then averaged, and if the mean value is above 50%, the forecast is
considered not reliable (point 4 in Figure 5). Thus, the VAR model was not able to correctly
predict the other variables, and we assume that the prediction for the missing variable
is not trustworthy. In this case, an additional attempt to predict and repair the value is
conducted. The previous observation before the one to repair is taken into account as
a possible prediction. Therefore, as can be seen in point 5 in Figure 5, the MAPE error
between the available values of the observation to repair (considered as real values) and
their values in the previous observation is evaluated. If the average of these MAPE errors
is below 50%, then the observation is repaired by replacing the missing values with the
values of the previous observation. When all the variables of the observation to repair are
missing, no evaluation can be performed; thus, if the number of previous observations
in which all variables are missing is higher than five, we do not repair the observation.
Repaired observations should be reliable; this conservative approach avoids generating
unreliable predictions.
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Repeating the process. Each repaired observation is used to predict the values of
subsequent gaps in the multivariate time series in an iterative process. For each gap, a new
VAR model is fitted while considering the previously repaired observations. Thus, in the
case of consecutive gaps in the time series, we will have to rely on fully repaired observa-
tions to predict all variables and we risk producing unrealistic observations. The iterative
process is repeated for each sensor’s status, so when the sensor is moved or its status
changes, the iterative process is restarted.

5.3. Application and Results

From August 2019 till September 2020, the raw data of the 12 sensors reported 12,567
anomalies that generated 262 missing values in the 10-min aggregated data. Not all these
gaps can be repaired with the described process, since some of them are consecutive and
the repaired values are not reliable. Exploiting the results of the Granger Causality test,
we decided to remove temperature and humidity from the creation of the VAR model.
The repairing procedure solved 177 gaps, reducing the number of missing values to 85.
133 out of 177 gaps are repaired using VAR model, since its prediction has an average
MAPE error less than 50% (12% on the average). The remaining 44 gaps were repaired
with the values of the previous observation for that variables, and their average MAPE was
26%. The repairing procedure is very fast and requires around 1600 microseconds for each
observation that needs to be repaired.

6. Experiments and Evaluation

To evaluate the effects of anomaly detection and repairing on the calibration models
(LSTM) that estimate the pollutant concentration values, three different experiments were
conducted on the raw data collected from the low-cost sensor network of the city of
Modena for NO, NO,, and O3. Figure 6 displays and compares the data flow of the
experiments. The reproducibility is guaranteed, since all datasets are available as open
data (https:/ /drive.google.com/drive/folders/1LqZSVXA_2A1Hk_7fk9UwDOYEda-]6
qvG (accessed on 30 December 2022)).

EXPERIMENT 1

I W CALIBRATION

RAW DATA

EXPERIMENT 2

» [ 2 LW CALIBRATION

RAW DATA

EXPERIMENT 3

» [ =) L3 CALIBRATION

RAW DATA

Figure 6. Description of the data flow in the proposed experiments.

Exp1: The 10 min of aggregated raw data were directly used to train the calibration
models. Then, in the test phase, raw data were directly aggregated without excluding
anomalies and then given as input to the calibration models.
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Exp2: The MV anomaly detection methodology described in Section 4 was employed
to recognize anomalies in raw data. Then, only the reliable raw measurements were used
to evaluate a 10 min average and generate the aggregated time series used as input for the
calibration models.

Exp3: After applying the MV methodology to detect anomalies and after aggregating
only the reliable data every 10 min, the missing values were repaired using the VAR-based
iterative process described in Section 5. Finally, the repaired aggregated time series was
used to fit the calibration models and test them.

The training dataset of the three experiments contains data from August 2019 to March
2020, whereass the test dataset includes data from the 15th of June to the end of September
2020. To train and test the models, we considered only the period in which the sensor was
located near the legal station (“calibration” mode). As described in Section 3, the calibration
was performed through an LSTM model. In order to evaluate the performances of the
calibration models, the concentrations of pollutants generated by applying the models in
the test dataset were compared to the measurements of the legal station.

6.1. Evaluation Metrics

The metrics used to evaluate the results are root mean-square error (RMSE) and
accuracy. RMSE is the root of the mean of the squared differences between calibrated
values and corresponding values observed by the legal station in the same 10 min time
interval. Since the differences are squared before they are averaged, the RMSE penalizes
large errors. RMSE can range from 0 to co. RMSE values give an idea of the absolute value
of the error on the calibrated values. In some applications that use a range of values to
derive information about air quality, these errors are immaterial. This is the case for air
quality dashboards, where AQ information is conveyed through color scale maps. Several
color scales with different ranges are available. We used the one provided by the European
Environmental Agency (EEA) (https://www.eea.europa.eu/it (accessed on 30 December
2022)) to measure the ability of our algorithms to correctly predict the right color class.
Both observed values from the legal station and our calibrated values were associated with
the corresponding color in the color scale. We calculated the accuracy as the ratio between
the number of correct predictions and the total number of input samples.

Table 3 shows the values of RMSE and accuracy obtained for each gas and each sensor
in the three experiments. In addition, for each gas and experiment, average values of RMSE
and accuracy are provided. On average, the RMSE values of Exp3 are always lower than
the ones of Exp1 and Exp2. In Exp2, the number of anomalies detected in the training set
was 4,198, whereas for the test set it was 700. The effect on the performance of the model
was a significant reduction in the RMSE. However, the exclusion of anomalies generated
38 missing values in the multivariate time series during the test phase of Exp2, and for the
corresponding time instants, the calibrated values were not generated. In Exp3, 30 out of
38 missing values in the test data and 128 out of 151 in the training data were repaired.
As a consequence, the RMSE error reduced by 3.12 on an average compared with Exp2 and
by 29.05 compared with Exp1.

6.2. Result and Discussion

For all the pollutants, the RMSE was significantly reduced after introducing anomaly
detection before calibration. Moreover, for NO; and O3, adding the repairing procedure
further decreased RMSE and improved accuracy. A particular case was the one of sensor
4008 that reported a very high RMSE values in Exp1 for both NO and NO,. By analyzing
the difference between our calibrated data and the actual concentrations provided by the
legal station, we noticed that there is a very large difference in only one 10-min interval,
and this difference strongly influenced the value of the RMSE. Some raw measurements
related to that 10-min interval were classified as anomalies in Exp2, so the aggregated value
changed and the RMSE decreased. This value decreased again in Exp3 as a consequence of
repairing the anomalous data in raw measurements.
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As can be seen in the table, the values of accuracy are always very high for NO and
NO;. O3 has lower values of accuracy. This could have two explanations. Firstly, the size
of the training set for O3 is smaller than the ones for NO and NO;, since O3 is measured by
only one legal station. Therefore, the sensors have to be close to that legal station to collect
data useful for the calibration. Secondly, the ranges of the color scale for O3 are 20 units in
size, whereas the ones for NO and NO; are 50, 100, and 200 units in size. Therefore, a small
error in O3 affects the classification.

Table 3. Experimental evaluation.

RMSE ACCURACY
Gas  Sensor Exp1l Exp2 Exp3 Expl Exp2 Exp3
4003 5.24 3.53 3.18 0.99 0.99 0.99
4005 2.82 2.34 2.94 1 1 1
4006 2.53 2.59 2.71 1 1 1
4007 2.74 3.15 4.5 0.99 0.99 0.99
NO 4008 93.24 4.37 2.62 0.99 0.99 1
4010 3.8 2.48 5.18 0.99 0.99 0.99
4011 4.16 3.92 4.23 0.99 0.99 0.99
4013 26.24 2.2 2.73 0.99 0.99 0.99
4014 2.39 2.81 2.05 1 1 1
M 15.91 3.04 3.35 0.99 0.99 0.99
4003 8.25 15.07 6.53 0.97 0.98 0.98
4005 12.2 12.44 12.44 0.95 0.95 0.95
4006 9.55 8.81 9.09 0.97 0.97 0.97
4007 10.76 9.83 11.89 0.95 0.95 0.95
NO, 4008 347.03 9.38 6.62 0.96 0.96 0.97
4010 7.78 7.58 7.11 0.98 0.98 0.98
4011 64.54 8.89 8.58 0.98 0.98 0.98
4013 8.01 8.2 7.96 0.98 0.98 0.98
4014 10.05 9.33 7.82 0.96 0.97 0.96
M 53.13 9.95 8.67 0.97 0.97 0.97
4003 20.03 18.51 18.05 0.53 0.56 0.58
4005 19.9 17.7 18.78 0.65 0.75 0.73
4006 19.41 17.67 17.87 0.61 0.65 0.65
0, 4007 14.62 12.23 13.41 0.8 0.82 0.85
4008 19.79 22.49 22.66 0.61 0.57 0.57
4013 25 22.52 22.68 0.48 0.5 0.54
4014 222.53 86.27 14.64 0.71 0.52 0.66
M 48.75 28.20 18.30 0.63 0.62 0.65

7. Conclusions

This paper, to the best of our knowledge, is the first research effort to address anomaly
detection and repairing on raw air quality data that considers the temporal sequence of
the measurements and exploits the correlations between various sensor features. This
approach aims to improve the calibration performance on multivariate time series. In the
literature, anomaly detection and repairing methodologies have usually been applied as
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post-processing techniques on the calibrated AQ observations. However, as demonstrated
by comparing the results of Exp1 and Exp2, removing anomalies from raw data reduces
the error in the calibrated values. We defined an iterative procedure to repair missing
values that can be applied in real-time to a data stream to increase the coverage of AQ data.
The calibration algorithm trained on the repaired data (Exp3) had better performances,
demonstrating the importance of a combined approach for anomaly detection and repairing
in data-driven models.

The AlrSense framework, which we have proposed in this paper, has been proved
to be a robust and effective solution for performing real-time AQ monitoring. It has been
extensively used in the city of Modena and can be easily adapted to different contexts.
We have worked on the amelioration of the actual methodology in order to improve
the performance. In particular, for the experiments performed in this paper, the “differ-
ence threshold” of the SWAD algorithm was a hyperparameter that was fixed to a given
value (https://drive.google.com/drive/folders/1LqZSVXA_2A1Hk_7fk9UwDOYEda-]J6
qvG (accessed on 30 December 2022)). However, this is not the best solution, and a better
approach would be to adapt and evaluate this threshold based on the values of each win-
dow. We have already developed an updated version of the framework that implements
this new solution (https://github.com/ChiaraBachechi/AQAnomalyDetectionFramework
(accessed on 30 December 2022)).
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