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Evaluation of emphysema 
on thoracic low‑dose CTs 
through attention‑based multiple 
instance deep learning
Jordan Fuhrman 1*, Rowena Yip 2, Yeqing Zhu 2, Artit C. Jirapatnakul 2, Feng Li 1, 
Claudia I. Henschke 2, David F. Yankelevitz 2 & Maryellen L. Giger 1

In addition to lung cancer, other thoracic abnormalities, such as emphysema, can be visualized within 
low-dose CT scans that were initially obtained in cancer screening programs, and thus, opportunistic 
evaluation of these diseases may be highly valuable. However, manual assessment for each scan is 
tedious and often subjective, thus we have developed an automatic, rapid computer-aided diagnosis 
system for emphysema using attention-based multiple instance deep learning and 865 LDCTs. In the 
task of determining if a CT scan presented with emphysema or not, our novel Transfer AMIL approach 
yielded an area under the ROC curve of 0.94 ± 0.04, which was a statistically significant improvement 
compared to other methods evaluated in our study following the Delong Test with correction for 
multiple comparisons. Further, from our novel attention weight curves, we found that the upper lung 
demonstrated a stronger influence in all scan classes, indicating that the model prioritized upper 
lobe information. Overall, our novel Transfer AMIL method yielded high performance and provided 
interpretable information by identifying slices that were most influential to the classification decision, 
thus demonstrating strong potential for clinical implementation.

In 2021, the US Preventative Services Task Force (USPSTF) expanded eligibility requirements for lung cancer 
screening due to programs such as the International-Early Lung Cancer Action Program (I-ELCAP) and the 
National Lung Screening Trial (NLST)1–3. These initiatives found improved patient outcomes through lung cancer 
screening via low-dose CT (LDCT) acquisition, which provides a clinically useful image at reduced radiation 
dose to the patient than a standard dose CT scan. In addition to lung cancer, other thoracic abnormalities can 
be visualized within the CT scan range and opportunistic evaluation of these diseases may be highly valuable4,5. 
Emphysema can be identified on CT scans and shares risk factors with lung cancer, and current literature suggests 
that presence of emphysema may increase risk of lung cancer development6–11. Thus, emphysema evaluation on 
LDCT is appropriate and desirable. However, a manual assessment for each scan is tedious and often subjective, 
thus an automatic, rapid computer-aided diagnosis system should be investigated12,13.

Multiple instance learning (MIL) is a deep learning scheme commonly used in digital pathology that utilizes 
weak annotations to train models by evaluation of instances (e.g., CT slices) to form a collective classification 
decision of a bag (e.g., CT scan)14. Wang discussed key MIL schemes, mi-Net and MI-Net, which classify scans 
based on individual instance classifications and pooled instance representations, respectively15. Ilse improved 
MIL schemes through attention-based multiple instance learning, which utilizes attention mechanisms to identify 
and more heavily weight key instances of whole slide images for cancer detection16.

Deep learning, including MIL schemes, have been utilized to automate emphysema evaluation in standard 
diagnostic and lung screening CT scans. Humphries utilized a convolutional neural network and long short-
term memory architecture to classify visual emphysema pattern on CT and Oh used the same model to compare 
visual emphysema progression with functional impairment and mortality17,18. Negahdar automatically segmented 
lung volumes on chest CT and classified patches of lung tissue based on visual emphysema pattern to quantify 
severity19. Chepylgina and Orting utilized human-engineered features based on histogram features acquired from 
filtered lung ROIs in a multiple instance learning scheme to characterize COPD and emphysema, respectively, 
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in low-dose CT scans20,21. Tennakoon expanded their work to incorporate deep MIL on 3D LDCT patches to 
classify emphysema presence22.

In our work, we utilize deep MIL with transfer learning and attention-based pooling (Transfer AMIL) to 
evaluate emphysema in LDCT scans and compare performances in classification of disease.

Methods
We utilized MIL to characterize emphysema at LDCT presentation through the use of convolutional neural 
networks (CNN) with transfer learning. In this study, the standard MIL terms “instance” and “bag” are used 
synonymously with CT slice and scan, respectively.

LDCT imaging data.  The data in this retrospective, HIPAA-compliant study consisted of 865 LDCT scans 
obtained as part of the International-Early Lung Cancer Action Program. IRB approval and informed consent 
was waived by the University of Chicago Biological Sciences Division/University of Chicago Medical Center 
IRB due to deidentification of images prior to obtention and confirm that all experiments were performed in 
accordance with relevant guidelines and regulations. The image selection criteria were as follows: using the data-
base of all participants enrolled in the Early Lung Cancer Action Program at Weill Cornell Medical College and 
the Icahn School of Medicine at Mount Sinai between 1992 and July 2017, the most recent LDCT scan of 865 
participants with LDCT acquisition were selected that included all participants with moderate emphysema and 
severe emphysema, and randomly selected the remaining participants among 3696 available participants with 
no emphysema. Emphysema was evaluated by visual scoring according to previously published criteria which, 
in brief, categorizes CT scans into mild/moderate categories if less than one-half of the lung volume presents 
with regions of decreased attenuation and severe if more than one-half has decreased attenuation23. The scans 
were non-gated, non-contrast enhanced, and acquired following the parameters and patient information given 
in Table 1. A radiologist further characterized the emphysema by dominant phenotype (centrilobular, panlobu-
lar, paraseptal) and other pulmonary CT findings non-specific to emphysema utilizing the Fleischner criteria24. 
Imaging data is currently not available publicly.

Multiple instance learning (MIL).  Typically, MIL is posed as a binary classification problem in which the 
data are composed into bags Xi = {xi,1, xi,2, . . . , xi,N } each of which is composed of N instances xi,j15,16. The cor-
responding instance truths yi,j ∈ {0, 1} are unknown, but the bag truth is determined from the instance truths 
by the binary decision rule

MIL can be broken down into three key steps as: (1) Extraction of instance representations, (2) transforma-
tion from instance representations to bag representation through MIL pooling, and (3) classification of bag 
representation for clinically relevant decision25. In all, the process is described by

where Ŷi is the predicted bag label, X i is the set of input CT slices (images) that are transformed to instance 
representations via f  , pooled via matrix P , and transformed to a bag prediction via g25.

Yi =

{
0 iff

∑N
j yi,j = 0

1 otherwise

Ŷi = g(Pf (X i))

Table 1.   Database information.

Number of cases 865 (5 excluded from 865)

Dates of acquisition

1997–1999 (8)

2000–2004 (161)

2005–2009 (192)

2010–2014 (128)

2015–2017 (326)

NA (50)

Sex at birth Male (384) female (431) NA (50)

Smoking status Current (257) former (469) never (89) NA (50)

Age Mean (66.8) SD (11.4) range (33–93)

Pack-years of smoking Mean (36.2) SD (30.8) range (0–199)

Scanner manufacturer GE medical systems siemens

Exposure time Range (250–2100)

kVp (100, 120, 140)

Slice thickness Range (0.5–10 mm)

Emphysema severity None (508) mild/moderate (240) severe (117)

Dominant emphysema phenotype Centrilobular (284) paraseptal (33) panlobular (40)
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Transfer learned instance feature extraction (transfer MIL).  In our study, instant representations 
f (X i) of CT slices are acquired through transfer learning from a pre-trained VGG19 architecture26. Transfer 
learning utilizes large models with deep, hierarchical features after pre-training for a similar task, in this case 
image classification but on the ImageNet database set of natural objects27–29. In situations where little training 
data are available, transfer learning allows for the extraction of more complex, rich data representations than 
can be achieved by training a model from scratch. In this study, we utilized a VGG-19 architecture pre-trained 
for natural image classification on ImageNet to extract quantitative features similar to the scheme proposed by 
Antropova30.

The instance representations were then input to two fully connected layers with ReLU activation with a 
dropout rate of 0.5.

Attention‑based MIL pooling (AMIL).  Attention mechanisms have been widely utilized in deep learn-
ing to both improve performance and provide interpretability of model predictions31. In our study, the pooling 
matrix P was constructed through the MIL attention mechanism in which a bag representation was acquired 
through a weighted average of instance representations:

for learned parameters w ∈ R
128 and V ∈ R

128x512 with N input instances xTn  with dimension 512 and hidden 
dimension 128. The attention weights also provided interpretable output inherent to the decision task in the form 
of influential instances (i.e., slices), which were evaluated separately for model validation and interpretability.

The attention weights for different scan classes (dominant emphysema phenotypes of centrilobular, panlobu-
lar, and paraseptal) were evaluated by scaling attention weights for a given scan to the range [0, 1] and plotting as 
a function of the axial depth to determine regions of high and low influence. Influence was quantified by three 
metrics: (1) depth maximum attention of fit curve, (2) weighted average of slice depths weighted by attention, 
and (3) range of fit curve attention values. The full workflow of Transfer AMIL is provided in Fig. 1.

Implementation details.  All models were trained in Keras (2.2.4) with Tensorflow backend (2.2.0) in 
Python (3.7) and optimized by binary cross entropy loss calculated for bag predictions. Adam optimization was 
utilized with parameters β1 = 0.9 and β2 = 0.99 and initial learning rate of 0.0001. Early stopping was initiated if 
the validation loss did not improve after 7 epochs. All learned parameters were initialized by sampling a normal 
distribution.

Training, testing, and statistical evaluation.  Models were trained with 70%, 10%, and 20% of the 
available cases serving for training, validation, and testing, respectively, repeated 5 times with different randomly 
generated splits. The mean and variance of the area under the ROC curve (AUC) were obtained across the five 
models. AUCs were compared through the Delong test on each of the five training passes with the median 
p-value serving as the metric for significance32.

Compared methods.  We compared Transfer AMIL to other approaches which required only scan anno-
tations. A 3D CNN classifier was trained by interpolating to a fixed input size of 128 slices and scan presence 
of emphysema serving as binary class. Additionally, a standard 2D classifier was trained by assigning the scan 
ground truth class to all slices within the scan regardless of emphysema presence within that slice; this caused 
noisy labels during training, particularly with many false positive slices for severe emphysema cases.

Results
Binary classification performance.  In the task of determining if a CT scan presented with emphysema 
or not, the Transfer AMIL approach yielded an area under the ROC curve of 0.94 ± 0.04, which was a statistically 
significant improvement compared to other methods evaluated in our study following the Delong Test with cor-
rection for multiple comparisons (Table 2). Transfer AMIL performed better than or similar to other published 
work, including shallow, human-engineered MIL methods, as well as other deep MIL approaches, although it is 
important to note that others’ evaluations were on different datasets.

Attention weights across emphysema classes.  Attention weight curves were calculated to demon-
strate the influence of disease type localized throughout the lung. The attention weights demonstrated a stronger 
influence for slices in the upper lung in all scan classes, indicating that the model prioritized upper lobe infor-
mation (Table  3, Fig.  2). This agrees with published literature trends that note an upper lobe predominance 
for emphysema, particularly centrilobular, the most common phenotype in this dataset33–36. Recall, influence 
is quantified by three metrics: (1) depth maximum attention of fit curve, (2) weighted average of slice depths 
weighted by attention, and (3) range of fit curve attention values.

By phenotype, the centrilobular and paraseptal attention average depths (39.1%, 37.6%) aligned with expected 
upper lobe predominance compared to panlobular (46.2%). Further, the panlobular scans tended to more heav-
ily influence slices throughout the lung range as demonstrated by the reduced range of attention values (20.0%) 
compared to the other phenotypes (34.8%, 34.1%). Note that any given scan did not necessarily present with 
only one phenotype; for example, the scans labeled panlobular-dominant may also present with other pheno-
types. This and the model’s learned predisposition to more highly weight the upper lobe slices (as conveyed by 

z =

N∑

n=1

anxn an =

exp
(
w
T tanh

(
Vx

T
n

))

∑N
j=1exp

(
wT tanh

(
Vx

T
j
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Figure 1.   Model workflow of the Transfer AMIL approach. This includes feature extraction of CT images 
through an ImageNet pre-trained model based on methods developed by Antropova et al. followed by attention-
based MIL pooling based on methods developed by Ilse et al. Two outputs are generated for each LDCT scan 
input, the attention weights which identify influential slices for the classification task and the scan prediction for 
the presence of emphysema.

Table 2.   Performance assessment.

Algorithm AUC from ROC analysis
Human-engineered 
features Deep CNN features Interpretable Transfer learning

Transfer AMIL 0.94 ± 0.04 X X X

Noisy 2D Classifier 0.85 ± 0.06 X

Fully 3D Classifier 0.58 ± 0.16 X

AMIL 0.69 ± 0.05 X X

Mean pooling 0.90 ± 0.02 X X

Max pooling 0.88 ± 0.02 X X

Cheplygina20 0.78 ± 0.04 X X

Orting21 0.88 ± – X

Tennakoon22 0.95 ± – X
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the quantification of negative scan attention) may account for the relative importance of the upper lobes even 
in the panlobular-dominant scans.

CT image features emphasized by attention weights.  The top-k influential slices according to atten-
tion weights were evaluated to determine which CT imaging features drew the most attention and to identify 
potential sources of misclassification. The prevalence of image features that were present in the top-k selected 
attention weighted slices are shown in Fig. 3. Different features were likely to have different prevalence within 
each scan (e.g., nodules were local abnormalities while architectural distortions were generally more widespread 
structural changes), thus the prevalence of each imaging feature as identified by a radiologist is presented for 
comparison. Bronchial disease and architectural distortions demonstrated the largest change in importance for 
the top-k attended slices compared to the human reader with changes of 23.7% ± 0.03% and 22.7% ± 0.01%, 
respectively. The prevalence of each feature did not significantly change when including more slices in the atten-
tion analysis; however, bronchial disease and architectural distortion features were attended to much more fre-
quently than their frequency in entire scans while the opposite occurred for ground glass opacities. This may 
suggest that the model was balanced between identifying features indicative of emphysema presence, such as 
regions of hypoattenuation and structural changes, while maintaining a general representation of the entire CT 
scan.

Discussion
In this study, we present a novel CT slice-based Transfer AMIL approach for evaluating emphysema on LDCT 
scans acquired for lung cancer screening. The model provides strong classification performance compared to 
models with similar label constraints, including models evaluated for this study and those published in the 
literature. The attention module also provides interpretable information for verifying model performance by 
identifying slices that were most influential to the classification decision. Indeed, the attention weight trends 
for different subsets of the LDCT scans agreed with expectations in terms of the most likely regions to find 
emphysema, including when different classes of emphysema were dominant. A further investigation into the 
attention weights also revealed which CT image features were most useful for the model prediction and may 
provide insight into what potential cases will be problematic for automatic evaluation, particularly considering 
the lung cancer screening population.

Importantly, the developed model requires a relatively small amount of computing power compared to other 
modern deep learning computer vision tasks. The AUC performance achieved by the Transfer AMIL was either 
comparable or outperformed other models in this study, including standard 2D classification models with noisy 
labels and 3D image classifiers. Note that this performance may only hold true for the data available for this 
study; a large amount of data would likely improve the non-transfer learning models more than transferred 
models because during training the number of training images approaches the number of trainable parameters.

The pre-trained VGG19 feature extraction model parameters (20 M) were fixed from the pre-training task 
with no additional training; additional training would further underdetermine the model considering the lim-
ited dataset of 860 utilized scans (of 865 total with 5 excluded). With the feature extractor fixed, the additional 
fully connected layers and attention module require only 1.15 M trainable parameters; still an underdetermined 
system, but at a greatly reduced risk of overfitting. While larger standard architectures such as ResNet50 and 
DenseNet121 could be utilized for feature extraction, this study demonstrates that even the use of smaller, less 
complex models can achieve competitive performance. Note, these architectures were evaluated but no perfor-
mance gain was observed thus the least computationally expensive model was utilized. Further, the reduced 
model capacity and use of transfer learning with a common architecture encourage wider implementation of 
this technique because the compute power needed to run the model is generally attainable by today’s standards 
and feature extractor does not require local training.

While the attention module interpretable output validates model performance compared to literature, it also 
encourages clinical implementation as the attention weights can be added as an optional part of the lung screen-
ing workflow for a radiologist to further investigate the classification decision, specifically by review of the slices 
influential to the classification decision. This review process can lead to radiologist trust and understanding of 
clinical implementation of the algorithm and has the potential to improve clinical workflow in terms of both 
reading time and performance, although this would require a prospective reader study to confirm.

Table 3.   Quantitative attention weights from Fig. 2. Recall, influence is quantified by three metrics: (1) depth 
maximum attention of fit curve, (2) weighted average of slice depths weighted by attention, and (3) range of fit 
curve attention values.

Scans evaluated Maximum attention lung depth (%) Weighted average of lung depth (%) Range of attention values (%)

Positive scans 15.6 38.5 33.6

Negative scans 32.9 38.7 47.2

Positive: centrilobular 19.3 39.1 34.8

Positive: panlobular 17.2 46.2 20.0

Positive: paraseptal 12.8 37.6 34.1
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The theme of improved performance also aligns with the attention module’s ability to identify which cases 
may be problematic for classification. For example, the model tended to more heavily weight slices with bronchial 
disease and architectural distortions, which are nonspecific to emphysema patients, and which often appear 
similar to typical presentation of emphysema (e.g., regions of hypoattenuation and structural changes). This 
also suggests that patients with these presentations caused by non-emphysematous conditions may be difficult 
for the model to classify.

Future work should prospectively utilize this model in a reader study to evaluate its impact on radiologist 
performance and radiological workflow as well as include images acquired from multiple institutions to assess 
model generalizability. This is especially important as the data in this study were limited (single institution, 
limited N). Further, this study only evaluated binary classification decisions and does not consider relationships 

Figure 2.   Attention weight curves illustrating the fit of attention weights from CT slices as a function of height 
in the lungs for (top) positive (red) and negative (green) LDCT scans and (bottom) for different dominant 
phenotypes of emphysema: centrilobular (blue), panlobular (pink), and paraseptal (turquoise). Since patients’ 
CT scans have variable number of slices covering the lung region, in these plots, the range has been normalized 
to fit between Lung Top and Lung Bottom.
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between slices when calculating attention weights; multi-class variants of MIL as well as more complex attention-
based pooling functions. Despite these limitations, the Transfer AMIL method achieved strong performance as 
determined from ROC analysis and the attention weight investigations performed in this study demonstrated 
strong potential for clinical implementation.

Data availability
The data generated and analyzed during this study may be made available by contacting the corresponding 
author with reasonable request.
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