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Dynamic predictions 
of postoperative complications 
from explainable, 
uncertainty‑aware, and multi‑task 
deep neural networks
Benjamin Shickel  1,6, Tyler J. Loftus  2,6, Matthew Ruppert 1,3,6, Gilbert R. Upchurch Jr.  2, 
Tezcan Ozrazgat‑Baslanti 1,3,6, Parisa Rashidi  1,4,5,6 & Azra Bihorac  1,3,6*

Accurate prediction of postoperative complications can inform shared decisions regarding prognosis, 
preoperative risk-reduction, and postoperative resource use. We hypothesized that multi-task deep 
learning models would outperform conventional machine learning models in predicting postoperative 
complications, and that integrating high-resolution intraoperative physiological time series would 
result in more granular and personalized health representations that would improve prognostication 
compared to preoperative predictions. In a longitudinal cohort study of 56,242 patients undergoing 
67,481 inpatient surgical procedures at a university medical center, we compared deep learning 
models with random forests and XGBoost for predicting nine common postoperative complications 
using preoperative, intraoperative, and perioperative patient data. Our study indicated several 
significant results across experimental settings that suggest the utility of deep learning for capturing 
more precise representations of patient health for augmented surgical decision support. Multi-task 
learning improved efficiency by reducing computational resources without compromising predictive 
performance. Integrated gradients interpretability mechanisms identified potentially modifiable 
risk factors for each complication. Monte Carlo dropout methods provided a quantitative measure 
of prediction uncertainty that has the potential to enhance clinical trust. Multi-task learning, 
interpretability mechanisms, and uncertainty metrics demonstrated potential to facilitate effective 
clinical implementation.

In the United States, more than 15 million major, inpatient surgeries are performed each year1. Complications 
occur in up to 32%; major complications decrease quality of life and increase health care costs by as much 
as $11,0002,3. Accurate, personalized predictions of postoperative complications can inform shared decisions 
between patients and surgeons regarding prognosis, the appropriateness of surgery, prehabilitation strategies 
targeting modifiable risk factors (e.g., smoking cessation), and postoperative resource use (e.g., triage to intensive 
care or general wards), suggesting opportunities to augment clinical risk prediction with objective, machine 
learning-enabled decision-support.

Most existing perioperative predictive analytic decision-support tools are hindered by suboptimal perfor-
mance, time constraints imposed by manual data entry requirements, and lack of intraoperative data and clinical 
workflow integration4–9. These challenges are theoretically mitigated by automated deep learning models that 
capture latent, nonlinear data structure and relationships among raw feature representations in large datasets10, 
now widely available in electronic health records (EHRs)11. Despite these potential advantages12–20, deep learn-
ing using the full spectrum of preoperative and intraoperative, patient-specific EHR data to predict postopera-
tive complications has not been previously reported. Recognition that deep learning models with high overall 
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accuracy are nevertheless capable of egregious errors, along with their lack of interpretability, have invited 
skepticism regarding the clinical application of deep learning-enabled decision-support; model interpretability 
and uncertainty-awareness mechanisms have the potential to improve clinical applicability, but their efficacy 
remains unclear.

Using a longitudinal cohort of 56,242 patients who underwent 67,481 inpatient surgeries, we test the hypoth-
eses that deep learning models would outperform random forest and XGBoost baseline models in predicting 
postoperative complications using both preoperative and intraoperative physiological time series data. We also 
explore the utility of multi-task learning21,22 by training a single deep learning model on several postoperative 
complications simultaneously to improve model efficiency, integrated gradients to promote model interpretability, 
and uncertainty metrics that represent variance across predictions.

Results
Participant baseline characteristics and outcomes.  Cohort characteristics are summarized in Table 1 
and detailed cohort statistics are presented in Supplementary Tables S1–S4. The overall study population had 
mean age 56 years and 50% were female. In the validation cohort of 20,293 surgical procedures, the incidence 
of complications was: 33.3% prolonged ICU stay (for 48 h or more), 7.8% prolonged mechanical ventilation, 
20.2% neurological complications, 16.9% acute kidney injury, 16.3% cardiovascular complications, 5.4% venous 
thromboembolism, 21.4% wound complications, 8.7% sepsis, and 1.6% in-hospital mortality. The distribution of 
complications was similar between development and validation cohorts.

Multi‑task learning improved efficiency without compromising predictive performance.  For 
deep learning models trained on preoperative data alone, there were no significant differences between multi-
task outcome-specific models. For models trained on intraoperative time series alone, the multi-task model 
yielded significantly higher AUROC for sepsis (0.80 [95% confidence interval 0.78–0.81] vs. 0.78 [0.77–0.79]) 
and venous thromboembolism (0.74 [0.72–0.75] vs. 0.71 [0.69–0.73]). Using all available preoperative and intra-
operative data, the multi-task postoperative model yielded somewhat higher AUROC for prolonged mechanical 
ventilation, sepsis, venous thromboembolism, and in-hospital mortality, and lower AUROC for prolonged ICU 
stay, wound complications, neurological complications, and acute kidney injury, though the differences were not 

Table 1.   Summary of development and validation cohorts.

Development cohort (6/1/2014–11/26/2018) Validation cohort (11/27/2018–9/20/2020)

Patients, n 38,621 17,621

Hospital encounters, n 47,188 20,293

Age, years, median (25th, 75th) 59.0 (45.0, 69.0) 61.0 (47.0, 71.0)

Length of stay, days, median (25th, 75th) 4.1 (2.2, 7.9) 4.3 (2.2, 8.4)

Length of surgery, hours, median (25th, 75th) 3.1 (2.2, 4.6) 3.2 (2.3, 4.7)

Emergent admission, n (%) 16,706 (35.4%) 7491 (36.9%)

Charlson comorbidity index, median (25th, 
75th) 4.0 (2.0, 6.0) 4.0 (2.0, 6.0)

Sex, n (%)

Female 23,716 (50.3%) 10,005 (49.3%)

Male 23,472 (49.7%) 10,288 (50.7%)

Race, n (%)

White 37,047 (78.5%) 15,942 (78.6%)

African American 6562 (13.9%) 2759 (13.6%)

Other/Unknown 3579 (7.6%) 1592 (7.8%)

Admission type, n (%)

Medicine 20,893 (44.3%) 8277 (40.8%)

Surgery 17,899 (37.9%) 7806 (38.5%)

Other 8396 (17.8%) 4210 (20.7%)

Postoperative complications, n (%)

Prolonged ICU Stay (> 2 Days) 12,980 (27.5%) 6765 (33.3%)

Prolonged mechanical ventilation (> 2 Days) 3512 (7.4%) 1574 (7.8%)

Wound complications 6782 (14.4%) 4347 (21.4%)

Neurological complications 7273 (15.4%) 4107 (20.2%)

Cardiovascular complications 5655 (12.0%) 3301 (16.3%)

Sepsis 3445 (7.3%) 1775 (8.7%)

Acute kidney injury 6894 (14.6%) 3438 (16.9%)

Venous thromboembolism 2008 (4.3%) 1101 (5.4%)

In-hospital mortality 788 (1.7%) 321 (1.6%)
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statistically significant. A comprehensive AUROC comparison between individual models and multi-task learn-
ing is shown in Fig. 1a–c. Given that multi-task models had marginally stronger performance and have a reduced 
computational requirements and training times compared with nine individual models, the multi-task approach 
is used henceforth as our deep learning-based postoperative model, unless stated otherwise. Full results are 
shown in Supplementary Table S5.

Deep learning outperformed random forest and XGBoost baseline models.  Deep learning and 
baseline models (random forest, XGBoost) used the same feature sets with one exception: due to the nature 
of sequential deep learning methods, our deep intraoperative models processed the entire physiological time 
series minute-by-minute, whereas the baseline intraoperative and postoperative models required extraction of 

Figure 1.   Classification accuracy compared with baseline models. Shown are area under the receiver operating 
characteristic curve (AUROC) results for random forest and XGBoost models, individual deep learning models 
independently trained on each outcome, and a combined multi-task jointly trained on all outcomes, using only 
preoperative features (a), only intraoperative features (b), and both preoperative and intraoperative features (c). 
A comparison of multi-task deep learning results at three stages of prediction is shown in (d).
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summary statistics. A full list of random forest and XGBoost time series features is described in Supplementary 
Table S6. A full comparison among all models, performance metrics, and complication outcomes is described in 
Supplementary Methods and Supplementary Table S5.

Preoperative models.  The deep multi-task model trained only on static, preoperative descriptors yielded higher 
AUROC compared with random forest models for all nine outcomes, with significant performance increases 
for prolonged mechanical ventilation (0.90 [0.89–0.90] vs. 0.86 [0.85–0.87]), wound complications (0.77 [0.76–
0.78] vs. 0.73 [0.72–0.73]), neurological complications (0.85 [0.84–0.85] vs. 0.83 [0.82–0.83]), cardiovascular 
complications (0.81 [0.80–0.81] vs. 0.78 [0.77–0.79]), acute kidney injury (0.82 [0.81–0.83] vs. 0.80 [0.79–0.80]), 
venous thromboembolism (0.82 [0.81–0.83] vs. 0.78 [0.76–0.79]), and in-hospital mortality (0.89 [0.88–0.91] vs. 
0.84 [0.82–0.86]).

Compared with XGBoost, deep learning models yielded superior AUROC for all outcomes except for pro-
longed ICU stay and acute kidney injury, in which the two models performed equivalently. Deep learning yielded 
significant AUROC improvements for cardiovascular complications (0.81 [0.80–0.82] vs. 0.79 [0.78–0.79]) and 
venous thromboembolism (0.82 [0.81–0.83] vs. 0.78 [0.77–0.79]).

Intraoperative models.  Using intraoperative time series input data alone, multi-task deep learning yielded 
higher AUROC compared with random forests for all complications except prolonged ICU stay, for which 
AUROC was equivalent. Significant AUROC improvements were yielded for wound complications (0.62 [0.61–
0.63] vs. 0.59 [0.58–0.60]), acute kidney injury (0.74 [0.73–0.74] vs. 0.71 [0.70–0.72]), venous thromboembolism 
(0.74 [0.72–0.75] vs. 0.67 [0.66–0.69]), and in-hospital mortality (0.88 [0.86–0.89] vs. 0.79 [0.77–0.82]).

Compared with XGBoost, deep learning resulted in superior AUROC for all nine outcomes, with signifi-
cant improvements for wound complications (0.62 [0.61–0.63] vs. 0.57 [0.56–0.58]), acute kidney injury (0.74 
[0.73–0.74] vs. 0.71 [0.70–0.72]), and venous thromboembolism (0.74 [0.72–0.75] vs. 0.66 [0.65–0.68]).

Postoperative models.  The deep postoperative multi-task model trained on all available data yielded significant 
higher AUROC compared with a random forest model for eight of nine complications, including prolonged ICU 
stay (0.91 [0.91–0.92] vs. 0.90 [0.89–0.90]), wound complications (0.77 [0.77–0.78] vs. 0.71 [0.70–0.72]), neu-
rological complications (0.85 [0.85–0.86] vs. 0.81 [0.80–0.81]), cardiovascular complications (0.85 [0.85–0.86] 
vs. 0.82 [0.81–0.83]), sepsis (0.88 [0.87–0.88] vs. 0.85 [0.84–0.85]), acute kidney injury (0.82 [0.82–0.83] vs. 0.80 
[0.79–0.81]), venous thromboembolism (0.83 [0.81–0.84] vs. 0.75 [0.74–077]), and in-hospital mortality (0.92 
[0.91–0.93] vs. 0.83 [0.81–0.86]). The deep multi-task model yielded somewhat higher AUROC for prolonged 
mechanical ventilation, but the difference was not statistically significant.

Compared with XGBoost, deep learning resulted in superior AUROC for all outcomes except for prolonged 
ICU stay, in which the performance was equivalent. Deep learning yielded significant AUROC improvements 
for wound complications (0.78 [0.77–0.78] vs. 0.75 [0.74–0.76]), cardiovascular complications (0.85 [0.85–0.86] 
vs. 0.83 [0.82–0.84]), and venous thromboembolism (0.83 [0.81–0.84] vs. 0.77 [0.76–0.79]).

A full AUROC comparison between deep learning, random forest, and XGBoost models is shown in Fig. 1a–c 
and Supplementary Table S5.

Deep postoperative models outperformed deep preoperative models.  Compared with deep pre-
operative models, deep postoperative models had significantly higher AUROC for prolonged ICU stay (0.91 
[95% confidence interval 0.91–0.92] vs. 0.88 [0.88–0.89]), prolonged mechanical ventilation (0.93 [0.92–0.94] 
vs. 0.90 [0.89–0.90]), and cardiovascular complications (0.85 [0.85–0.86] vs. 0.81 [0.80–0.81]). A full compari-
son is shown in Fig. 1d. Using deep multi-task preoperative predictions as a benchmark, the deep multi-task 
postoperative models made significant overall reclassification improvements for prolonged ICU stay (overall, 
correctly reclassified 3.7% of all surgical encounters, p < 0.01), prolonged mechanical ventilation (overall, cor-
rectly reclassified 4.8%, p < 0.01), and cardiovascular complications (overall, correctly reclassified 0.3%, p < 0.01). 
There were no statistically significant declines in reclassification. In some cases, deep models for individual 
complications yielded better net reclassification indices than multi-task models, including wound complications 
(− 1.7% vs. − 2.9%, p < 0.01) and cardiovascular complications (2.8% vs. 0.3%, p < 0.01). Full net reclassification 
results are shown in Supplementary Table S7. Detailed statistics for absolute and relative risk between preopera-
tive and postoperative models are shown in Supplementary Table S8, and analyses of risk group transitions are 
shown in Supplementary Tables S9 and S10.

Model uncertainty.  We applied the method of Monte Carlo dropout to derive measures of prediction 
uncertainty, representing variance across predictions, for each of our deep learning models. Uncertainty results 
for each prediction phase and training procedure are shown in Table 2, where uncertainty is expressed as predic-
tion variance over 100 stochastic trials using dropout at inference time. Interestingly, models trained only using 
intraoperative data resulted in the lowest uncertainty for each postoperative complication. Within each outcome 
and prediction phase, individual models yielded lower predictive uncertainty compared with multi-task model 
counterparts. Using the models with the least uncertain training scheme for each outcome and prediction phase, 
postoperative predictions were less uncertain than preoperative predictions for prolonged mechanical ventila-
tion, wound complications, cardiovascular complications, and in-hospital mortality; postoperative uncertainty 
was higher for the remaining five complications.
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Table 2.   Deep model uncertainty metrics aggregated over 100 Monte Carlo dropout iterations.

Outcome Prediction point Model type Mean uncertainty (variance × 103) Mean AUROC

Prolonged ICU stay

Preop
Individual 3.471 0.887

Multi-task 5.907 0.883

Intraop
Individual 1.178 0.887

Multi-task 1.401 0.884

Postop
Individual 3.675 0.919

Multi-task 4.785 0.914

Prolonged MV

Preop
Individual 2.695 0.892

Multi-task 4.040 0.896

Intraop
Individual 0.851 0.915

Multi-task 1.274 0.916

Postop
Individual 2.345 0.925

Multi-task 3.122 0.931

Wound

Preop
Individual 3.058 0.761

Multi-task 6.191 0.767

Intraop
Individual 0.553 0.608

Multi-task 1.077 0.624

Postop
Individual 2.884 0.777

Multi-task 5.363 0.774

Neuro

Preop
Individual 2.194 0.851

Multi-task 4.856 0.847

Intraop
Individual 1.553 0.748

Multi-task 1.326 0.758

Postop
Individual 2.723 0.855

Multi-task 4.270 0.852

Cardiovascular

Preop
Individual 2.331 0.809

Multi-task 3.657 0.806

Intraop
Individual 0.967 0.829

Multi-task 1.177 0.833

Postop
Individual 2.209 0.852

Multi-task 2.802 0.853

Sepsis

Preop
Individual 1.751 0.864

Multi-task 3.922 0.868

Intraop
Individual 1.533 0.780

Multi-task 1.643 0.796

Postop
Individual 1.885 0.875

Multi-task 4.030 0.876

AKI

Preop
Individual 2.337 0.816

Multi-task 4.541 0.819

Intraop
Individual 0.955 0.730

Multi-task 1.200 0.737

Postop
Individual 3.146 0.826

Multi-task 3.827 0.824

Venous thromboembolism

Preop
Individual 1.781 0.819

Multi-task 4.857 0.821

Intraop
Individual 0.677 0.709

Multi-task 1.173 0.735

Postop
Individual 2.688 0.821

Multi-task 5.000 0.827

In-hospital mortality

Preop
Individual 1.853 0.895

Multi-task 3.675 0.893

Intraop
Individual 0.727 0.858

Multi-task 1.520 0.876

Postop
Individual 1.820 0.903

Multi-task 3.452 0.918
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Model interpretability.  We applied integrated gradients to our multi-task deep learning postoperative 
prediction model. The top 10 features per complication outcome for every sample in the validation cohort are 
shown with corresponding attribution scores in Table 3. Importance distribution among the top 10 features per 
complication are visualized in Supplementary Fig. S1, and distributions of feature importance values grouped by 
input and feature type are visualized in Supplementary Figs. S2 and S3. The important feature lists, as described 
in subsequent sections, are consistent with medical knowledge, experience, and evidence, establishing an impor-
tant element in gaining the trust of patients and clinicians23.

Prolonged ICU stay.  The most important feature was peak inspiratory pressure; the presence of such a value 
indicates the performance of mechanical ventilation, and higher values could indicate intrinsic lung disease, 
proximal airway or breathing tube narrowing or obstruction, or the transmission of increased intra-abdominal 
pressure, each of which suggest greater illness severity. The next two most important features were heart rate and 
blood oxygen saturation, both of which are major determinants of cardiac output and oxygen delivery.

Prolonged mechanical ventilation.  Peak inspiratory pressure and heart rate were again top features, along with 
fraction of inspired oxygen, the number one feature. This result is consistent with prior observations that most 
etiologies of hypoxemia improve with increasing fraction of inspired oxygen, apart from right-to-left shunt, 
which is often accompanied by another pathophysiologic process that is responsive to higher fraction of inspired 
oxygen. Temporal feature attributions for physiological intraoperative time series from an example patient 
requiring prolonged mechanical ventilation are shown in Fig. 2, with another example for a patient developing 
cardiovascular complications shown in Supplementary Fig. S4.

Wound complications.  The major factors affecting wound complications (i.e., infection, dehiscence, and non-
healing) are the type of surgery and its associated degree of wound contamination24,25. These factors are aligned 
with the top five important features for wound complication prediction: primary procedure, surgeon specialty, 
attending surgeon, surgery type, and scheduled surgery room. Although body mass index is unexpectedly miss-
ing from the top 10 feature list, several other factors relate to known risk factors for wound complications, 
including malnutrition, long duration of surgery, blood loss, and anemia.

Neurological complications.  Similar to wound complications, neurological complications are primarily a func-
tion of type of surgery; neurosurgical procedures typically involve pre-existing neurological pathology and con-
fer above-average risk for postoperative neurological pathology relative to other types of surgery. Accordingly, 
primary procedure and surgery type were the top two important features in predicting neurological complica-
tions.

Table 3.   The 10 most influential features using integrated gradients aggregated over validation cohort.

Prolonged ICU 
stay

Prolonged 
mechanical 
ventilation

Wound 
complications

Neurological 
complications

Cardiovascular 
complications Sepsis

Acute kidney 
injury

Venous 
thromboembolism

In-hospital 
mortality

Peak inspiratory 
pressure (0.068)

Fraction of 
inspired oxygen 
(0.067)

Primary proce-
dure (0.066)

Primary proce-
dure (0.037)

Systolic blood 
pressure (0.068) Heart rate (0.045) Creatinine, serum 

(0.034)
Primary procedure 
(0.044)

Primary procedure 
(0.039)

Heart rate (0.063) Peak inspiratory 
pressure (0.053)

Surgeon specialty 
(0.043)

Surgery type 
(0.035)

Peak inspiratory 
pressure (0.064)

Primary proce-
dure (0.039)

Primary proce-
dure (0.032) Heart rate (0.036)

Minimum alveolar 
concentration 
(0.035)

Blood oxygen 
saturation (0.062) Heart rate (0.053) Attending sur-

geon (0.037)
Blood oxygen 
saturation (0.034)

Blood oxygen 
saturation (0.061)

Surgeon specialty 
(0.028)

Surgeon specialty 
(0.032)

Prothrombin time, 
serum (0.033)

Blood oxygen satu-
ration (0.032)

Systolic blood 
pressure (0.048)

Blood oxygen 
saturation (0.044)

Surgery type 
(0.033)

Peak inspiratory 
pressure (0.033) Heart rate (0.056) Scheduled surgery 

room (0.025)
Attending surgeon 
(0.030)

Peak inspiratory 
pressure (0.026)

Peak inspiratory 
pressure (0.028)

Diastolic blood 
pressure (0.040)

Primary proce-
dure (0.029)

Scheduled 
surgery room 
(0.026)

Erythrocytes, 
urine (0.032)

Diastolic blood 
pressure (0.045)

Blood oxygen 
saturation (0.024)

Peak inspiratory 
pressure (0.030)

Surgeon specialty 
(0.025)

Scheduled surgery 
room (0.026)

Primary proce-
dure (0.031)

Respiratory rate 
(0.029) ZIP code (0.025)

Minimum alveo-
lar concentration 
(0.030)

Minimum alveo-
lar concentration 
(0.033)

ZIP code (0.024) Surgery type 
(0.028)

Blood oxygen satu-
ration (0.025)

Erythrocytes, 
urine (0.026)

Fraction of 
inspired oxygen 
(0.030)

Scheduled 
surgery room 
(0.028)

Heart rate (0.025) Scheduled surgery 
room (0.026)

Core temperature 
(0.030)

Surgery type 
(0.023)

Blood oxygen 
saturation (0.026)

Fraction of inspired 
oxygen (0.025)

Diastolic blood 
pressure (0.026)

Surgery duration 
(0.027)

Tidal volume 
(0.027)

Surgery duration 
(0.024)

Diastolic blood 
pressure (0.026)

Respiratory rate 
(0.021)

Erythrocytes, 
urine (0.023) Heart rate (0.022)

Erythrocyte 
distribution width 
(0.024)

Fraction of 
inspired oxygen 
(0.022)

Mean arterial 
pressure (0.025)

Systolic blood 
pressure (0.023)

Albumin, serum 
(0.022) Heart rate (0.025) Primary proce-

dure (0.021)
Peak inspiratory 
pressure (0.020)

Surgery duration 
(0.021)

Attending surgeon 
(0.023) ZIP code (0.022)

Surgery type 
(0.023) ZIP code (0.022) Platelet mean 

volume (0.021)
Systolic blood 
pressure (0.024)

Surgery duration 
(0.020)

Attending surgeon 
(0.019)

Urea nitrogen, 
serum (0.020) ZIP code (0.023) Surgery type 

(0.021)
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Cardiovascular complications.  Cardiovascular complications may be caused by or lead to cardiac and res-
piratory pathophysiology, primarily measured by cardiac and respiratory vital signs and mechanical ventilator 
measurements26. Consistent with these phenomena, the top five important features for cardiovascular complica-
tions were systolic blood pressure, peak inspiratory pressure, blood oxygen saturation, heart rate, and diastolic 
blood pressure.

Sepsis.  Important features for sepsis were similar to those of wound complications, with the exception of heart 
rate, which was the most important feature for sepsis. One might expect that fever, leukocytosis, and hypoten-
sion would be important features in predicting sepsis, but it is possible that these elements would occur later 
after surgery when sepsis was developing as a postoperative complication, and they can also represent ster-
ile postoperative inflammation from tissue damage without infection. Heart rate variability, which would be 
learned from intraoperative time series heart rate values, is well established as a strong predictor of sepsis and 
associated adverse outcomes27,28.

Acute kidney injury.  Serum creatinine is the primary method for measuring kidney function among hospital-
ized patients and tends to be more reliable than volume of urine output, which is difficult to record accurately 
in the absence of an indwelling bladder catheter. Accordingly, the number one important feature in predicting 
acute kidney injury was serum creatinine. Several other important features represented kidney perfusion or red 
blood cell production, which is affected by the endogenous renal hormone erythropoietin.

Venous thromboembolism.  Major risk factors for venous thromboembolism are encompassed by Virchow’s 
triad of vessel injury, altered blood flow, and hypercoagulability29. These elements are represented in two of the 
top three important features for predicting venous thromboembolism (i.e., primary procedure and serum pro-
thrombin time), as well as several other variables in the top 10 feature list.

Discussion
In predicting postoperative complications among adult patients undergoing major, inpatient surgery, deep neural 
networks outperformed random forest and XGBoost classifiers, exhibiting strongest performance when leverag-
ing the full spectrum of preoperative and intraoperative EHR data. Intraoperative physiological time-series had 

Figure 2.   Temporal integrated gradients feature attributions for example patient experiencing prolonged 
mechanical ventilation. The multi-task deep learning model correctly predicted elevated risk of prolonged 
mechanical ventilation after integrating multivariate intraoperative time series. Physiological time series labeled 
by variable (left) and value range (right). Implementation of integrated gradients highlighted physiological 
patterns important for updated risk prediction, including a rapid increase in heart rate and ETCO2, fluctuations 
in PIP, and changes in SPO2. ETCO2, end-tidal carbon dioxide; PIP, peak inspiratory pressure; SPO2, blood 
oxygen saturation.
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meaningful associations with postoperative patient outcomes, suggesting that prediction models augmented 
with intraoperative data may have utility for routine clinical tasks such as sharing prognostic information with 
patients and caregivers and making clinical management decisions regarding triage destination and resource 
use after surgery. Deep models maintained high performance using efficient multi-task methods predicting 
nine complications simultaneously, rather than predicting individual complications with separate models that 
require extra training time. Uncertainty metrics revealed that variance across model predictions is lowest when 
using intraoperative data alone, consistent with the perspective that many preoperative EHR predictor variables 
represent clinician decision-making (e.g., the lack of preoperative bilirubin values indicates a decision to forego 
hepatic function testing) rather than pure physiology, and therefore introduce greater variance in predictions. 
Finally, applying integrated gradients interpretability methods elucidated feature importance patterns that were 
biologically plausible and consistent with medical knowledge, experience, and evidence, harboring the potential 
to gain trust from patients and clinicians23.

Previous studies have established that for many clinical prediction tasks, deep neural networks outperform 
other methods, such as logistic regression classifiers30,31. Parametric regression equations often fail to accurately 
represent complex, non-linear associations among input variables, limiting their predictive performance. More 
than 30 years ago, Schwartz et al.32 suggested that human disease is too broad and complex to be accurately 
represented by rule-based algorithms, and that machine learning models obviate this limitation by learning 
from data. In our study, deep learning also outperformed random forest and XGBoost models, likely because 
the deep models capitalized on the availability and granularities of intraoperative time series data. As EHR data 
volumes expand, deep learning healthcare applications gain greater potential for clinical application33. However, 
this will require integration with real-time clinical workflow. Therefore, it seems prudent to design models that 
make updated predictions as EHR data become available. We sought to achieve this objective by using recurrent 
neural networks that can update their predictions when new data becomes available. Our results suggest that 
these models would perform well in prospective clinical settings.

Multi-task methods did not yield predictive performance advantages in our study, but they have yielded 
performance advantages in previous studies. Multi-task learning can improve model generalizability by penal-
izing the exploration of certain regions of the available function space, thus reducing overfitting from the false 
assumption that data noise is sparse or absent. This has been demostrated by Si and Roberts34 in applying CNN 
multi-task learning to word embeddings in MIMIC-III clinical notes data, demonstrating that multi-task learning 
models outperformed single-task models in predicting mortality within 1, 3, 5, and 20 different timeframes. In 
addition, multi-task learning can act as a regulizer for learning classifiers from a finite set of examples by penaliz-
ing complexity in a loss function, as demonstrated by Harutyunyan et al.21 in predicting mortality and physiologi-
cal decompensation among ICU patients in the publicly available MIMIC-III database35. However, multi-task 
learning was not advantageous for phenotyping acute care conditions; the authors postulated that this occurred 
because phenotyping is multi-task by nature, i.e., already benefits from regularization across phenotypes. This 
may not hold true for rare, complex phenotypes, for which multi-task learning can reduce neural network 
sensitivity to hyperparameter settings (i.e., parameters that are set before learning begins), as demonstrated by 
Ding et al.36 Properly applied, multi-task learning can improve model generalizability and classification in deep 
learning clinical prediction models, optimizing performance and usability across diverse settings and datasets, 
with the added advantage of reduced model training times relative to training multiple individual models.

One barrier to clinical adoption of deep learning clinical prediction models is difficulty interpreting outputs. 
Patients, caregivers, and clinicians may be more willing to incorporate model predictions in shared decision-
making processes if they understand how and why a prediction was made and believe that the prediction is 
consistent with medical knowledge and evidence. Integrated gradients techniques attempt to explain predictions 
made by deep learning models, usually by feeding perturbed inputs to the model, evaluating effects on outputs, 
and using this information to quantify and convey feature importance. Sayres et al.37 used integrated gradients 
to identify retinal image regions contributing to deep learning-based diabetic retinopathy diagnoses, which was 
associated with improved ophthalmologist diagnostic accuracy and confidence. These methods have the potential 
to facilitate clinical adoption of deep learning prediction models by allowing patients, caregivers, and clinicians 
to understand how and why an output was produced. Finally, demonstrating low variance across predictions 
with uncertainty metrics could assuage well-founded patient and clinician fears that an individual model output 
represents a rare but egregious prediction error, for which deep learning models are infamous.

This study was limited by its single-institution, retrospective design. Although multi-task functions may 
reduce overfitting, the use of data from a single institution limits generalizability. Our models have not been tested 
using prospective, real-time data, which may present data pre-processing challenges. Future research should 
seek prospective, multi-center validation of these findings. While we describe our data processing, modeling, 
and experimental approach in suitable depth to allow individual reproducibility on other private datasets, our 
results may not result in more broadly generalizable findings. In the current data sharing climate, comprehensive 
external validation will be difficult to perform until cloud sharing of standardized EHR data or federated learn-
ing are achieved at scale38. Our deep learning models also use a relatively straightforward implementation of 
multi-task learning; future work will explore the impact of more complex formulations of cross-task knowledge 
transfer. Finally, it remains unknown how the predictions generated by models presented herein would affect 
shared decision-making processes and patient outcomes.

In summary, deep learning yielded greater discrimination than random forest and XGBoost models for 
predicting complications after major, inpatient surgery. Uncertainty metrics and predictive performance were 
optimal when leveraging the full spectrum of preoperative and intraoperative physiologic time-series data as 
predictor variables in an efficient multi-task deep learning model. Uncertainty-aware deep learning may have 
utility for understanding the probability that a prediction deviates substantially from usual predictions and rep-
resents a rare, major prediction error. Integrated gradients interpretability mechanisms identified biologically 
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plausible important features. The accurate, interpretable, uncertainty-aware predictions presented herein require 
further investigation regarding their potential to augment surgical decision-making during preoperative and 
immediate postoperative phases of care.

Methods
All analyses were performed on a retrospective, single-center, longitudinal cohort of surgical patients that 
included data from both preoperative and intraoperative phases of care. We used deep learning, random forest, 
and XGBoost models to predict the onset of nine major postoperative complications following surgery with 
three primary objectives: (1) compare deep learning techniques with random forest and XGBoost models in 
predicting postoperative complications, (2) compare deep learning predictions made at two phases of periop-
erative care: immediately before surgery (using preoperative data alone, referred to henceforth as preoperative 
prediction), and immediately after surgery by two different methods: (a) using intraoperative data alone (referred 
to henceforth as intraoperative prediction), and (b) using both preoperative and intraoperative data (referred 
to henceforth as postoperative prediction), and (3) explore the potential benefits of three novel deep learning 
techniques: (a) multi-task learning by training a single deep learning model on several postoperative complica-
tions compared with training separate models for each individual complication, (b) model interpretability with 
integrated gradients, and (c) model uncertainty-awareness by calculating variance across predictions.

The University of Florida Institutional Review Board and Privacy Office approved this study as an exempt 
study with waiver of informed consent (IRB # 201600223). Recommendations were followed from both Transpar-
ent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD39) guidelines 
and from best practices for prediction modeling from Leisman et al.40 All methods were performed in accordance 
with relevant guidelines and regulations.

Data source.  The University of Florida Integrated Data Repository was used as an honest broker to build a 
longitudinal dataset representing patients admitted to University of Florida Health between June 1st, 2014, and 
September 20th, 2020, who were at least 18 years of age and underwent at least one surgical procedure during 
hospitalization. The dataset was constructed by integrating electronic health records with other clinical, admin-
istrative, and public databases9. The resulting dataset included information on patient demographics, laboratory 
values, vital signs, diagnoses, medications, blood product administration, procedures, and clinical outcomes, as 
well as detailed intraoperative physiologic and monitoring data.

Predictors.  Our final cohort included electronic health record data from both before and during surgery. 
Preoperative models were trained on data available between 1  year prior to surgery and the day of surgery, 
prior to surgery start time (i.e., preoperative features alone). Intraoperative models were trained on data created 
during the surgical procedure (i.e., intraoperative features alone). Postoperative models were trained on data 
available between 1 year prior to surgery through the end of the surgical procedure (i.e., both preoperative and 
intraoperative features).

We identified 402 preoperative features, including demographic and socioeconomic indicators, planned 
procedure and provider information, Charlson comorbidities, and summary statistics of select medications, 
laboratory tests, and physiological measurements (e.g., vital signs such as heart rate and blood pressure) taken 
prior to a surgical procedure over 1-year and 1-week time windows. We calculated Charlson comorbidity indices 
using International Classification of Diseases (ICD) codes41. We modeled procedure types on ICD-9-CM codes 
with a forest structure in which nodes represent groups of procedures, roots represent the most general groups 
of procedures, and leaf nodes represent specific procedures. Medications were derived from RxNorm codes 
grouped into drug classes as previously described.

Intraoperative data consisted of 14 physiological measurements taken during surgery: systolic blood pres-
sure, diastolic blood pressure, mean arterial pressure, heart rate, blood oxygen saturation (SpO2), fraction of 
inspired oxygen (FiO2), end-tidal carbon dioxide (EtCO2), tidal volume, respiration rate, peak inspiratory 
pressure (PIP), minimum alveolar concentration (MAC), temperature, urine output, and operative blood loss. 
These variables were presented to deep learning models as variable-length multivariate time series. For random 
forest and XGBoost models, a set of 49 statistical features were extracted from each encounter’s intraoperative 
measurements. Supplementary Table S6 summarizes all input features and relevant preprocessing procedures.

Participants.  We excluded patients with intraoperative mortality or who were missing the variables neces-
sary to classify postoperative complications. If a single patient’s hospital encounter included more than one sur-
gery, only the first surgery during that encounter was included in our analyses. Our final dataset included 56,242 
patients who underwent 67,481 surgeries. Supplementary Fig. S5 illustrates derivation of the study population 
and cohort selection criteria.

Outcomes.  We used several different machine learning methods to model the risk of nine postoperative 
complications: prolonged intensive care unit stay (greater than 48 h), prolonged mechanical ventilation require-
ment (greater than 48 h), neurological complications, cardiovascular complications, acute kidney injury, sepsis, 
venous thromboembolism, wound complications, and in-hospital mortality.

Sample size.  We chronologically divided our perioperative cohort into a development set of 47,188 surger-
ies occurring between June 1st, 2014, through November 26th, 2018, and a validation set of 20,293 surgeries 
occurring between November 27th, 2018, through September 20th, 2020. All models were trained using the 
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development patient cohort; all results were reported for the validation patient cohort (Supplementary Fig. S5). 
While training deep learning models, we used 10% of encounters from the development cohort for early stop-
ping.

Using a validation cohort of 20,293 surgeries, the overall sample size allows for a maximum width of the 
95% confidence interval for area under the receiver operating characteristic curve (AUROC) to be between 0.01 
and 0.03 for postoperative complications with prevalence ranging between 5.4 and 33.3% for AUROC of 0.80 
or higher. The sample size allows for a maximum width of 0.06 for hospital mortality given 1.6% prevalence.

Predictive analytic workflow.  The postoperative models update preoperative risk predictions using data 
collected during surgery. This workflow emulates clinical scenarios in which patients’ preoperative information 
is enriched by the influx of new data from the operating room. The model consists of two main preoperative and 
intraoperative layers, each containing a data transformer core and a data analytics core9. The data transformer 
integrates data from multiple sources, including EHR data with ZIP code links to US Census data for patient 
neighborhood characteristics and distance from the hospital. The data transformer then performs preprocessing 
and feature transformation steps to optimize the data for analysis.

The 402 preoperative features contained 341 continuous features, 42 binary features, and 19 nominal fea-
tures. Of the 19 nominal features, 13 contained fewer than 5 levels and were one-hot encoded as zero vectors of 
dimension equal to number of levels, with level indicators equal to one. The remaining six nominal features (ZIP 
code, attending surgeon, primary procedure, scheduled operating room, surgery type, and surgeon specialty) 
were represented as unique integer identifiers ranging from zero to the number of levels minus one. Implicit 
variable representations were learned as part of the model training process. Continuous preoperative feature 
observations that fell below the 1st or above the 99th percentiles were capped to the 1st and 99th percentile val-
ues, respectively. Temporal preoperative features denoting the day and month of admission were transformed 
into two individual continuous features each through the use of sinusoidal functions based on the respective 
frequency of days or months, which encoded relative differences between time points (e.g., Sunday is close to 
Monday, and December is close to January).

Intraoperative measurements were identified as those falling between anesthesia start and stop times for a 
given procedure. Fixed-interval multivariate physiological time series were constructed for each procedure by 
resampling measured values to a frequency of one minute, which represented the highest recorded frequency 
across all intraoperative features. For a given surgical procedure which had at least one measurement of a given 
feature, any gaps in that feature’s time series were imputed via linear interpolation in both directions. As surger-
ies vary in duration, each sample included a multivariate time series of length T minutes. Blood loss sum, urine 
output sum, and duration of surgery were included as static postoperative features.

Missing continuous features were imputed with the median of each feature value in the development cohort. 
For static preoperative descriptors, this represented a single number; for intraoperative time series, this was only 
performed when a single feature value did not exist, and the median value was imputed at every one-minute 
time step for the full duration of surgery. Missing preoperative nominal features were replaced with a distinct 
“missing” category.

To preserve patterns of missingness which may be informative42, for each sample we derived a preoperative 
binary presence mask over all continuous and binary input variables that indicated whether a given value was 
observed or imputed. These missingness indicators were concatenated with their respective original measure-
ments. For a given cohort set of size N encounters, initial continuous and binary preoperative features were 
represented as a matrix of descriptors PN×383. With a missingness mask of size PN×383

mask
 , concatenation resulted in 

a final continuous and binary preoperative feature set of 766 numerical preoperative descriptors for each sample. 
Nominal preoperative features did not require a missingness mask, as missing values were transformed into a 
distinct categorical level. The 13 nominal variables that were one-hot encoded were concatenated with the above 
numerical preoperative representation, and the 6 nominal features with greater than 5 levels were internally 
embedded by the model. Multivariate time series missingness masks were computed and concatenated at each 
one-minute intraoperative timestep; for a single surgical time series xT×12 of length T including our 12 temporal 
physiological measurements, the concatenation of these per-timestep masks resulted in a final input time series 
xT×24 of 24 intraoperative predictors at each timestep. All continuous input variables, both preoperative and 
intraoperative, were z-normalized to zero mean and unit variance based on values from the development set.

Following these processing steps, each surgical encounter was represented by four distinct sets of variables: 
a set of numerical preoperative features, a set of nominal preoperative features to be internally embedded by 
the model, a multivariate time series of length T composed of physiological measurements, and a set of static 
surgical features collected at the end of surgery. The length of intraoperative time series varied depending on 
surgery duration, and our deep learning models were designed to process the full scope of intraoperative physi-
ological measurements.

In the data analytics core, deep learning, random forest, and XGBoost models were trained to predict nine 
postoperative complications following a surgical procedure. Clinically, predictions made by preoperative models 
can inform patients, caregivers, and surgeons regarding risks of undergoing surgery, and estimate the utility of 
risk reduction strategies for specific complications (e.g., preoperative smoking cessation, perioperative renal 
protection bundles, and wound closure techniques). Intraoperative events can influence risk for complications 
(e.g., operative blood loss requiring allogenic blood transfusion increases risk for septic complications and intra-
operative hypotension increases risk for acute kidney injury). Therefore, we generated intraoperative models 
to predict complications using data obtained during surgery. At the end of surgery, clinicians must reassess the 
patient’s prognosis, convey this information to the patient and their caregivers, and make clinical management 
decisions accordingly (e.g., a patient at high risk for cardiovascular complications may benefit from postoperative 
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admission to an intensive care unit or continuous cardiac telemetry on a general hospital ward). At the end 
of surgery, it seems prudent to consider both baseline preoperative risk as well as the potential influence of 
intraoperative events to make updated predictions of postoperative complications. This is accomplished by our 
postoperative models.

As a technical explanation of deep learning fundamentals is beyond the scope of this study, we refer inter-
ested readers to the comprehensive work by Goodfellow et al.43 Our final postoperative deep learning model can 
be conceptualized as a composition of two sub-models: one for processing preoperative features, and one for 
processing intraoperative features. Reported preoperative results (i.e., predicting postoperative complications 
using preoperative features alone) were obtained by only using the data representation from the preoperative 
sub-model; likewise, reported intraoperative results were obtained by only using the data representation from 
the intraoperative sub-model. The postoperative model used a transformed concatenation of both preoperative 
and intraoperative data representations (Fig. 3).

The preoperative sub-model was composed of a dual pipeline for processing and representing numerical 
features and nominal features with greater than 5 levels. A representation of all six index-encoded nominal input 
features was obtained by concatenating individual nominal feature representations, each of which were the result 
of a learned, multidimensional per-feature embedding lookup table, and passing the concatenated result through 
a fully connected layer. A representation of all numerical preoperative variables was obtained by passing the 
input features through a fully connected layer. A complete preoperative encounter representation was obtained 
by concatenating both continuous and nominal input feature representations and passing the result through a 
final fully connected layer.

In the multi-task setting, this preoperative data representation was passed through nine branches correspond-
ing to our nine postoperative complication outcomes. Each branch contained one outcome-specific fully con-
nected layer followed by a sigmoid activation function to produce a per-outcome prediction score, interpreted 
as the probability of a preoperative patient developing a given postoperative complication.

The primary driving force behind the intraoperative sub-model was a bidirectional recurrent neural network 
(RNN) with gated recurrent units (GRU). A patient’s intraoperative time series was passed through the RNN 
twice, once in chronological order and once in reverse order. Time step representations were generated by con-
catenating the RNN hidden states from the forward and backward passes. An attention mechanism was applied 
to the bidirectional sequence representations. Briefly, an attention mechanism for classification allows a model to 
assign importance scores to individual timesteps of a representation sequence such that the importance-weighted 
sequence is summed into a single context vector that is an optimal representation for a given predictive task. 
Attention allows a model to learn to focus exclusively on timesteps that are important for classification decisions. 
In our multi-task model, we implemented a separate attention mechanism for each of the nine postoperative 
complications. Using a shared representation of an intraoperative sequence from the RNN, each attention com-
ponent formulated a separate perspective of the sequence aligned with each outcome of interest.

Our complete deep learning model, which we refer to as the postoperative model, includes both the preop-
erative and intraoperative sub-models described in this section. The postoperative model is trained end-to-end 
and consists of concatenating both the static preoperative representation (the output of the preoperative sub-
model) with the outcome-specific intraoperative representation (the output of the intraoperative sub-model for 
a given outcome) and passing this combined feature representation through the same set of nine classification 
branches as the sub-models.

In our experiments and reported results, we use a nominal preoperative variable embedding size of 64, fully 
connected layers size of 64 (except for final task output layers, which have size 1), hidden dimension of 64, Adam 
optimizer with learning rate of 0.001, L2 regularization of 0.01, batch size of 64, RELU activation, and patience 
of 4 used for early stopping based on the validation data set. Given the large number of models and experimental 

Figure 3.   Data processing pipeline and deep learning model architecture. Patient-level input variables were 
split into static preoperative data and temporal intraoperative data. Preoperative variables were split into 
continuous, binary, and high-cardinality features and followed variable-specific preprocessing procedures. Deep 
learning model architecture utilized a data fusion design combining latent representations of high-frequency 
intraoperative data (from a bidirectional recurrent neural network) and static preoperative patient data (from 
fully connected layers) for eventual multi-task prediction of nine postoperative complications.
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settings contained in this work (in addition to hardware limitations), we do not perform an exhaustive hyperpa-
rameter search; instead, we selected these values based on our previously successful implementations of recurrent 
neural networks for clinical patient data in prior work18,44.

To determine whether the deep learning models offered a performance advantage over traditional predictive 
analytic methods, we assessed the performance of baseline random forest and XGBoost classifiers using the same 
preoperative and intraoperative input feature sets as the deep learning models, with predictions made at the same 
time points. Nominal preoperative features, which were index-encoded before passing through the deep model, 
were instead one-hot encoded before feeding into the baseline models. Intraoperative time series were fed to the 
baseline models by way of 49 summary statistics, capturing static attributes and patterns of variability for each 
variable. These features are described in Supplementary Table S6.

To account for class imbalance among the nine postoperative complication outcomes, both deep learn-
ing and baseline models were trained using outcome-specific class weights that were inversely proportional to 
their respective frequencies in the training set. Functionally, this ensures greater model focus on minority class 
samples.

The postoperative complication predictions from all deep neural networks trained under each surgical phase 
(preoperative, intraoperative, postoperative) and training scheme (individual models, multi-task learning) were 
analyzed with Monte Carlo dropout, approximating Bayesian inference and providing a quantitative measure 
of uncertainty for neural network predictions45. By enabling randomized dropout during model inference and 
aggregating resulting predictions over several experimental trials, a pseudo model ensemble is generated with 
partially randomized neural network connections. In our experiments, we perform 100 trials with stochastic 
dropout applied during inference and compute the mean complication risk and resulting prediction variance as 
a measure of model uncertainty.

We apply the method of integrated gradients to our final postoperative multi-task model to illuminate spe-
cific input features that yielded the largest impacts on predicting each of the nine complication outcomes. A 
complete discussion of this technique is beyond the scope of this study; we refer interested readers to the work 
of Sundarajan et al.46. Briefly, integrated gradients is a comparative technique for local interpretability, centered 
around the analysis of model outputs based on a given input and corresponding baseline values, and assigns 
attributions values to every input feature. In theory, features most influential to a given prediction will receive 
larger attribution values, and taken over an entire population, this can reveal the importance of certain features 
which drive the model predictions. We use a zero-vector reference value for such computations, and as all vari-
ables are Z-normalized to zero mean and unit variance; such a reference can be viewed as the per-variable mean 
value across the entire cohort.

Model validation.  All models were trained on the development set of 47,188 surgeries occurring between 
June 1st, 2014, through November 26th, 2018. Models were evaluated on the validation set of 20,293 surgical 
procedures occurring between November 27th, 2018, through September 20th, 2020. For each model perfor-
mance metric, ninety-five percent nonparametric confidence intervals were calculated using 1000 bootstrapped 
samples with replacement.

Model performance.  Model performance was evaluated by sensitivity, specificity, positive predictive value 
(PPV), negative predictive value (NPV), accuracy, area under the precision-recall curve (AUPRC), and area 
under the receiver operating characteristic curve (AUROC). Reported metrics include class predictions based 
on Youden’s index threshold on predicted risk scores, which maximizes sensitivity and specificity, as the cutoff 
point for low versus high risk47.

When predicting rare events, models can exhibit deceivingly high accuracy by predicting negative outcomes 
in predominantly negative datasets48. False negative predictions of postoperative complications may be especially 
detrimental because patients, caregivers, and surgeons could unknowingly agree to perform prohibitively high-
risk surgery, miss opportunities to mitigate preventable harm through prehabilitation and other risk-reduction 
strategies, and under-triage high-risk patients to general hospital wards with infrequent monitoring, when close 
monitoring in an intensive care unit would be safer. Therefore, model performance was evaluated by calculat-
ing area under the precision-recall curve (AUPRC), which is adept at evaluating the performance of models 
predicting rare events49. In addition, Net Reclassification Improvement (NRI) indices were used to describe and 
quantify correct and incorrect reclassifications by deep learning models50. For all performance metrics, we used 
bootstrap sampling and non-parametric methods to obtain 95% confidence intervals.

Data availability
Data is available from the University of Florida Institutional Data Access/Ethics Committee for researchers who 
meet the criteria for access to confidential data and may require additional IRB approval.
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