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Abstract: Amyotrophic Lateral Sclerosis is a progressive neurodegenerative disease and is the most
common adult motor neuron disease. The disease pathogenesis is complex with the perturbation of
multiple pathways proposed, including mitochondrial dysfunction, RNA processing, glutamate exci-
totoxicity, endoplasmic reticulum stress, protein homeostasis and endosomal transport/extracellular
vesicle (EV) secretion. EVs are nanoscopic membrane-bound particles that are released from cells,
involved in the intercellular communication of proteins, lipids and genetic material, and there is
increasing evidence of their role in ALS. After discussing the biogenesis of EVs, we review their
roles in the propagation of pathological proteins in ALS, such as TDP-43, SOD1 and FUS, and their
contribution to disease pathology. We also discuss the ALS related genes which are involved in EV
formation and vesicular trafficking, before considering the EV protein and RNA dysregulation found
in ALS and how these have been investigated as potential biomarkers. Finally, we highlight the
potential use of EVs as therapeutic agents in ALS, in particular EVs derived from mesenchymal stem
cells and EVs as drug delivery vectors for potential treatment strategies.
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1. Introduction

Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disease char-
acterised by progressive motor neuron dysfunction leading to limb weakness, dysarthria,
dysphagia and respiratory failure. The average survival is 2–4 years from symptom on-
set [1]. The incidence of ALS is rising and in recent studies is 1.6–3.8 per 100,000 [2]. Most
cases (90%) of ALS are sporadic (sALS), with 10% of patients having a family history
of ALS (fALS) [3]. There are over 50 genes known to cause or increase the risk of the
disease, and a genetic cause has been reported in as high as 26.9% of patients in ALS reg-
istries [4]. A greater understanding of genetic risk factors has helped identify the multiple
cellular processes affected in ALS which contribute to disease pathology. These include
abnormalities in RNA processing, glutamate excitotoxicity, endoplasmic reticulum stress,
mitochondrial dysfunction, protein homeostasis and endosomal transport/ extracellular
vesicle secretion [5–7]. This review discusses the increasing knowledge of abnormalities in
the regulation of extracellular vesicles in ALS, their effect on surrounding cells and how
they are being developed as potential pathological markers and future therapeutic tools.

2. Extracellular Vesicles (EVs)

EVs are small vesicles enclosed in a lipid bilayer secreted from almost all cells and are
detectible in a variety of biofluids [8,9]. They are involved in intercellular communication to
both neighboring and distant cells through the transfer of lipids, proteins and genetic mate-
rial [10,11]. EVs are stable in the circulation and have attracted much attention as potential

Life 2023, 13, 121. https://doi.org/10.3390/life13010121 https://www.mdpi.com/journal/life

https://doi.org/10.3390/life13010121
https://doi.org/10.3390/life13010121
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/life
https://www.mdpi.com
https://orcid.org/0000-0002-1008-598X
https://orcid.org/0000-0003-2239-9094
https://orcid.org/0000-0001-6510-5426
https://doi.org/10.3390/life13010121
https://www.mdpi.com/journal/life
https://www.mdpi.com/article/10.3390/life13010121?type=check_update&version=2


Life 2023, 13, 121 2 of 20

non-invasive biomarkers in many pathological processes such as cancer, neurodegenerative
diseases and cardiovascular disease [12–16]. They are classified into three main subgroups
based on their size and biogenesis: exosomes, microvesicles and apoptotic bodies [9,17,18].
The biogenesis of extracellular vesicles is shown in Figure 1 and a comparison of EVs
subtypes is summarized in Table 1.
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Figure 1. Biogenesis of extracellular vesicles. (a) Exosomes are formed by invagination of the
endosomal membrane to form early endosomes. A second inward budding process leads to the
formation of multivesicular bodies (MVBs). These are sorted to fuse either with lysosomes, leading to
degradation, or with the plasma membrane, releasing their contents as exosomes. (b) Microvesicles
are formed by the direct outward budding of the plasma membrane. (c) Apoptotic bodies are formed
during the disintegration of the plasma membrane in dying cells. Figure created using biorender.com.

Table 1. Comparison of Extracellular Vesicles subtypes.

Exosomes Microvesicles Apoptotic Bodies

Size (nm) 30–150 100–1000 50–5000

Biogenesis
Derived from inward invagination of

endosomes to forms MVB, released once
MVB fuses with plasma membrane

Outward budding of plasma membrane
Membrane budding and

disintegration during
apoptosis

Contents

membrane transport and fusion proteins,
heat shock proteins, tetraspanins, ESCRT

proteins and cytoskeletal proteins
RNA-particularly mRNA and miRNA,

lipids including cholesterol,
sphingomyelin and phosphatidylserine

Overlap with exosomes and MHC class
1 proteins, vesicular SNARE proteins,
mitochondrial proteins and ribosomal

subunits. RNA profile distinct from
exosomes, lipids including cholesterol,
sphingomyelin and phosphatidylserine

cytoplasm with tightly
packed organelles, nuclear
fragments, proteins, lipids

and nucleic acid

Markers Tetraspanins (CD63, CD9, CD81), HSP70,
ALIX, TSG101, flotillin 1 ARF6, Integrins, selectins, CD40 Annexin V,

Thrombospondin, C3b

2.1. Exosomes

Exosomes are the smallest of type of EV, typically 30–150 nm in diameter and derived
from the endolysosomal pathway [9,12,19]. Endosome biogenesis begins with the inward
budding of the endosomal membrane to form early endosomes. A second inward budding
leads to the formation of late endosomes that contain intraluminal vesicles (IVL) [17,18].
The ILV membrane becomes enriched in tetraspanin proteins such as CD9 and CD63, which
cluster into specialized units called tetraspanin enriched microdomains (TEMs) [8,20]. The
tetraspanin proteins are involved in multiple processes such as cell adhesion, motility,
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membrane fusion, protein trafficking and signaling [20]. Late endosomes are referred
to as Multivesicular bodies (MVB) [19]. The content of MVBs can be either degraded
through fusion with lysosomes or released as exosomes through fusion with the plasma
membrane [21]. The formation of exosomes from MVBs is mediated through two main
pathways, the Endosomal Sorting Complex Required for Transport (ESCRT) dependent and
ESCRT-independent systems [17]. The ESCRT dependent system consists of five core ESCRT
complexes: ESCRT-0, -I, -II, -III and Vacuolar Protein Sorting 4–Vesicle Trafficking 1 (VPS4–
VTA1), as well as accessory proteins such Tumor Susceptibility Gene 101 (TSG101) and
ALG-2-interacting protein X (ALIX) [13,19,21]. These cytoplasmic multi-subunit complexes
act together to sort ubiquitinated cargo into ILV and subsequent exosome formation and
extracellular release [18,21].

The ESCRT independent pathway is a lipid dependent process [22]. Plasma mem-
branes have an asymmetric lipid distribution with sphingomyelin and phosphatidylcholine
enriched in the luminal side [23]. The hydrolysis of sphingomyelin to ceramide by sph-
ingomyelinases (SMases) results in increased membrane fluidity and the cone shaped
structure of ceramide results in negative curvature of the membrane and subsequent ILV
formation [23,24]. A ceramide metabolite, sphingosine 1-phosphate (S1P) then activates
receptors on MVBs to segregate ILVs for secretion as exosomes [25]. Support for this
method of exosome formation is that inhibition of SMase reduces exosome secretion [26].

The cargo of exosomes consists of a variety of proteins, RNAs and lipids with their
contents being determined by both ESCRT dependent and independent mechanisms [27].
Exosomes also allow for transfer of the plasma membrane and cytoplasmic components.
Exosomal proteins include membrane transport and fusion proteins, heat shock proteins,
tetraspanins, ESCRT proteins and cytoskeletal proteins [14]. They also contain messen-
ger RNA (mRNA) and non-coding RNAs being particularly enriched with micro RNA
(miRNA) [27]. Exosomes also contain a variety of lipids and are enriched in cholesterol,
sphingolipids-particularly sphingomyelin and ceramide, and phosphatidylserine [28]. For
all EVs there is heterogeneity in their contents based on the parent cell type and in addition
EV cargo and secretion pattern changes in response to cellular stresses, e.g., oxidative stress,
hypoxia or nutrient deprivation and cellular senescence [29–31].

2.2. Microvesicles

Microvesicles (MVs), also called microparticles or ectosomes, are larger EVs, typically
100–1000 nm in size [9,32]. They are formed directly from outward budding of the plasma
membrane [9,19]. The mechanisms involved in MV formation are not as well understood as
exosome biogenesis, but the outward budding is accompanied by changes in plasma mem-
brane protein and phospholipid distribution particularly the flipping of phosphatidylserine
to the outer membrane leaflet, which modulate changes in membrane curvature and rigid-
ity [8,33]. Cellular structures involved in exosome biogenesis are also activated to create
MVs such as ESCRT complexes and TSG101 [19]. A GTP-binding protein ADP ribosylation
factor 6 (ARF6) activates phospholipase D resulting in the phosphorylation and activation
of the myosin light chain resulting in the release of MVs into the extracellular space [8].

Similar to exosomes, MVs contain a variety of proteins, RNA and lipids. ARF6 is a key
mediator for sorting cargo into MVs [30]. Typical proteins sorted into MVs are MHC class
1 proteins, vesicular SNARE proteins, ECSRT complex, heat shock proteins, mitochondrial
proteins and ribosomal subunits [34,35]. MVs also contain RNA, with distinct RNA profiles
compared to those present in exosomes and apoptotic bodies [36].

2.3. Apoptotic Bodies

Apoptotic bodies are larger EVs, usually between 500 and 5000 nm, with a small
proportion between 50 and 500 nm and thus overlapping in size with the other EVs [8,9,37].
Apoptosis is a major mechanism of cell death [8]. It can be triggered by a wide range of
physiological and pathological stimuli [37]. Apoptosis begins with condensation of nuclear
chromatin, then membrane budding, followed by the disintegration of cellular content into
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membrane bound vesicles termed apoptotic bodies [8,37,38]. Apoptotic bodies consist of
cytoplasm with tightly packed organelles, nuclear fragments, proteins, lipids and nucleic
acid [39]. There are multiple plasma membrane changes during apoptosis including the
oxidation of surface molecules to create binding sites for Thrombospondin and C3b, as
well as the externalisation of phosphatidylserine to enable the binding of Annexin V. These
changes facilitate phagocytosis by macrophages [8,38]. Like other EVs, apoptotic bodies
circulate in the blood, are taken up by other cells, and are therefore involved in intercellular
communication and the transfer of bioactive molecules [39].

Given the significant overlap in EV size, the lack of consensus on specific markers
for each EV subtype, and the difficulty in determining the biogenesis pathway of EVs, the
International Society of Extracellular Vesicles endorses the use of EV as the generic term for
membrane bound particles released from cells and therefore this review will refer to all of
the subtypes collectively as EVs [40].

2.4. Uptake of EVs

Once EVs are released from their cells of origin they accumulate in extracellular
spaces, where they can remain intact for long periods as their membranes are resistant
to breakdown [34]. EVs can then be taken up by recipient cells via several mechanisms,
most commonly by endocytosis. Such endocytosis of EVs can occur by clathrin-mediated
endocytosis, phagocytosis, micropinocytosis and lipid raft mediated endocytosis [41]. The
EV membrane can also fuse directly with the plasma membrane and thus release its contents
intracellularly [42]. A current area of research focus is to determine whether the uptake
of EVs is targeted towards specific cells. Some studies have shown that EVs are taken up
by any cell to which they are exposed [41,43]. However, EV uptake can also be a highly
specific process requiring the expression of specific surface markers and ligands [44–46].

3. EVs in ALS

EVs are secreted from almost all cells and circulate freely around the body. They are
able to cross the blood–brain barrier and therefore are a means of intercellular signalling
to and from the central nervous system (CNS) [47]. EVs contribute to many physiological
processes in the CNS, including: neural growth and development; CNS inflammation; the
neuroprotective response to oxidative stress; and maintaining brain vascular integrity and
post synaptic retrograde signalling [48–52]. EVs are also implicated in the pathological pro-
cesses of neurodegeneration, and large numbers of studies have in recent years evaluated
the role of EVs in neurodegenerative diseases, including ALS, Parkinson’s Disease (PD),
Alzheimer’s Disease (AD), Huntington’s Disease and prion diseases [53].

3.1. ALS Associated Genes Involved in Vesicular Pathways

There are now over 50 potentially causal or disease modifying genes identified for
ALS [5]. The most commonly identified gene mutation in European and North American
patients is the hexanucleotide repeat expansion in C9orf72, accounting for up to a third of
all identified pathogenic mutations [4]. Other common causal mutations are in the genes
SOD1, TARDBP, NEK1, FIG4 and TBK1 [2,4,54]. There is wide geographical variation in
the genetic causes of ALS. Familial ALS is much less frequent in China (1.2–2.7% of total
cases), where mutations in SOD1 are the most frequent genetic cause (25.3% of fALS),
followed by TARDBP and FUS [55]. This is similar to Japan, where SOD1 mutations are
the most common cause of fALS (29.8%), followed by FUS and TARDBP, whereas C9orf72
expansions are rare, identified in only 1.3% of fALS cases [56]. In Brazil, the most frequent
genetic cause is VAPB (30% of all fALS) followed by C9orf72 (22%) [57].

The multiple genes involved in ALS have a range of effects on multiple cellular
processes including RNA processing, protein homeostasis, cytoskeletal dynamics, mito-
chondrial function, endosomal trafficking, autophagy and, important for this review, the
formation of EVs [5,7]. Multiple ALS associated genes are involved in vesicular trafficking
and EV regulation as shown in Table 2. The CHMP2B protein is an essential component
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of the ESCRT III complex, which is part of the machinery for MVB and EV formation,
as discussed above [58]. C9orf72, VAPB, FIG4, SPG11 and ALS2 encode proteins which
are involved in intracellular trafficking of vesicles [59–64]. Optineurin and SQSTM1/p62
proteins are both autophagy receptors and are activated through phosphorylation by
TBK1 [65]. Autophagy and EV function are closely linked, with the level of autophagy
in cells closely related to the secretion and transport of EVs [66,67]. Table 2 lists some of
the proposed pathogenic mechanisms for mutations of genes having functions related to
vesicular pathways (also illustrated in Figure 2).

Table 2. ALS genes with roles in vesicular transport and EV regulation. Abbreviations:
DPR—dipeptide repeat proteins, RBP—RNA binding proteins, UPS—ubiquitin proteasome sys-
tem, NF-κB—nuclear factor kappa B.

Gene Proteins Molecular Pathways Affected

C9orf72 [59,68] C9orf72 short and long
isoforms

Loss of function in vesicle trafficking, autophagy and endo-lysosomal pathway
Gain of toxicity with development of RNA foci and DPR

VAPB [62,63]
Vesicle-associated membrane

protein-associated protein
B/C

Aggregation of VAPB protein, altered autophagy and vesicular transport,
accumulation of RBPs

FIG4 [60] Polyphosphoinositide
phosphatase

Loss of function in trafficking of endosomal vesicles to golgi and
autophagy regulation

ALS2 [61] Alsin
Alteration of Rab5-mediated pathway with dysregulation of

endosomal trafficking
Altered trafficking of AMPA receptors causing glutamate toxicity

CHMP2B [58] Charged multivesicular body
protein 2b

Dysfunction of autophagy and endo-lysosomal pathway, resulting in
accumulation of enlarged endosomes and autophagic organelles

SPG11 [64] Spatacsin Impaired autophagy, lipid sorting in late endosomes and lysosomal
dysfunction with lipid accumulation

SQSTM1 [69] Sequestosome-1/p62 Dysfunction of autophagy and protein degradation through UPS

OPTN [70] Optineurin Golgi fragmentation, impaired autophagy and vesicular transport
Loss of inhibitory action on NF-κB leading to abnormal inflammatory response

UBQLN2 [71] Ubiquilin 2 Impaired protein degradation via UPS and dysfunction of autophagy and
endo-lysosomal pathway

VCP [72,73] Valosin Containing Protein Impaired protein degradation via UPS and dysfunction of autophagy and
endo-lysosomal pathway

TBK1 [74] Tank Binding Kinase 1 Dysregulation of multiple autophagy pathways

3.2. EV Mediated Transfer of Misfolded Proteins and miRNAs in ALS

A pathological hallmark of ALS is TAR DNA-binding protein 43 (TDP 43) positive
inclusions, which have been identified in brain stem and spinal cord tissue in over 97%
of patients at postmortem [75]. SOD1, fused in sarcoma (FUS), and dipeptide repeat
proteins (DPRs) from the C9orf72 intronic hexanucleotide repeat expansion, also aggregate
to form protein inclusions [76]. These misfolded proteins have been demonstrated to
spread between cells in a prion-like manner and induce further protein misfolding [77].
This mechanism has been used to explain the contiguous spread of disease that is often
seen in ALS, where the disease spreads to adjacent neuroanatomical segments [78]. EVs
have been shown to contain aberrant protein aggregates in cell and animal models of ALS
as well as in patients with ALS. Evidence is growing to support the hypothesis that EVs
can spread pathological misfolded proteins between cells in ALS and that these EVs can
exert deleterious effects on recipient cells, discussed in Section 4 below. EVs have also
been shown to mediate the transfer of RNAs, particularly miRNA, which can alter gene
expression in recipient cells, potentially also of relevance to the progressive spread of
neurodegeneration in ALS. Studies in other neurodegenerative diseases have also found
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that pathological proteins such as prion protein, amyloid-β, α-synuclein, and tau propagate
via exosomes [79–81]. A timeline of discoveries in cell based and animal models of these
roles of EVs in ALS is shown in Figure 3.
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Figure 2. The endosomal and vesicular pathway involvement of proteins encoded by ALS related
genes. Alsin activates Rab5 to promote endosomal fusion and subsequent endosomal trafficking.
C9orf72 forms a complex with SMCR8 (Smith-Magenis Syndrome Chromosome Region, Candi-
date 8) and WDR41 (WD Repeat domain 41) proteins. This complex interacts with Rab GTPases
including Rab5 in endosomal formation and trafficking. The C9orf72 complex also regulates var-
ious steps in autophagy including MVB-autophagosome and autophagosome-lysosome fusion as
well as regulating several aspects of lysosomal biogenesis, pH and reformation. VAPB encodes
Vesicle-associated membrane protein-associated protein B/C found in the endoplasmic reticulum
(ER). This anchors complexes involved in lipid transfer from the ER to golgi and also the recycling of
phosphatidylinositol-4-phosphate (PtdIns4P). VAPB mutations disrupt ER-golgi tethering and leads
to PtdIns4P accumulation with subsequent accumulation of endosomes and dysfunctional lysosomes.
FIG4 is required for the homeostasis of a signalling lipid phosphatidylinositol 3,5-bisphosphate
(PI(3,5)P2), which is required for endosomal and lysosomal maturation. FIG4 mutations result in
enlarged endosomes and lysosomes with impaired lysosomal function. CHMP2B is responsible for
the formation of intraluminal vesicles within the MVBs and may participate in the proper fusion
of MVB with the lysosomes and the autophagosomes. CHMP2Bintron5 mutation results in accumu-
lation of large endosomes and autophagosomes. VCP is involved in the initiation of autophagy
and autophagosome maturation. TBK1 phosphorylates both optineurin (OPTN) and Sequestosome-
1/p62, increasing their ability to bind to ubiquitinated cargo, initiating autophagy and delivery to
autophagosomes. UBQLN2 interacts with LC3, a marker for starvation induced autophagy, to deliver
ubiquitinated cargo to autophagosomes and is also recruited to OPTN containing vesicles. Spatacsin
interacts with Rab5 for endosomal trafficking and maturation and contributes to lipid clearance from
late endosomes and lysosomes. SPG11 mutations result in loss of spatacsin function, which leads to
accumulation of lipids in lysosomes. Figure created using Biorender.com.
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3.2.1. SOD1

The first evidence that EVs could spread misfolded proteins was in 2003 when SOD1
was shown to be excreted by EVs in SK-N-BE neuroblastoma cells [82]. Astrocytes with
mutant SOD1 overexpression showed increased EV secretion compared to wild type cells;
these secreted EVs were taken up by motor neurons, inducing cell death [84]. Misfolded
SOD1 aggregates spread between NSC-34 motor neuron-like cells via EVs, causing cell
rupture and cell death [83,95]. Once the SOD1 aggregates are introduced to neural cells,
they result in a self-perpetuating induction of further SOD1 aggregation and transfer
between cells [96]. These results have also been replicated in animal models, with CNS
derived EVs in SOD1G93A mice containing misfolded SOD1 aggregates [92]. However,
while mutant SOD1 aggregates are secreted by EVs, other studies have reported impaired
secretion of mutant SOD1 compared to the wild type protein in NSC-34 motor neuron-like
cells and rat microglial cells, with a proposed underlying mechanism of dysfunctional
secretory pathways as a result of golgi fragmentation and ER stress [97,98].

3.2.2. TDP 43

Multiple studies demonstrate that TDP 43 is transferred intercellularly via EVs. Insolu-
ble TDP 43 aggregates from ALS or FTD brain tissue resulted in intracellular accumulation
of TDP 43 and cell death when added to SH-SY5Y neuroblastoma cells [85]. The same
study also showed that TDP 43 aggregates can transfer between cells via EVs. CSF EVs
in patients with ALS and ALS/FTD contain TDP 43 and these EVs have been shown to
cause propagation of TDP 43 aggregates when added to U251 glioblastoma cells [87]. EVs
isolated from human ALS brain tissue also caused TDP 43 accumulation and propagation
in Neuro2a mouse glioblastoma cells [88]. In the same study, EV release was inhibited by a
sphingomyelinase inhibitor, which resulted in increased TDP 43 aggregates in the Neuro2a
cells and also exacerbated the clinical phenotype of transgenic mice expressing human
mutant TDP-43A315T. This suggests that while EVs play a key role in the propagation of
TDP 43 proteinopathy, the inhibition of EV secretion may precipitate greater intracellular
accumulation of pathological aggregates [88]. Free TDP 43 can also be taken up by cells,
but it has been shown in human embryonic kidney 293 (HEK-293) cells that EVs containing
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TDP 43 are preferentially taken up compared to free TDP 43, and thus have potential to
spread and exert greater cellular toxicity [99].

3.2.3. FUS

There are few studies analysing mutant FUS or FUS binding partners. Analysis of HEK
cells expressing mutant FUSR521G confirmed that FUS is present in EVs and that many FUS
binding partners are components of EVs [89]. FUS and several FUS binding partners were
also observed in EVs derived from skeletal muscle samples from sALS patients without
FUS mutations [94].

3.2.4. Dipeptide Repeat Proteins

DPRs are a group of 5 protein complexes formed as a result of repeat-associated non-
AUG (RAN) translation of the C9orf72 intronic hexanucleotide repeat expansion [100]. Such
DPRs have been shown to spread intercellularly via EVs in spinal motor neurons derived
from induced pluripotent stem cells (iPSCs) expressing the expanded hexanucleotide
repeat [90].

3.2.5. RNA Transport by EVs

While multiple types of RNA have been found in EVs, most is known about miRNAs.
These are short non-coding RNAs which have gained great attention due to their ability to
modify gene expression in recipient cells [101]. MiRNAs are stable in the circulation and
are found in a range of body fluids including serum, plasma, urine and CSF [102]. There is
also evidence of their transport in EVs between cells [103]. EVs contain miRNA profiles that
are vastly distinct from their host cell from which they originate [104]. Multiple miRNAs
have been identified as dysregulated in vitro in ALS models involving several different cell
types. EVs have been shown to transmit miR-124-3p from neurons to astrocytes, which
regulates the glutamate uptake of astrocytes [105]. A study on astrocytes derived from
iPSCs from C9orf72 ALS patients compared with iPSCs from healthy controls found that
the EV miRNA content was dysregulated in ALS, with 64 dysregulated miRNAs, and
downregulation of miR-494-3p as the most significant change [93].

There are fewer in vitro studies of messenger RNA (mRNA) expression in EVs in ALS.
Similar to miRNA, mRNA expression in EVs from iPSC derived motor neurons is markedly
different from that of the iPSC cells themselves, being enriched for genes regulating cellular
metabolism and protein homeostasis [106].

4. Effects of ALS EVs on Recipient Cells

EVs derived from multiple cell lines have been demonstrated to contribute to neu-
rotoxicity in cell models of ALS. Skeletal muscle EVs from patients with ALS are toxic to
motor neurons in culture, causing shortened, less branched neurons with disrupted locali-
sation of RNA and RNA processing proteins, and increased cell death [94]. Blockade of EV
uptake by first incubating the EVs with anti-CD63 antibody resulted in increased motor
neuron survival. Motor neurons treated with EVs from astrocytes overexpressing mutant
SOD1 had reduced survival, proportionate to the concentration of EVs applied [84]. EVs
extracted from CSF of patients with ALS and ALS/FTD resulted in increased expression of
TDP43 C-terminal fragments and induced apoptosis and autophagy when applied to U251
glioblastoma cells [87].

EVs have also been shown to alter astrocyte, microglial and monocyte function in ALS.
A study of co-cultured neurons and astrocytes reported that transfer of miR 124-a from
neurons to astrocytes through EVs resulted in increased GLT1 expression in astrocytes,
with resultant increase in glutamate uptake, preventing excitotoxicity [86]. The same group
subsequently performed stereotactic injection of miR 124-a into the spinal cord ventral
grey matter of SOD1G93A mice and this resulted in a 30–40% increase in GLT1 levels,
demonstrating a potential method for limiting glutamate mediated excitotoxicity [86]. NSC-
34 cells transfected with SOD1G93A produce EVs containing increased miR 124 expression
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and in co-culture with N9 microglial cells resulted in NF-κB activation, upregulation of
several inflammatory cytokines and a 50% reduction in microglial phagocytosis [91]. A
subsequent study reported that microglial cells overexpressing SOD1G93A secreted EVs with
upregulated miR 155 and 146a, miRNAs which are both involved in the regulation of the
NF-κB inflammatory pathway [107]. Another report on astrocytes derived from iPSCs from
mutant C9orf72 ALS patients found that EVs from the mutant C9orf72 astrocytes were toxic
to motor neurons and identified miRNA dysregulation as discussed in Section 3.2.5 [93].
Subsequent treatment of the cells with miR-494-3p resulted in a 25% increase in motor
neuron survival. Taken together, these studies provide strong data that miRNAs delivered
by EVs induce changes in recipient cells, that may contribute to disease pathology in ALS.

EVs containing mutant TDP-43 have also been shown to induce changes in peripheral
monocytes, with increased secretion of inflammatory cytokines such as IL-6, IL-10 and IL-1
but this secretion was impaired in ALS monocytes compared to healthy controls [108].

4.1. EVs as Biomarkers in Patients with ALS

The results of the above studies have led to much interest in the possibility of using
EVs as biomarkers in ALS. EVs have many beneficial characteristics for this. They penetrate
the blood–brain barrier in a bidirectional manner, providing a means of communication
to and from the CNS [109]. They are stable in the peripheral circulation and protect their
cargoes from degradation [110]. Isolation of EVs based on their surface markers allows
identification of their specific cellular origin, including neural cell derived EVs [53]. The
studies evaluating EVs as biomarkers in ALS are summarised below.

Studies in ALS patients have shown that TDP43, SOD1 and FUS levels are elevated
in EVs isolated from plasma and cerebrospinal fluid (CSF), listed in Table 3. Motor cortex
EVs from human ALS post-mortem tissue showed upregulation of several RNA binding
proteins [111]. Inflammatory cytokines have also been identified, with increased levels of
interleukin 6 found in astrocyte derived EVs in patients with ALS [112]. Recent studies have
aimed to analyse the whole proteome of EVs in ALS. Table 3 also lists the results of two such
proteomic studies performed on CSF derived EVs of patients with ALS. Interleukin 6 and
SOD1 protein levels were also shown to correlate with the rate of change of ALSFRS-R in
patients, demonstrating that EV biomarkers may be useful to measure disease progression.

The results of eight studies analysing the miRNA content of EVs in patients with ALS
are also summarised in Table 3. Five of these analysed the total miRNA content of EVs,
two evaluated specific miRNAs, miR-27a and miR-124, chosen based on previous in vitro
studies, and another validated a panel of 8 miRNAs from a previous study on patients with
ALS. Seven studies reported altered miRNA expression in ALS. Overall there was very
limited overlap in the results between studies, with only the upregulation of miR-3919-
3p and downregulation of both miR-4454 and miR-4286 being shown in more than one
study [113–116]. There were also multiple conflicting results between studies, with let-7c-
5p, miR 9-5p, miR 199a-3p, miR 199a-5p and MiR 4508 having been reported to be both
upregulated and downregulated in ALS [113–116]. Banack et al. reported 8 dysregulated
miRNA in their 2020 study [116]. They subsequently performed a further validation study
in a separate cohort of 50 patients with ALS and 50 controls, and confirmed their previous
findings of upregulated miR 4a-5p, miR 146a-5p and downregulated miR 4454, miR 10b-5p
and miR 29b-3p, and have suggested these may be useful as disease biomarkers [117].

Studies on miRNA from serum, plasma and CSF from patients with ALS compared
to healthy controls have also reported a wide range of miRNA as potentially relevant in
ALS [118–121]. As above, there is limited overlap of significant findings between studies
and often conflicting results. One of the more consistent findings is upregulated miR 206,
which is involved in muscle repair, regeneration and the promotion of new neuromuscular
junctions following denervation [122]. However, this is not specific to ALS and is seen in
other conditions such as spinal bulbar muscular atrophy (SBMA), spinal muscular atrophy
(SMA) and in muscular dystrophies [123–125]. Promising miRNAs reported in multiple
studies affect genes regulating neurodegeneration and apoptosis (miR-338, miR-142, miR-
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183 and let-7d) or muscle (miR-206, miR-133a, miR-133b and miR-27a) [120]. Sproviero
et al. found that MiR 133a and miR 206 were among 45 miRs increased ALS compared to
controls in both small and large plasma EVs [114]. The only other overlap in miRs from EV
studies with other biofluds are altered expressions of miR 338, this being downregulated in
EVs, but reported to be upregulated in plasma [115,126].

There have been two studies analysing the mRNA profile of EVs in patients with ALS.
Otake et al. found 133 upregulated and 410 downregulated genes in EVs extracted from
CSF of 4 ALS patients. Gene ontology analysis showed enrichment in mRNAs involved
in the ubiquitin-proteasome pathway, oxidative stress response and unfolded protein
response [127]. Sproviero et al. reported 542 upregulated genes and 88 downregulated
genes in plasma EVs from ALS patients. Gene ontology analysis from these results showed
enrichment of genes involved in the regulation of transmembrane transport, leukocyte
chemotaxis and transcription regulation [128].

Lipid dysregulation is gaining attention as a key feature in ALS, with multiple studies
showing alterations in many lipid classes, particularly sphingomyelin and ceramide, in
ALS [129–132]. As with other substrates, the lipid composition of EVs is different from host
cells. There is enrichment by a factor of 2–3 for cholesterol, sphingomyelin, glycosphin-
golipids and phosphatidylserine in EVs analysed from multiple cell lines [133]. The high
content of cholesterol and sphingomyelin allows for tighter lipid packaging in membranes
giving greater structural rigidity to EVs and resistance to physicochemical changes. Ad-
ditionally, cholesterol interacts with sphingomyelin to form lipid rafts, which are lipid
and protein rich domains highly involved in signalling pathways [134]. Bioactive lipids
such as sphingolipids and eicosanoids can also be transferred between cells by EVs [135].
Few lipidomic studies have been performed in EVs and none on EVs from patients with
ALS [136]. There has only been one study analysing the lipid content of EVs in patients
with ALS. Morasso et al. used Raman spectroscopy, a form of vibrational spectroscopy, and
found the total lipid content of EVs was increased in patients with ALS, however there
was no information on specific lipids [137]. There is very limited information on the lipid
content in EVs in ALS and this area merits further investigation.

Table 3. Studies showing the use of EVs as biomarkers in patients with ALS. Abbreviations:
AD—Alzheimer’s Disease, DC—disease control, FTD—Frontotemporal dementia, HC—Healthy con-
trol, SBMA—spinal bulbar muscular atrophy, MD—muscular dystrophy, PD—Parkinson’s Disease,
LMVs—Leukocyte derived microvesicles, ALSFRS—ALS functional rating scale, IL-6—Interleukin-6,
IP—immunoprecipitation, UC—ultracentrifugation, NBI—nickel based isolation, PEG—polyethylene
glycol, NOC2l—Nucleolar complex protein 2 homolog, PDCD6IP—Programmed cell death 6-
interacting protein, VCAN—Versican core protein, BLMH—bleomycin hydrolase, HSP90—Heat
shock protein 90, PPIA—peptidyl-prolyl cis-trans isomerase A.

Study Source Isolation Method Patients Metabolites
Analysed Results

Protein

Feneberg et al.
2014 [138] CSF-Exosomes UC 9 ALS, 4 FTD,

8 HC TDP 43 TDP 43 detectable in EVs but not
different between groups

Sproviero et al.
2018 [139]

Plasma- exosomes and
MVs Filtration and UC 30 ALS, 30 HC SOD1, TDP

43 and FUS

Increased SOD1, TDP 43,
phosphorylated TDP 43 and FUS

in ALS MVs

Chen et al.
2019 [112]

Plasma- astrocyte
derived exosomes

Polymer based
precipitation followed by

IP with anti-ACSA-1
40 ALS, 39 HC IL-6

IL-6 increased in ALS and
correlated with rate of

ALSFRS change

Sproviero et al.
2019 [140]

Plasma-Leukocyte,
endothelial, platelet

and erythrocyte
derived MVs

UC followed by IP with
anti-CD45

40 ALS, 36 HC,
28 AD

SOD1,
TDP 43

Misfolded SOD1 detectable in
plasma LMVs

SOD1 levels in LMVs correlated
with rate of ALSFRS change in

slow progressors
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Table 3. Cont.

Study Source Isolation Method Patients Metabolites
Analysed Results

Chen et al.
2020 [141] Plasma-exosome IP with anti CD63 18 ALS FUS FUS present and increased at

3 and 6 months

Hayashi et al.
2020 [142] CSF-exosomes Size exclusion

chromatography 3 ALS, 3 NPH 334 proteins
NOC2l, PDCD6IP, VCAN

increased in ALS
11 proteins decreased

Thompson
et al. 2020 [143] CSF- EVs Ultrafiltration liquid

chromatography 12 ALS, 5 HC 1020 proteins Downregulation of BLMH

Pasetto et al.
2021 [144] Plasma- EVs UC and NBI 106 ALS, 36 HC,

32 SBMA, 28 MD

TDP 43,
HSP90 and

PPIA

HSP90 reduced in ALS compared
to HC and SBMA

ALS EVs smaller than SBMA

Micro RNA

Xu et al.
2018 [145] Serum-exosomes membrane affinity

spin columns 10 ALS, 20 HC miR-27a-3p miR-27a-3p downregulated
in ALS

Katsu et al.
2019 [113]

Plasma- neural
derived EVs

PEG precipitation
followed by IP with anti

CD171
5 ALS, 5 HC 332 miRNAs

13 upregulated miRNAs, greatest
increase in 4736, 4700-5p, 1207-5p,

4739, 4505
17 downregulated miRNAs

Saucier et al.
2019 [115] Serum-EVs Vn96 peptide affinity

capture 14 ALS, 12 HC Total miRNA
profile

Upregulated 532-3p, 144-3p,
15a-5p, 363-3p and

183-5p
22 downregulated miRs, greatest

reduction in 4454, 9-1-5p and,
9-3-5p, 338-3p and 9-2-5p

Banack et al.
2020 [116] Plasma-neural derived

PEG precipitation
followed by IP with

anti CD171
20 ALS, 20 HC 34 miRNAs

Upregulated 146a-5p, 199a-3p,
151-a-3p, 151a-5p, 199a-5p

Downregulated 4454, 10b-5p,
29b-3p

Yelick et al.
2020 [146] CSF-EVs Polymer based

precipitation
14 ALS, 9 DC,

9 HC miR-124-3p miR-124-3p correlated with
ALSFRS in males with ALS

Pregnolato
et al. 2021 [147]

Plasma- exosome
miRNA

Polymer based
precipitation 7 ALS, 3 HC 179 miRNAs No difference in miRNA

expression

Sproviero et al.
2021 [114]

Plasma—large and
small EVs Filtration and UC 6 ALS, 9 FTD,

6 AD, 9 PD, 6 HC total miRNA

45 upregulated and 22
downregulated miRNA in both
small and large EVs in ALS vs.

HC

Banack et al.
2022 [117] Plasma-neural derived

PEG precipitation
followed by IP with

anti CD171

50 ALS, 50 HC 8 miRNAs
Upregulated 4a-5p, 146a-5p

Downregulated 4454, 10b-5p and
29b-3p

Messenger RNA

Otake et al.
2019 [127] CSF- EVs membrane affinity

spin columns 4 ALS, 4 HC 5006 mRNAs 133 upregulated
410 downregulated

Sproviero et al.
2022 [128]

Plasma—large and
small EVs Filtration and UC 6 ALS, 9 FTD, 6

AD, 9 PD, 6 HC Total mRNA 542 upregulated
88 downregulated

Lipids

Morasso et al.
2020 [137] Plasma EVs UC 20 ALS, 20 HC Raman

spectra

Total lipid content increased
in ALS

Phenylalanine decreased

4.2. Challenges in Developing EV Biomarkers

There are multiple difficulties in developing EVs as biomarkers and multiple possible
reasons for the general lack of agreement that is often reported between studies. This
includes the various biofluids investigated, which included CSF, plasma, and serum to
isolate EVs. Additionally, the studies have used multiple EV extraction techniques and
downstream purifications for example to isolate astrocyte or neural derived EVs. There are
many techniques available for isolating EVs, each with distinct advantages and disadvan-
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tages as shown in Table 4. The commonly used techniques are ultracentrifugation, polymer
based precipitation, size exclusion chromatography, ultrafiltration and immunoaffinity cap-
ture [148,149]. Given the multiple different isolation and purification techniques available,
it will be crucial for upcoming studies to follow the International Society of Extracellular
Vesicles guidelines on characterisation of EVs to maximise validity and enable a more
reliable comparison between the obtained findings [40]. This will allow future validation
studies to more robustly investigate proposed EV biomarkers in ALS.

Table 4. Comparison of the advantages and disadvantages of commonly used EV isolation tech-
niques [148,149].

Ultracentrifugation Polymer Based
Precipitation

Size Exclusion
Chromatography Ultrafiltration Immunoaffinity

Advantages
High purity
Can collect

different size EVs

No specialised
equipment

Quick
High yield

High throughput

High purity
Low cost

Quick

Low cost
Quick

Can be used to separate
EVs of different origins

High purity

Disadvantages

Low yield
Specialised
equipment

Requires large
sample

Low throughput

Low purity Low yield

EV clogging and
trapping

Low yield
Low purity

Costs
EV markers require

optimisation Elution steps
may damage EV structure

5. Therapeutic Application of EVs in ALS

There has been great interest in the potential use of EVs as a non-invasive method to
deliver therapeutics including proteins, genetic material and drugs, in neurodegenerative
diseases [150]. The investigation of EVs as therapeutic vectors is growing with at least
20 phase 1/2 clinical trials registered in patients with cancer, SARS-CoV-2, and Alzheimer’s
disease, with treatments including stem cell derived EVs, autologous EVs or drug loaded
EVs [151]. There are several properties of EVs which suggest that they could be useful in
therapeutics in neurodegenerative diseases such as their ability to cross the blood–brain
barrier, their low tendency to evoke an immune response and the potential for manipulation
of cell surface markers to limit off target effects [152,153]. However, there are also challenges
in development of EVs for this use, such as batch-to-batch variation in their synthesis, the
current lack of cost-effective large scale production protocols or of robust, reproducible
methods for drug loading [151]. EVs have been used in murine models of PD and AD to
deliver small interfering RNAs (siRNA) to reduce pathological protein accumulation. EVs
with α-Synuclein siRNA were peripherally injected into α-SynucleinS129D transgenic mice.
This decreased the level of α-Synuclein aggregates in brain regions pathologically affected
in PD [154]. EVs containing BACE1 siRNAs have also been used in C57BL/6 mice resulting
in an over 60% reduction in BACE1 mRNA and a 55% decrease in β-amyloid 1-42 levels, a
key component of plaques in AD pathology [155].

Studies in ALS have used EVs taken from mesenchymal stem cells (MSCs). The
capacity of MSCs to replicate, differentiate, secrete neuroprotective factors and produce new
cells to replace damaged cells, has led to multiple phase 1/2 clinical studies investigating
their potential use in ALS [156]. However, challenges to the use of MSCs include dosing
issues, variation in the differentiation state of the cells and the route of administration [157].
As it is now recognised that MSCs exert much of their action through secretion of EVs,
investigation of the MSC secretome and EVs, as a cell-free therapeutic approach, is now
being explored [158].

EVs from adipose derived stem cells (ADSCs) have been investigated in ALS cell
models. Healthy human ADSCs were added to murine SOD1G93A NSC cells resulting in
slower SOD1 aggregation and improved mitochondrial function [159]. EVs from Murine
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ADSCs have also been added to NSC-34 cells overexpressing SOD1G93A, SOD1G37R and
SOD1A4V, which were challenged to oxidative damage with hydrogen peroxide. Treatment
with EVs reduced oxidative damage, increased cell viability and improved mitochondrial
function [160,161]. A subsequent study by the same group confirmed their previous
findings and reported proteomic analysis on the ADSC EVs, identifying 189 proteins.
Gene ontology analysis showed the most significant biological processes of the identified
proteins to be cell adhesion, negative regulation of apoptosis and positive regulation of
cell proliferation [162]. The group also tested intravenous and intranasal administration of
ADSC EVs to SOD1G93A mice. The EVs were labelled with ultra-small superparamagnetic
iron oxide nanoparticles and MRI confirmed the EVs did penetrate the blood–brain barrier
and were deposited in the brain. The mice showed improved motor performance compared
to placebo and had greater preservation of lumbar motor neurons, neuromuscular junctions
and muscle fibres [163].

EVs isolated from human bone marrow-derived endothelial progenitor cells have
also been shown to reduce damage in a murine brain endothelial cell ALS model [164].
Giunti et al. modified EVs from bone marrow derived MSCs by first treating the MSCs
with interferon-γ. Treating the MSCs with interferon-γ resulted in upregulation of multiple
microRNAs in EVs including miR-466q and miR-467f, which can reduce microglial acti-
vation through inhibition of the p38 mitogen-activated protein kinase pathway. The EVs
reduced the levels of mRNA for Tumour Necrosis Factor and Interleukin 1b in SOD1G93A

microglial cells [165]. This study showed that EV content can in principle be altered to exert
the desired effect on target cells.

6. Conclusions

EVs have multiple potential applications in the investigation of pathology, early (per-
haps pre-clinical) diagnosis, and therapeutic management of patients with ALS. They have
been shown to play a role in disease pathogenesis through the transfer and subsequent
intracellular accumulation of pathological proteins such as TDP-43, SOD1 and FUS. Multi-
ple studies have reported dysregulation of the protein and microRNA cargo of EVs in cell
and animal models of ALS and in patients. Some studies have shown correlation of EV
content with markers of disease progression and there is the exciting scope, with further
validation studies, to develop EVs as diagnostic and prognostic biomarkers. However, the
wide variety of EV sources and isolation methods have limited the reproducibility and
comparability of studies to date. EVs also hold tantalizing promise as therapeutic agents in
ALS and other neurodegenerative diseases through the delivery of neuroprotective factors
in EVs derived from MSCs or as drug delivery vectors.
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