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Epigenomic charting and functional annota-
tion of risk loci in renal cell carcinoma
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While the mutational and transcriptional landscapes of renal cell carcinoma
(RCC) are well-known, the epigenome is poorly understood. We characterize
the epigenome of clear cell (ccRCC), papillary (pRCC), and chromophobe RCC
(chRCC) by using ChIP-seq, ATAC-Seq, RNA-seq, and SNP arrays. We integrate
153 individual data sets from 42 patients and nominate 50 histology-specific
master transcription factors (MTF) to define RCC histologic subtypes,
including EPAS1 and ETS-1 in ccRCC, HNF1B in pRCC, and FOXI1 in chRCC. We
confirm histology-specific MTFs via immunohistochemistry including a
ccRCC-specific TF, BHLHE41. FOXI1 overexpression with knock-down of EPAS1
in the 786-O ccRCC cell line induces transcriptional upregulation of chRCC-
specific genes,TFCP2L1,ATP6V0D2,KIT, and INSRR, implicating FOXI1 as aMTF
for chRCC. Integrating RCCGWAS risk SNPswithH3K27acChIP-seq andATAC-
seq data reveals that risk-variants are significantly enriched in allelically-
imbalancedpeaks. This epigenomic atlas in primary human samples provides a
resource for future investigation.

In 2021, an estimated 76,080 adults in the United States will be diag-
nosed with kidney cancer, and an estimated 13,780 deaths from this
disease will occur1. Renal cell carcinomas (RCCs), the most common
family of kidney tumors and one of the top tenmost common cancers
in the US, are further stratified into several histologic subtypes. The
most common subtype is clear cell RCC (ccRCC), accounting for ~75%
of cases; papillary RCC (pRCC) and chromophobe RCC (chRCC)
account for ~15% and 5% of cases, respectively2. These subtypes display
divergent clinical behavior with regard to prognosis and response to
therapeutic agents3–5. Large-scale molecular profiling efforts have

characterized the genomic and transcriptomic landscapes of ccRCC6,
pRCC7, and chRCC8. These analyses revealed remarkable hetero-
geneity among these forms of RCC, with each subtype exhibiting dis-
tinctive somatic mutations, chromosomal copy number alterations,
and gene expression profiles3. Notably, the histone modifications and
sites of chromatin accessibility driving the transcriptional landscapes
of RCC histotypes, and how this relates to kidney cancer heritability,
have not been systematically explored.

Enhancers are cis-acting DNA regions that bind trans-acting pro-
teins to determine cell-type-specific gene expression patterns and
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responses to internal and external signals9,10. Chromatin immunopre-
cipitation and sequencing (ChIP-seq) of post-translational histone
modifications (e.g., H3K27ac andH3K4me2) have identifiedmillions of
enhancers in mammalian genomes with the number of active enhan-
cers in any given cell type estimated to be in the tens of thousands10,11.
Profiling enhancers has emerged as a powerful tool to characterize
critical transcription factors (TFs) driving cellular transcriptional states
and tobetter understand germline risk variants. It hasbeen established
that cellular identity and function is determined primarily by a subset
of TFs termed “master” TFs12–16. These TFs occupy active enhancers in
the cell, and preferentially bind within exceptionally large enhancer
domains termed “super-enhancers” (SEs) or stretch enhancers, that
regulate genes required for establishing cell identity and function17,18.
Moreover, master TFs participate in interconnected auto-regulatory
circuitries or “cliques” that are self-reinforcing, show marked cell
selectivity, and function tomaintain cell state and/or cell survival17,19. In
addition, analyses of population-based epigenomes have further
revealed that expression quantitative trait loci (eQTLs) SNPs are often
also associated with variation in nearby epigenomic features (such as
active enhancers marked by H3K27ac) in coordinated regulatory
modules20–25, motivating the use of epigenetic datasets for better
functional characterization of these loci. Many of the prior epigenetic
data in RCC were based on cell lines, which diverge from their original
tumors and do not represent all histologic subtypes26.

Herein, we define the epigenetic architecture and circuitry of RCC
across different histologic subtypes in 42 primary human RCC tumors
using a combination of genome-wide H3K27ac, H3K4me2, and chro-
matin accessibility assays, and integrate data from targeted DNA
sequencing and bulk RNA sequencing. We delineate distinctive
enhancers operative in the different RCC histologies, nominate puta-
tive histology-specific master TFs, and prioritize RCC GWAS risk loci
for functional validation.

Results
Mapping the chromatin regulatory landscape of RCC
To examine the cistrome and to identify master TFs across the histo-
logic subtypes of RCC, we performed histone chromatin immuno-
precipitation followed by sequencing (ChIP-seq), the Assay for
Transposase-Accessible Chromatin using sequencing (ATAC-seq),
and RNA sequencing (RNA-seq) on 42 fresh frozen RCC tumor samples
(24 ccRCC, 6 pRCC, 12 chRCC). Thirty-eight of 40 (95%) tissues were
derived from radical nephrectomies. Of the 6 pRCC tumors, 4 were
type I, 1was type II, and 1was unknown. Patientsweregrouped into two
cohorts (1 and 2) as defined in Supplementary Data 1, Supplementary
Fig. S1, and the Results section. We conducted H3K4me2 ChIP-seq to
map both active and poised enhancers27 and H3K27ac ChIP-seq to
identify active promoters and enhancers28. ATAC-seq was performed
to define the chromatin accessibility landscape, and RNA-seq was
performed to capture the transcriptional programs of each RCC sub-
type. A total of 153 libraries were generated across the different data-
types (Supplementary Data 1 and 2 and Supplementary Fig. S1). Using
cohort 1 to assess the regulatory landscape across the different RCC
histologies, a total of 153,321 promoter-distal (enhancer) H3K27ac
ChIP-Seq peaks were identified across all the samples, most of which
(n = 136,469) were common to two ormore histologies (Fig. 1A, B). For
example, the PAX8 locus ismarked byH3K27ac in all samples. PAX8 is a
TF involved in early kidney embryogenesis and oncogenesis in RCC29,30

and is a clinical diagnostic tool to help differentiate RCC from other
malignancies31 (Fig. 1C). Unsupervised hierarchical clustering (Fig. 1D)
and principal component analysis (PCA) (Supplementary Fig. S2A) of
H3K27ac peaks clearly segregated the three histologic types of RCC,
and both analyses demonstrated that theH3K27ac landscape in chRCC
wasmore distinct than either pRCCor ccRCC.Moreover, unsupervised
hierarchical clustering of our cohort with an independent cohort of
matched normal (n = 10) from the KIRC TCGA cohort32 showed a clean

separation of normal tissue from the different tumor histotypes
(chRCC, ccRCC, pRCC, Supplementary Fig. S2B, S2C). In total, 16,852
peakswere significantly increased or decreased in one tumorhistology
compared to the other two (e.g., chromophobe versus clear cell and
papillary) (“Methods”, false discovery rate (FDR) of 0.001 and least a
fourfold difference in mean peak intensity between groups). In all,
12,908 sites were upregulated in one histology: 8939 were chRCC-
specific, 3653 were pRCC-specific, and 316 were ccRCC-specific
(Fig. 1E). These histology-specific H3K27ac peaks were differentially
marked by H3K4me2 ChIP-Seq and were associated with open chro-
matin, strongly suggesting that they were histology-specific active
enhancers (Supplementary Fig. S2D).Moreover, differential epigenetic
sites correlated with the nearest gene expression difference (P value
<2 × 10−16, chi-square test) (Fig. 1F–H). GREAT33 analysis of the 8939
chRCC-specific H3K27ac peaks revealed enrichment for genes
involved in actin regulation, fatty acid oxidation, and ion transmem-
brane transporter activity (Fig. 2A), consistent with previously repor-
tedmRNAsignature analysis showing an increased ion transmembrane
transport signature in chRCC34. A similar analysis of the 3653 pRCC-
specific sites showed enrichment for genes involved in renal system
development (Fig. 2B). This is consistent with the notion that pRCC
arises from embryonic nephrogenic rest precursor lesions, which
persist during adult life35. Since there was a relatively small number of
ccRCC-specific sites (n = 316) in comparison to chRCC and pRCC, and
the enhancer landscape of ccRCC resembled that of pRCC more than
chRCC, we compared H3K27ac sites between ccRCC and pRCC only.
The majority of H3K27ac sites were common to the two histologies
(n = 113,786), while 1265 sites were ccRCC-specific, and 2661 sites were
pRCC-specific (Supplementary Figs. S2E and S3A). The 1265 ccRCC-
enriched peaks were associated with genes involved in circulatory
system development and angiogenesis (Fig. 2C), while the 2661 pRCC-
enriched peak genes were again enriched for genes involved in kidney
embryogenesis (Supplementary Fig. S3B). Similar analysis of the
H3K4me2 peaks demonstrated clear separation of chRCC from the
other two RCC subtypes with comparable histology-specific and
common “poised” sites (Supplementary Fig. S3C–3F). H3K27ac and
H3K4me2 ChIP-seq signals for all samples were strongly correlated
(Pearson correlation, r =0.73) (Fig. 2D).

De novo motif analysis of H3K27ac peaks enriched in each sub-
type identified four motifs that were highly enriched in chRCC,
including one resembling a forkhead motif, and another resembling
the motif associated with TFCP2 (Fig. 2E). FOXI1, a forkhead family TF,
and TFCP2L1, closely related to TFCP2, have both been implicated in
the development of intercalated cells of the kidney, the putative cell of
origin of chRCC36. FOXI1 and TFCP2L1 gene loci were characterized by
high H3K27ac signal in chRCC compared to the absent or markedly
lower signal in ccRCC and pRCC (Fig. 2F, G). Motif enrichment analysis
of putative ccRCC-specific enhancers identified amotif resembling the
basic Leucine Zipper (bZIP) BATF motif, and another resembling the
basic helix-loop-helix (bHLH) TF family member HIF2α (also known as
EPAS1) (Fig. 2H). ETS1, in the bZIP family with BATF, has been impli-
cated in von-Hippel Lindau (VHL)-dependent ccRCC tumorigenesis37,
and was highly marked by H3K27ac in ccRCC, less so in pRCC, and not
in chRCC (Fig. 2I). EPAS1 is well-known to be dysregulated in ccRCC
due to the loss of the VHL protein function. It is the main driver of
ccRCCand is upstreamofmultiple critical oncogenic pathways. Recent
clinical trials with HIF2 inhibitors have shown clinical activity in
advanced ccRCC patients38,39. The top-scoring pRCC-specific motif
corresponded to HNF1β (Fig. 2J, K). HNF1β is a member of the
homeodomain-containing superfamily of TFs, which is involved in
nephrogenesis40, and was highly marked by H3K27ac specifically in
pRCC (Fig. 2K).

RCC has recurrent mutations in genes involved in the chromatin
remodeling and histone methylation pathways7,8,41–44. In our dataset,
loss-of-function single-nucleotide variant and copy number alterations
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(see “Methods”) in such commonly mutated genes in RCC (VHL,
PBRM1, BAP1, and TP53) did not correlate with global acetylation dif-
ferences in both supervised and unsupervised analyses, albeit the
small sizes were small. (Supplementary Fig. S4A–S4D and Supple-
mentary Data 3 and 4).

Specific master transcription factors define RCC subtypes
We next sought to systematically identify candidate histology-specific
master TFs that define the three subtypes of RCC. Master TFs typically
bind within SEs17,45, are often regulated by SEs, and regulate one
another in a transcriptional core regulatory circuit (CRC)46. We

employed an integrative approach47,48, leveraging the RNA-Seq, ChIP-
Seq, andATAC-Seqdata to identify candidate histology-specificmaster
TFs (Fig. 3A). This approach aims to utilize orthogonal information to
identify a consensus set of master TFs. We combined (1) expression
data of differentially expressed TFs acrossRCChistologic subtypes; (2)
TFs specific to RCC histologic subtypes relative to other cancer types
(CaCTS)49; (3) differential SE-associated TFs among RCC histologic
subtypes; and (4) TFs with histology-specific connectivity in regulatory
cliques (see “Methods”). These four analyses identifiedmore than 200
candidate TFs showing a histology-specific association in one or more
analysis. We prioritized candidates for downstream validation by
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Fig. 1 | Landscape of H3K27ac signals across RCC histologies. A Distribution of
RCC H3K27ac peaks according to genomic region for 30 fresh frozen RCC tumor
samples (12 chRCC, 6 pRCC, 12 ccRCC). B Numbers of histology-specific and
common H3K27ac peaks. CH3K27ac profiles at PAX8 in six representative samples
from each RCC histology. D Hierarchical clustering of chRCC, ccRCC, and pRCC
based on sample-to-sample pairwise correlation of the H3K27ac ChIP-seq peaks.

E Distribution of histology-specific H3K27ac peaks among RCC subtypes.
F–H Volcano plots with the log change of gene expression (FPKM) in one histology
compared to the other two histologies (F ccRCC vs. others, G pRCC vs. others,
H chRCC vs. others). Two-sided P values were used and corrected for multiple
comparison testing (FDR-adjusted P value <0.05). RCC renal cell carcinoma, chRCC
chromophobe RCC, ccRCC clear cell RCC, pRCC papillary RCC.
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selecting those that were identified in more than one analysis
(“Methods”, Supplementary Figs. S5A-S5J and S6 and Supplementary
Data 5–11). This analysis highlighted 50 candidate histology-specific
master TFs (N = 20, chRCC; N = 14, pRCC; N = 16, ccRCC) (Supplemen-
tary Data 12), including FOXI1, TFCP2L1, and DMRT2 for chRCC; EPAS1,
ETS1, BARX2, ZNF395 for ccRCC, and HNF1B and NR2F2 for pRCC
(Fig. 3B). SE ranking, gene expression, and CES of the 50 histology-
specific TFs selected using this meta-analysis approach clustered the
samples tightly according to their respective histologies (Supple-
mentary Fig. S6A).

To confirmwhether similar patterns of TF-specificity are found in
normal counterpart tissues, we turned to gene expression datasets
from TCGAKICH, KIRC, and KIRP cohorts. GSEA analysis for histology-
specificmaster TFs showed enrichment of clear cell and papillary RCC-
specific transcription factors in tumors compared to normal (FDR
corrected q-value <0.01). There was no significant enrichment of
chromophobe RCC-specific transcription factors in tumors compared
to normal. Of 50master TFs, 34 (68%) hadmore significant expression
in the tumor tissue compared to the normal counterpart (14/16 for

KIRC, 10/14 for KIRP, and 10/20 for KICH, Supplementary
Fig. S6B–S6D).

Clinical correlative analyses from CheckMate cohorts (009/10/
025) showed that among the 50 master TFs, high BARX2 expression
significantly correlated with improved overall survival in the entire
cohort of patients with ccRCC (Supplementary Data 13 and Supple-
mentary Fig. S6E) and in the subgroup treated with the anti-PD1,
nivolumab (Supplementary Data 13 and Supplementary Fig. S6F).

To provide proof of concept validation at the protein level, we
investigated the expression specificity and localization of master TFs
by immunohistochemistry (IHC). We selected four representative
master TFs thatmet the following criteria: (1) at least twofold change in
gene expression of the histology-specific TF by bulk RNA sequencing
(from TCGA) compared to the two other RCC histotypes, (2) high-
quality antibodies for IHC, and (3) TF was not previously validated and
implemented on a clinical level. For the 4 TFs (BHLHE41, HNF1β,
NKX6.1, and ZNF395), we found significant changes in protein
expression levels across histologic subtypes (Fig. 3C). More specifi-
cally, two ccRCC-specific master TFs (BHLHE41 and ZNF395), were
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highly expressed in ccRCC tumors. BothTFs hadnuclear localization in
four out of four and three out of three ccRCC samples, respectively.
NKX6.1, a TF recently described as being expressed in chRCC, was
detected nuclearly in two out of two chromophobe samples with no
expression in either ccRCC or pRCC. We next confirmed histology-
specific in vivo binding of the nominated master TF EPAS1 through
examining the EPAS1 cistrome in ccRCC and chRCC. We characterized
2916 clear cell RCC-specific and 4564 chromophobe RCC- specific
EPAS1-binding sites through performing EPAS1 ChIP on eight addi-
tional primary human tumors (n = 2 chRCC; n = 6 ccRCC, Fig. 3D).
Subtype-specific EPAS1-binding sites werehighly enriched for subtype-
specific sites of H3K27ac. For instance, 2090 of the 4565
chromophobe-specific EPAS1-binding sites (46%) overlapped with
chromophobe-specific H3K27ac sites (P < 2.2e-16). This supports the
conclusion that these differential EPAS1-binding sites are non-random
and biologically relevant, because they coincide with regulatory ele-
ments that segregate closely with histology. ccRCC-specific EPAS1-
binding sites were enriched for immune cell and white blood cell
activation pathways and chRCC-specific EPAS1-binding sites were
enriched for metabolic processes and fatty acid activation (Fig. 3E, F).

To further validate our approach of the nominated master TFs in
driving the transcriptional identity of the different RCC histologies, we

manipulated TF expression in a ccRCC cell line. We hypothesized that
overexpression of chRCC-specific TFs and suppression of ccRCC-
specific TFs can shift the transcriptional landscape of the ccRCC cell
line 786-O to become more chromophobe-like. FOXI1 scored as a
chRCC-specific TF in 4/4 master TF analyses (Fig. 3B). Furthermore,
FOXI1 is selectively expressed in intercalated cells (ICs), the putative
cellular origin of chRCC36,50 and is more highly expressed in chRCC
than other cancer subtypes in the TCGA dataset (Supplementary
Fig. S7A). We also manipulated the expression of EPAS1 as a second
target as it was highly specific for ccRCC in our integrative analysis
(Fig. 3B and Supplementary Fig. S8B), and prior studies have char-
acterized its role in the pathogenesis of ccRCC51. We overexpressed
FOXI1 in the ccRCC cell line 786-O (FOXI1 OE); suppressed EPAS1
(EPAS1 KD) and simultaneously perturbed both genes in the same cell
line (FOXI1 OE/EPAS1 KD) (Supplementary Fig. S7C–7E and Supple-
mentary Data 14). Expression changes are described in Supplementary
Fig. S8A–S8F and Supplementary Data 15–18. Gene set enrichment
analysis (GSEA) of downregulated genes with FOXI1 OE/EPAS1 KD in
786-O showed enrichment of genes involved in the immune responses
(Fig. 4A). Concomitant FOXI1 OE and EPAS1 KD in 786-O cells resulted
in upregulation of chRCC-specific master TFs such as TFCP2L1 and
NR3C2 and down-regulation of ccRCC-specificmaster TFs such as ETS-
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1 and ZNF395 compared to control cells. (Fig. 4B). Further supervised
analysis showed that CAIX, a downstream target of EPAS1 was sig-
nificantly overexpressed in the WT 786-O cell line compared to EPAS1
KO/FOXI1 OE cell line. In contrast, CD117, a well-known immunohis-
tochemical marker of chRCC52, was overexpressed in the EPAS1 KO/
FOXI1 OE cell line compared to WT 786-O cell line. Although CK7
expression is a supportive marker clinically for chRCC53, its expression
was uniform across WT 786-O and manipulated cell line states
(Fig. 4C). Of note, there were only 109 differentially expressed genes
between the FOXI1 OE/EPAS1 KD cell and FOXI1 OE only cell line
(P < 0.05, q <0.01, Supplementary Fig. S8D and Supplementary
Data 17).

We then compared differentially expressed genes between our
experimental conditions in 786-O and our RCC tumor expression data
(Fig. 4D andSupplementary Fig. S8G). Defining chRCCandccRCCgene
sets as the top 100 upregulated genes for each histology relative to the
other, we showed that the chRCC gene set is enriched among upre-
gulated genes in 786-O FOXI1 OE/EPAS1 KD cell line vs. control
(Fig. 4E), and the ccRCCgene set is enriched among upregulated genes
in 786-O control vs. FOXI1 OE/EPAS1 KD cell line (Fig. 4F). The FOXI1
OE/EPAS1 KD 786-O cell line demonstrated significantly higher
expression of chRCC-specific candidate master TFs, TFCP2L1, GATA2,
DDIT3, NKX6-1, and lower expression of ccRCC-specific candidate
master TFs, ZNF395 and TSC22D3. Differential TFs in the 786-O FOXI1
OE/EPAS1 KD vs. 786O CTRL comparison overlapped more sig-
nificantly with differential TFs from the chRCC vs. ccRCC human

samples comparison than from the ccRCC vs. pRCC human sample
comparison (Supplementary Data 19). In summary, these data show
that overexpression of a single chRCC master transcription-factor
candidate, FOXI1, in the ccRCC cell line 786-O, with or without
knockdown of EPAS1, led to marked expression changes driving the
cell line to be more like a chRCC cell line without any modification to
the set of mutations present in 786-O cells.

Allelic imbalance annotates germline RCC risk variants. Allelic
imbalance, the differential allelic representation of heterozygous
single-nucleotide polymorphisms (SNPs) in ChIP-seq reads, provides
an in vivo comparison of cis-regulatory activity between two haplo-
types (Fig. 5A). As such, allelic imbalance can highlight the functional
relevance of candidate causal variants22,32,54–57 at loci that have been
associated with RCC risk through GWAS. A key advantage of profiling
epigenomes from many individuals is the ability to capture hetero-
zygous sites and to measure the effect of TF binding on regulatory
elements through analysis of allelic imbalance. To this end, we asses-
sed chromatin allelic imbalance in ChIP-seq reads from these RCC
samples in order to nominate causal risk SNPs from a genome-wide
association study of RCC. We applied stratAS32 to H3K27ac ChIP-seq
data from 20 ccRCC and 6 pRCC (“Methods”). We identified 10,605
chromatin-imbalanced H3K27ac peaks—which we defined as peaks
with one or more imbalanced SNPs after correction for multiple
hypothesis testing—across 183,099 peaks tested in the combined
ccRCC and pRCC sample sets (Fig. 5B and Supplementary Data 20).
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We hypothesized that chromatin AI peaks correspond to reg-
ulatory elements that are bound bymaster TFs. At these elements, the
presence of trans-acting factors (i.e., master TFs) may result in reg-
ulatory element activity that are observable as H3K27ac AI peaks. One
example is rs4903064 (chr14:73279420; 14q24.2), an eQTL for DPF358

(Fig. 5C). rs4903064, which is allelically imbalanced in our H3K27Ac
dataset, has been shown to be a GWAS risk variant in all three histo-
logic subtypes (ccRCC, chRCC, and pRCC), and the altered C-allele of
this SNP has been suggested to create a HIF-binding motif (Fig. 5D)59.
To confirm this,we used EPAS1 transcription-factorChIP-Seqdata in an
independent cohort of 43 samples derived from 23 patients with
ccRCC to study the effect of the GWAS risk variant rs4903064 (see
“Methods”) on EPAS1 binding. Analysis of 11 primary, 21 metastatic
ccRCC samples, and 11 normal renal tissue samples showed that
tumors with homozygous C/C alleles were significantly enriched for
EPAS1 peaks (Fig. 5E, F) in both tumors and normal tissue and that
rs4903064 is a EPAS1 cQTL. This confirms prior literature that the
C-allele creates a HIF-binding site59.

We applied our chromatin AI analysis to annotate risk SNPs
identified by a GWAS for RCC58. Chromatin AI peaks were highly
enriched (16.7-fold) for RCC GWAS risk variants as assessed by LD
score regression analysis (P = 1.9 × 10−4)60. Subsetting imbalanced
H3K27ac peaks to regions of accessible chromatin where TFs are likely
to bind (as assessed by ATAC-Seq from RCC tissues61) resulted in
substantial additional enrichment (43.2-fold; P = 7.0 × 10−6, Fig. 5G, H).
This enrichment represents more than fivefold that of the total set of
H3K27ac peaks, which are themselves enriched 8.1-fold (P = 1.2 × 10−4).
By contrast, multiple other GWAS phenotypes from the UK Biobank62

showed substantially less enrichment compared to RCC GWAS SNPs,
indicating the specificity of this enrichment for RCC (Fig. 5H).

Using thismethod,wewere able tofine-map a total of 30 risk SNPs
(Supplementary Data 21), with some examples highlighted. Rs7132434,
located on chr 12, has been characterized as a functional variant that
alters AP-1 binding leading to upregulation of BHLHE41, thus promot-
ing tumor growth through induction of IL-1163 (Fig. 5I). Another
example is rs4733579 which is located on chr 8 and is in LD with
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rs35252396 (Fig. 5I). The latter has been shown to contribute to RCC
susceptibility through regulating MYC and PVT1 expression64. Of note,
rs35252396 is an indel and therefore cannot be assessed by stratAS.
Our analysis also highlighted rs46552601 and rs46541176 (Fig. 5J), both
located on chr2p21 within the EPAS1 gene, where at least 59 SNPs have
been fine mapped. These two SNPs are allelically imbalanced by
H3K27Ac peaks only in ccRCC but not in pRCC, consistent with the
specific role of EPAS1 (HIF2-α) in ccRCC pathogenesis (Fig. 5K). Further
work is recommended to functionally validate themechanism of these
two SNPs in ccRCC pathogenesis. Finally, rs4765623 located in the
SCARB1 locus has been recently validated in RCC progression32.

TFs can read the genetic code and bind cis-regulatory elements to
activate or repress gene expression. We hypothesized that loci with
significant chromatin AI are likely harbingers of TF binding and thus
are associated with the regulation of gene expression in an allele-
specificmanner.We leveraged chromatin AI from our ccRCCH3K27Ac
dataset and allele-specific expression (ASE) using RNA-seq data from
the KIRC TCGA cohort. SNP loci with at least 50 reads in both the
ccRCC H3K27Ac dataset and RNA-seq KIRC TCGA samples were
retained. Retained SNPs were classified as chromatin allelically imbal-
anced or allelically balanced in ccRCC. Chromatin allelically imbal-
anced SNPs harbored H3K27ac peaks with a significant skew towards
the alternate allele compared to the wild-type allele (P <0.05). For the
22,162 chromatin allelically imbalanced SNPs, we matched a back-
ground set of chromatin allelically balanced SNPs lying within the
H3K27ac consensus peak set. Allele-specific expressionof geneswhose
transcription start site lies within 50Kb of the chromatin allelically
imbalanced and balanced SNPswas analyzed in the TCGAKIRC dataset
(N = 412) with a significance cutoff of P-adjusted <0.01. Of the unique
genes analyzed, chromatin allelically imbalanced SNPs were sig-
nificantly more likely to lie within 50kb of a gene with ASE (1170/2646,
44%) compared to the background set of chromatin allelically
balanced SNPs (65/940, 6.9%,P = 8.4e−25, SupplementaryData 22–25).

Discussion
In this study, we report a compendium of ATAC-Seq, RNA-Seq, and
histone modification data across the three most common RCC sub-
types. Our goal was to describe enhancer programs in primary human
samples from patients with RCC and to identify histology-specific
epigenetic mechanisms that may underlie differential clinical features
and prognosis. Critically, this resource includes chRCC, an under-
studied cancer type with scarce in vitro and in vivo models and
molecular profiling data, and no proven therapeutic strategies for
metastatic disease.

In line with histological, transcriptional and mutational data,
ccRCC, pRCC, and chRCC exhibit distinct epigenetic landscapes.
chRCC clearly separated from ccRCC and pRCC, both by H3K27ac and
H3K4me2 landscapes.Motif-based analysis revealed the enrichment of
distinct TF binding sites in H3K27ac peaks in ccRCC vs. pRCC, sug-
gesting that distinct TFs were active and driving histology-specific
regulatory pathways and downstream transcriptional programs. Using
EPAS1 TF ChIP-Seq as an example, we demonstrate that histology-
specific binding of EPAS1 mediates independent pathways in different
RCC histologies.

Prior work in medulloblastoma and ependymoma demonstrated
how molecularly-defined cancer subgroups exhibit specific core reg-
ulatory circuitries65. Herein, we nominated 50 histology-specific TFs in
RCC based on a convergence of evidence, including high-level
expression, specificity of expression across RCC subtypes, super-
enhancer association, and connectivity. Our experimental results
demonstrate that upregulating a chRCC-specific TF, FOXI1, can par-
tially reprogram a ccRCC cell line, 786-O, towards a chRCC transcrip-
tionalphenotype; consistentwith results fromother tumor andnormal
cell types showing that master TFs govern the transcriptional identity
of the cell or tissue.

Our work furthermore sheds light on multiple subtype-specific
master TFs, the role of which is yet be exactly determined. HNF1β, a
candidate pRCC master TF, has been shown to be expressed in the
embryonic kidney and in pRCC, and it is upregulated in pRCC com-
pared toother kidney cancer histologies7,66,67.HNF1β gene is locatedon
chromosome 17 and is frequently impacted by copy number gains in
pRCC66 further providing grounds for its role in pRCC pathogenesis.
ETS-1, a candidate ccRCC master TF known to have a role in cancer
pathogenesis as well as angiogenesis and hematopoietic stem cell
differentiation, is another example68–71. As a proto-oncogenic factor,
ETS-1 is capable of activating genes associated with angiogenesis,
metastasis and invasive behavior in multiple tumor types72–74. In addi-
tion, ETS-1 expressioncorrelateswithmicrovessel density in somenon-
glial tumors and is an independent negative prognostic marker in
different tumor entities such as breast, ovarian, pancreatic, and col-
orectal cancers72,75,76. Nonetheless, the role of ETS-1 in RCC has mainly
focused on its interaction with EPAS1 (HIF2-α)77. Here, we show that
ETS-1may play a role as a master TF specific to ccRCC and not chRCC
or pRCC. Future studies should focus on understanding the global
epigenomic effect of ETS1 in driving ccRCC pathogenesis.

Using clinical trial data (CheckMate 009/010/025), we suggest
that high BARX2 expression may be associated with longer survival
among patients treated with nivolumab but not everolimus. Pro-
spective data in themetastatic ccRCC space are needed to confirm the
role of BARX2 expression as a predictive biomarker in patients treated
with immune checkpoint inhibitors.

In routine practice, pathologists use a myriad of targets to dif-
ferentiate across RCC histotypes. Our approach has the potential to
narrow master TFs to clinically meaningful ones and augments the
current armamentarium with additional TFs, including BHLHE41
(ccRCC) andNKX6.1 (chRCC) that canbe stained to better characterize
tumors.

BHLHE41 was previously shown in triple-negative breast cancer to
counteract expression of HIF-target genes by promoting HIF protea-
somal degradation in a process independent of VHL or hypoxia78.
Elevated protein expression of BHLHE41 in ccRCC has not been
described previously. Using a systematic approach, we found
histology-specific protein expression of BHLHE41 in ccRCC compared
to pRCC and chRCC. In ccRCC where HIF activation is foundational,
further investigation of the relation between BHLHE41 and HIF acti-
vation is warranted.

GWAS have identified hundreds of putative cancer-risk loci79.
These studies have led to the conclusion that cancer is driven by
thousands of variantswith individual small effects, and that cancer-risk
variants predominantly lie in non-coding regions of the genome80,81.
More recently, it hasbeen realized that GWASheritability is enriched at
variants that lie in tissue-relevant epigenomic features20,60,82–84. Emer-
ging evidence suggests that many GWAS variants function by altering
an existing or creating a TF binding site. This in turn regulates the local
chromatin regulatory landscape by altering the enhancer landscape
and thus modulating the expression of target genes85. We used our
population-scale epigenomicdata to further empower thediscoveryof
cis-regulatory elements thatmaymediate between the risk variant and
target gene and thus constrain putative targets for experimental vali-
dation. We showed that RCC GWAS risk SNPs are enriched in reg-
ulatory elements, consistent with prior studies20,60,82–84. Profiling these
regulatory elements across multiple (genetically diverse) individuals
allowed us to identify regions of chromatin allelic imbalance, which are
further enriched for GWAS SNPs, and subsetting these regions to
ATAC-seq peaks where TFs are likely to bind, showed even more
enrichment for GWAS SNPs. In RCC, there are 13 recognized risk loci,
but the causal variants have been identified for few, and underlying
mechanisms of risk remain elusive for most regions58. Our approach
can help pinpoint causal SNPs and provide candidate mechanisms by
identifying small numbers of SNPs that may alter binding sites for
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specific TFs, an example of which is the rs4903064 locus. Recent work
around the rs4903064 locus59 showed that it had an allele-specific
effect on DPF3 expression in ACHN and HEK293T cell lines as assessed
by massively parallel reporter assay, confirmatory luciferase assays,
and eQTL analyses. The rs4903064-C RCC risk allele was shown to
create a HIF-binding site and enhance gene expression. Increased
expression of DPF3 conferred a growth advantage to cells by at least
two pathways: inhibition of apoptosis via CEMIP and activation of
STAT3 via IL23R. The authors also showed that DPF3-overexpressing
cells showed higher T-cell mediated cytotoxicity compared to con-
trols. In a separate effort, Protze et al.86 used 23 tumor tissue speci-
mens and two primary ccRCC cell lines and showed that the risk SNP is
located within an active enhancer region, in turn creating a EPAS1-
binding motif. They also showed that HIF-mediated DPF3 regulation
depends on the presence of the C-risk allele. Moreover, DPF3 deletion
in proximal tubular cells decreased cell growth, suggesting a role for
DPF3 in cell proliferation.

Our work has several limitations. First, experimental validation
was limited and performed on two master TFs in one ccRCC cell line
786-O. Future work focused on validation of the role of other candi-
date master TFs in lineage plasticity and across multiple RCC cell lines
is warranted. Second, it is important to highlight that type 1 and type 2
papillary RCC are distinctive entities, and that although our work can
globally highlight differences across RCC histotypes, the small sample
size of the pRCC cohort limited more granular assessment by
pRCC types.

In conclusion, this work combines and integrates ChIP-Seq, ATAC-
seq, and RNA-seq data into a unified analysis to capture the deep
complexity of the epigenomic landscape of RCC. The majority of epi-
genetic analyses have been conducted in immortalized or malignant
cancer cell lines10,48, which inevitably have diverged significantly in
many respects from primary tumor tissues, as seen in prior studies
from medulloblastoma and diffuse large B-cell lymphoma26,65. In
addition, studies have demonstrated that the vastmajority of available
RCC cell lines are derived from ccRCC, with very few pRCC lines, and
relative absence of any chRCC lines87,88. To date, most of our knowl-
edge in the epigenomic space of RCC primary tissue is derived from
older DNA methylation analysis6–8, limited to one specific subtype of
RCC37, or confined to only one epigenetic dimension61. By integrating
several epigenetic technologies, we discovered master TFs that drive
histology-specific transcriptional programs in RCC and showed that
regulatory elements with allelic imbalance are specifically enriched for
RCC GWAS risk SNPs relative to GWAS risk SNPs for other disease
features. Overall, our work highlights the histology-specific nature of
these regulatory elements and the opportunity of cataloging the epi-
genetic landscapes in expanded patient cohorts and across various
tumor types.

Methods
Patients and samples
All tumor samples at DFCI were obtained at the time of resection at
Brigham and Women/s Hospital, and were collected under a DFCI/
Harvard Cancer Center IRB-approved protocol (01-045) with the
written informed consent of all patients. No monetary compensation
was offered for patient participation. The samples were then stored
fresh and frozen in the Gelb Center biobank at the Dana-Farber Cancer
Institute, under a protocol approved by the MGB Institutional Review
Board. Patients in the CheckMate 009/010/025 clinical trials con-
sented to an institutional review board (IRB) approved protocol to
participate in the respective clinical trials and to have their samples
collected for tumor and germline sequencing.

The two patient cohorts from DFCI are defined in Supplementary
Data 1. Cohort 1 was used to define the regulatory landscape across the
different RCC histologies. On the other hand, cohort 2, was used pri-
marily for the Allelic Imbalance analysis to increase the power of our

statistical analysis. In cohort 1, 28 of 30 (93%) tumor samples were
obtained at radical nephrectomy, and 2 of 30 (7%) were from meta-
static sites (Supplementary Data 1). Cohort 2 was used for the allelic
imbalance, which consisted of 14 patients from cohort 1 in addition to
12 additional independent patients with ccRCC. Overall, 42 total sam-
ples were profiled (Supplementary Fig. S1). All specimens were
reviewed by pathologists with expertise in genitourinary malignancies
(TD, AF, SM, AA, MH, SS) to confirm the diagnosis, histological sub-
type, tumor grade, and stage (Supplementary Data 1). An additional
cohort of 43 samples derived from 23 patients with ccRCC was char-
acterized to study the effect of EPAS1 binding at the GWAS risk variant
rs4903064 using EPAS1 ChIP-Seq (Supplementary Data 1).

Chromatin immunoprecipitation for histone and TF marks
We performed chromatin immunoprecipitation (ChIP) for histone
marks (H3K27ac and H3K4me2) in primary human tumors89. Briefly,
20–30mg of frozen tissue was pulverized using the CryoPREP dry
impactor system (Covaris). The tissue was then fixed using 1% for-
maldehyde (Thermo Fisher) in PBS for 10min at room temperature
and then quenched with 125mM glycine. The tissue was then lysed in
ice-cold lysis buffer (50mM Tris, 10mM, EDTA, 1% SDS with protease
inhibitor), and the chromatin was sheared to 300–800 base pair using
the Covaris E220 sonicator (105-watt peak incident power, 5% duty
cycle, 200 cycles/burst). Five volumes of dilution buffer (1% Triton X-
100, 2mM EDTA, 150mM NaCl, 20mM Tris-HCl pH 8.1) were then
added, and a portion was taken for DNA preparation. 5–20μg DNA
equivalent was then incubated with antibodies (H3K27ac, Diagenode,
C15410196, 1μg/IP dilution; H3K4me2, Diagenode, C15410035, 1μg/IP
dilution), along with protein A and protein G beads (LifeTechnologies)
with constant mild shaking at 4 °C overnight. The beads were then
washed three times each with Low-Salt Wash Buffer (0.1% SDS, 1%
TritonX-100, 2mMEDTA, 20mMTris-HCl pH 7.5, 150mMNaCl), High-
Salt Wash Buffer (0.1% SDS, 1% Triton X-100, 2mM EDTA, 20mM Tris-
HCl pH 7.5, 500mM NaCl), and LiCl Wash Buffer (10mM Tris pH 7.5,
250mM LiCl, 1% NP-40, 1% Na-Doc, 1mM EDTA) and rinsed with TE
buffer (pH 8.0) once. For EPAS1 (HIF2-α) ChIP (Abcam, ab199, 1:100
dilution), the same amount of tissue was additionally fixed with
0.2mM DSG (Thermo Fisher, Catalogue number: 20593) for 25min
followed by 1% fixation with FA for 20min. The rest of the protocol
per above.

Sequencing libraries were generated from purified input and IP
sample DNA using the ThruPLEX-FD Prep Kit (Rubicon Genomics).
Libraries were sequenced using 150-base paired-end reads on an Illu-
mina platform (Novogene). Data quality is shown in Supplementary
Data 26.

ATAC-seq
Briefly, 20mg of frozen tissue were resuspended and dounced in
1000μl of HB. Nuclei were filtered using a 70-μm Flowmi strainer,
isolated using iodixanol density-gradient centrifugation method, and
washed with RSB buffer61. In all, 50,000 nuclei were resuspended in
50μl of transposition mix (2.5μl transposase (100nM final), 16.5μl
PBS, 0.5μl 1% digitonin, 0.5μl 10% Tween-20, and 5μl water) by
pipetting up and down six times. Transposition reactions were incu-
bated at 37 °C for 30min in a thermomixer with shaking at 1000 r.p.m.
Reactions were cleaned with Qiagen columns. Libraries were amplified
were prepared using the Omni-ATAC protocol90,91 and sequenced on
an Illumina platform (Novogene) using 150-base paired-end reads.
Data quality is shown in Supplementary Data 26.

ChIP-seq data analysis
ChIP-sequencing reads were demultiplexed using Illumina bcl2fastq
v2.18 and aligned to the human genome build hg19 using the Burrows-
Wheeler Aligner (BWA) version 0.7.1592. Non-uniquely mapping and
redundant reads were discarded. MACS v2.1.1.2014061693 was used for
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ChIP-seq peak calling with a q-value (FDR) threshold of 0.01. ChIP-seq
data quality was evaluated by a variety of measures, including total
peak number, FrIP (fraction of reads in peak) score, number of high-
confidencepeaks (enriched>tenfoldoverbackground), andpercent of
peak overlap with DHS peaks derived from the ENCODE project. ChIP-
seq peaks were assessed for overlap with gene features and CpG
islands using annotatr94. IGV95 was used to visualize normalized ChIP-
seq read counts at specific genomic loci. ChIP-seq heatmaps were
generated with deepTools96 and show normalized read counts at the
peak center ± 2 kb unless otherwise noted. Overlap of ChIP-seq peaks
was assessed using BEDTools. Peaks were considered overlapping if
they shared one or more nucleotides.

Annotation of histology-specific enriched ChIP-seq peaks
Sample-sample clustering, principal component analysis, and identifi-
cation of lineage-enriched peaks were performed using Mapmaker
(https://bitbucket.org/cfce/mapmaker), a ChIP-seq analysis pipeline
implemented with Snakemake97. ChIP-seq data from ccRCC, chRCC,
and pRCC were compared to identify H3K27ac and H3K4me2 peaks
with significant enrichment in either histology. A union set of peaks for
each histone modification was created using BEDTools v2.26.0. nar-
rowPeak calls from MACS were used for H3K27ac and H3K4me2. The
number of unique aligned reads overlapping each peak in each sample
was calculated from BAM files using BEDTools. Read counts for each
peak were normalized to the total number of mapped reads for each
sample. Quantile normalization was applied to this matrix of normal-
ized read counts. Using DESeq298, lineage-enriched peaks were iden-
tified at the indicated FDR-adjusted P value (Padj) and log2 fold-change
cutoffs (H3K27ac and H3K4me2, P-adjusted <0.001, log2 fold change
>3). Unsupervised hierarchical clustering was performed based on the
Spearman correlation between samples. Principal component analysis
was performed using the prcomp R function. Enriched de novomotifs
in differential peaks were detected using HOMER version 4.7. The top
non-redundant motifs were ranked by Padj. The GREAT tool33 was used
to assess for enrichment of Gene Ontology (GO) and MSigDB pertur-
bation annotations among genes near differential ChIP-seq peaks,
assigning each peak to the nearest gene within 500 kb.

RNA methods
RNA was extracted using the Qiagen RNeasy Mini Kit (Cat No./ID:
74104) as recommended, from frozen tumor samples adjacent to
those samples used for ChIP. RNA-seq libraries were constructed from
1μg total RNA using the Illumina TruSeq Stranded mRNA LT Sample
Prep Kit according to the manufacturer’s protocol. Barcoded libraries
were pooled and sequencedon the IlluminaHiSeq 2500generating 50-
bp paired-end reads. FASTQ files were processed using the VIPER
workflow99. Read alignment to human genome build hg19 was per-
formed with STAR100. Cufflinks was used to assemble transcript-level
expression data from filtered alignments101.

DNA extraction and mutation analysis
DNAwas either (1) extracted fromOCT-frozen primary tissue using the
Qiagen QIAamp DNA Mini Kit (Cat No./ID: 51304) (n = 9); or (2)
extracted from tumor regions consisting of at least 20% tumor cells
from unstained slides using the QIAamp DNA FFPE Tissue Kit (Qiagen)
according to the manufacturer’s instructions (n = 19). DNA quantifica-
tion was performed by Nanodrop and Pico-Green assays.

Mutational analysis was performed using our institutional CLIA-
certified targeted panel sequencing, Oncopanel102 without normal
DNA analysis. Called variants were excluded if observed at a fre-
quency ≥0.1% in the Exome Aggregation Consortium (ExAC)
database103, as theywere considered likely germline variants. Loss-of-
function variants were defined as nonsense mutations, frameshift
insertions or deletions, or splice site alterations affecting consensus
nucleotides (Supplementary Data 3). Missense mutations were only

included if deemed pathogenic by (1) both SIFT104 and Polyphen-2105

and (2) reported as oncogenic or likely oncogenic in cBioPortal
(TCGA Pan-cancer Atlas studies)106,107. CNVs were called by Oncopa-
nel, and here we retained only homozygous deletions (Supplemen-
tary Data 4).

Histology-specific expression of TFs
Normalized gene expression was computed for all 1631 known
TFs108,109 in all 28 RCC samples with RNA-Seq data (11 chRCC, 11
ccRCC, and 6 pRCC). To identify TFs whose expression was sig-
nificantly higher in one histology than another, we compared the
normalized TF expression using the Wilcoxon rank-sum two-sample
one-sided test. TFs with an average normalized expression less
than 10 FPKM in the histotype with the highest expression were
excluded. Multiple hypothesis correction was done using
Benjamini–Hochberg102. Unsupervised clustering of the samples
using the 105 differentially expressed TFs, that had log2 fold change
≥1, FDR < 0.1, and minimum of 10 transcripts per million was per-
formed to separate the RCC samples according to histology (Sup-
plementary Fig. S5A and Supplementary Data 5 and 6).

Cancer core transcription-factor specificity algorithm
Cancer Core Transcription factor Specificity (CaCTS) method is
developed and described in detail in ref. 110, which compares the
expression level of a TF in each RCC histotype with all other cancer
types. The CaCTS algorithm has been previously developed as an R
package and has been deposited in GitHub (https://github.com/
lawrenson-lab/CaCTS) and Zenodo (https://doi.org/10.5281/zenodo.
5234007).

Briefly, we used pan-cancer RNA-sequencing data from The Can-
cer Genome Atlas to identify RCC histology-specific candidate master
TFs. Considering a set of transcription factors detailed previously108,109,
we got a list of 1671 unique TFs.We selected only the ones expressed in
the TCGA pan-cancer dataset49. CaCTS score defines cell-specific TFs
for each cancer type based on the RNA expression information. The
specificity of expression of each TF, or “CaCTS score”, was calculated
by comparing its expression level in the query tumor type to that in the
remaining TCGA tumor types. A high CaCTS score is therefore
assigned to factorswith high-level expression in the query tumor types
as compared to background dataset. The output of the CaCTS algo-
rithm is a list of all TFs rankedbyCaCTS scores in eachof the threeRCC
subtypes. The main procedure consists in a Jensen-Shannon Diver-
gence (JSD) score. We first adjusted the normalized expression values,
to handle negative values, by shifting the values to 0 and themaximum
expression value. Then, to define a representative sample to each
tumor type, we applied the mean of the expression values considering
each tumor type individually. Mean values of 0 were replaced with
1 × 10−17. We followed the same principles described by D’Alessio et al.13

aiming to quantify the divergence between the transcription-factor
expression across different cell types. We created two same-sized
vectors to represent the observed pattern and the “ideal” pattern. For
the observed pattern, the vector was formed by values from the
expression mean profiles of the query cell type and the background
dataset. Each element in this vector were divided by the sum of all
elements. For the “ideal” pattern, the vector was formed by a value of 1
at the position equivalent to that of the query cell type and zeroes at all
other positions. For example, considering ccRCC as query and the
other 33 cancer types as background, the position 1, that corresponds
to ccRCC position, was formed by a value 1 and the other positions
were formed by value 0. From these two vectors, the JSD function was
performedwith the R package jsd version 0.1 and a cell-type-specificity
scorewas obtained for eachTF. The candidate list for each cancer type
wasdefinedby considering the top 5%of high JSD and top 5%of ranked
expression mean. This analysis identified 36 TFs that were highly and
uniquely expressed in one of the three RCC histotypes in comparison
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to TCGA cancers (Fig. 3B, Supplementary Fig. S5B–S5D, and Supple-
mentary Data 7).

Superenhancer rank analysis
Super-enhancers (SEs) and typical enhancers (TEs) were identified
using ROSE2 (https://pypi.org/project/rose2/)17 (Supplementary
Fig. S9 and Supplementary Data 8). Both SEs and TEs were ranked
based on integrated ChIP-seq signal17, where the SE with rank 1 has
the highest ChIP-seq signal. SEs were then associated to the nearest
gene, giving an SE rank score for each gene17. For each transcription-
factor-sample pair, we identified the minimum TF SE rank for all SEs
associated with that TF, or assigned the maximum SE rank found in
all samples (1477) if the TF was not associated to any SE in that
sample. TFs with an average superenhancer rank greater than 1000
were not considered further. We then compared the SE ranks for
each TF and histology against the other histologies using the Wil-
coxon rank-sum two-sample one-sided test. Multiple hypothesis
correction was done using the Benjamini–Hochberg Procedure, and
FDR ≤0.10 was considered significant. In all, 4073 SE region-
associated genes were detected in at least one RCC sample, includ-
ing 377 TFs. Unsupervised hierarchical clustering of the SE-
associated TFs partitioned the samples according to their histol-
ogy (Supplementary Fig. S5E) as did similar analysis of the 119 TFs
with differential SE rank by histology (FDR < 0.1) (Supplementary
Fig. S5F and Supplementary Data 9).

ATAC-seq normalization
Publicly available ATAC-seq data from 16 ccRCCs and 34 pRCCs61, and
newly generated ATAC-seq data for seven chRCC samples were inte-
grated and normalized. chRCCATAC-seq peaks setswerenormalized111

by computing a “score per million” (spm), which is the individual peak
score (−log10(P value)) by the total sumof all peak scores in the sample
multiplied by a million, and peaks with spm ≤5 were filtered out. Sec-
ond, to generate the chRCC-specific ATAC-seq peak set, we conserved
regions covered by at least two samples, breaking up peaks if neces-
sary. Lastly, we removed regions that overlap repeat regions con-
sidering the UCSC Table browser (http://genome.ucsc.edu/cgi-bin/
hgTables) “Repeats” group and “Repeatmasker” track. Only regions
that contain the full length as N were removed.

Clique enrichment score analysis
SE-associated TFs are typically wired in auto-regulatory networks,
called “cliques”, that cooperatively regulate their own expression and
expression of an extended network of genes to create the transcrip-
tionalfingerprint of the tissue65. To identify highly interconnected TFs,
we integrated H3K27ac and ATAC-seq data and used Coltron to iden-
tify cliques and determine the clique enrichment score (CES). CES for
each TF was calculated using clique assignments performed using
Coltron112. Coltron uses a motif-based approach employing both SE
data and normalized ATAC-seq data to restrict the motif search to
regions of open chromatin, to build networks of transcription factors.
It identifies cliques of various sizes reflecting putative interaction
between TFs in driving TF expression. The CES equals the fraction of
cliques containing each expressed TF. Using the CES, we performed
clustering analysis with the following parameters: distance =Canberra,
agglomeration method =ward.D2. To select RCC histology-specific
TFs using theCES,we restricted to aminimumaverageCESof 0.05, i.e.,
a TF has to be present, on average, in at least 5% of all cliques in a given
RCC histological subtype. 167 TFs had a positive CES in one or more
tumors, and unsupervised clustering of the samples based on TF CES
separated samples by histology (Supplementary Fig. S5G). In total, 87
of the 167 TFs (52%) showed differential connectivity between the
three histologies, meaning that on average, they participated in a sig-
nificantly larger number of cliques in one histology compared to the
other (one-sided Mann–Whitney U test of one histotype vs. the rest,

FDR <0.1, minimum CES = 0.05) (Supplementary Fig. S5H and Sup-
plementary Data 10–11).

Master TF analysis
These four analyses (Differential expression, CaCTS, SE rank, and CES)
identified more than 200 candidate TFs showing a histology-specific
association in one or more analyses. However, each analysis has
potential limitations. Differential gene expression is not discriminative
enough and is expected to have too many false positives. SE rank
analysis relies heavily on enhancer-gene assignment, which is biased
against long-distance interactions. CES analysis is a motif-based
approach and depends on the prior knowledge of TF motifs, which
are incompletely characterized. Finally, CaCTS is designed to compare
pan-cancer TF expression, so it canmiss TFs that are also important in
other cancer types, which is why we used a meta-analysis approach
where the TF has to be significant in one of the three analyses (CaCTS,
SE rank, and CES) as well as significantly differentially expressed
between the three histologies (Supplementary Data 12).

Immunohistochemistry
For immunohistochemistry (IHC), 5-mm FFPE tissue sections were
deparaffinized, rehydrated, and subjected to heat-induced antigen
retrieval (0.01mol/L sodium citrate tribasic dihydrate, pH 6.0 or EDTA
retrieval buffer, pH 9.0) followed by treatment with 3%H2O2 for 15min
at room temperature to block endogenous peroxidase activity. Sec-
tions were incubated overnight at 4 °Cwith primary antibodies against
mouse HNF1β (Santa Cruz, sc-130407, 1:50 dilution), mouse BHLHE41
(Thermofisher, TA806146, 1:200 dilution), rabbit NKX6.1 (Cell signal-
ing, #54551, 1:50 dilution), rabbit ZNF395 (Lsbio, LS-B5647-100, 1:500
dilution). Sections were then stained with appropriate secondary
antibodies per manufacturer recommendations (ImmPRESS HRP anti-
rabbit and anti-mouse IgG Polymer detection kits: MP-7451; MP-7402,
Vector laboratories). Slides were counterstained with hematoxylin,
dehydrated, and mounted. Slides were scanned at ×20 magnification
and positively stained tumor cells for HNF1β, BHLHE41, NKX6.1, or
ZNF395 were determined.

Cell lines
786-O cell line was obtained from a certified commercial vendor
(ATCC, CRL-1932) and grown in DMEM (Invitrogen) supplemented
with 10% fetal bovine serum (Sigma), 100U/mL penicillin, and 100μg/
mL streptomycin (Invitrogen). No further authentication was per-
formed. Cell lines tested negative for mycoplasma contamination.

FOXI1 overexpression in 786-O cell line (FOXI1 OE)
The full-length FOXI1 open reading frame (ORF) without stop codon
was amplified by gene-specific cloning primers (Supplementary
Data 27) using cDNA from an RCC cell line which expressed FOXI1
endogenously (Obtained from L. H.’s lab) and cloned into mammalian
expression lentiviral vector (pFUGW) derivative (Addgene #52962)
AgeI and BamHI sites. Correct FOXI1 ORF sequence was verified by
Sanger sequencing, expression level was measured by qRT-PCR and
correct protein size was verified by immunoblot technique. Stable
FOXI1 overexpressing cell lines were created by lentiviral transduction
using the FOXI1 containing transfer vector and pMD2.G (Addgene
#12259) and psPAX (Addgene#12259) lentiviral packaging vectors.
Transduced cells were selected and maintained under blasticidin
containing (10μg/ml) selective culture media.

EPAS1 shRNA knockdown in 786-O cell line (EPAS1 KD)
Short hairpin RNAs (shRNA) were designed against the FOXI1 3‘ UTR
region using the Broad Gene Perturbation Web Portal (GPP): https://
portals.broadinstitute.org/gpp/public/ and non-human targeting con-
trol (NTC) gRNA was included and cloned (detailed protocol available
at http://www.broadinstitute.org/rnai/public/resources/protocols).

Article https://doi.org/10.1038/s41467-023-35833-5

Nature Communications |          (2023) 14:346 11

https://pypi.org/project/rose2/
http://genome.ucsc.edu/cgi-bin/hgTables
http://genome.ucsc.edu/cgi-bin/hgTables
https://portals.broadinstitute.org/gpp/public/
https://portals.broadinstitute.org/gpp/public/
http://www.broadinstitute.org/rnai/public/resources/protocols


Briefly, for each shRNA (Supplementary Data 27) com-
plementary single-stranded oligonucleotides were synthesized
(Invitrogen) with cloning sites, phosphorylated, annealed, and
shRNA cassettes were ligated into pLKO.1 (Addgene #8453) shRNA
expression vector containing puromycin selection marker. After
bacterial transformation (Stbl3, Invitrogen) individual clones were
picked and regenerated, and correct shRNA sequences were verified
by Sanger sequencing. Suppression effects were tested by qRT-PCR
and immunoblot techniques.

Lentiviral particles were generated for each shRNA experiment
by transforming 786-O cells with shRNA transfer vectors and lenti-
viral packaging mix (pMD2.G psPAX). Lentiviral particle containing
media were collected and filtered using 0.45-μm pore size syringe
filters (Corning) after 48 h post transfection and used for treatment
of previously plated 786-O cell line.Mediawas changed after 24 h and
replaced by puromycin (2 μg/ml) containing selective culture med-
ium. Puromycin-resistant cells were maintained and collected after
3 days of selection and total RNA was isolated using RNeasy Mini kit
(Qiagen).

Creation of double manipulated cell lines (FOXI1 OE/EPAS1 KD)
786-O/FOXI1 OE cells were cultured andmaintained in DMEMmedia as
described above. Cells from the two different conditions were seeded
in parallel six-well plates and 24 h later, cells were infected with lenti-
virus containing shRNA targeting EPAS1 and negative control shRNA.
Cells were selected by puromycin for 72 h following infection, equal
cell numbers were harvested for RNA extraction and immunoblotting.

Gene expression analyses
For targeted gene expression, qRT-PCR 500 ng total RNA (Qiagen) was
reverse transcribed (High Capacity Reverse transcription kit, Life-
Technologies) and cDNA was diluted (20×). SYBR Green assay was
performed on Light Cycler 480 instrument (2x Probe Master Mix,
Roche). All primer sequences are listed in Supplementary Data 27.
Relative gene expression was calculated based on the ddCT method
(Pfaffl 2001). Each sample was measured by two technical replicates.
ACTB gene was used as housekeeping genes to normalize the samples.

For gene expression profile analysis, RNA-Seq was performed
from the different conditions using poly A capture method from total
RNA by Novogene sequencing service.

Chromatin and gene expression allelic imbalance analysis
DNA samples from three pRCC and ten ccRCC samples were geno-
typed on a commercially available genotyping array (Infinium Global
Screening Array-24, version 1.0; Illumina) at the Broad Institute
Genomic Services, Cambridge, Massachusetts. We used a total of
642,824 SNP markers. H3K27ac ChIP-seq reads from the same 10
ccRCC and 3 pRCCs were analyzed for the imbalance of heterozygous
SNP alleles using stratAS (https://github.com/gusevlab/stratAS; Gusev
et al., submitted; https://www.biorxiv.org/content/10.1101/631150v1.
full.pdf, deposited in Zenodo (https://doi.org/10.5281/zenodo.
7373647), hereby denoted chromatin allelic imbalance. Several
upstream steps were performed to boost power and accuracy of
chromatin allelic imbalance detection.

First, genotypes were imputed from SNP array data with
STITCH113, using the 1000 Genomes Phase 3 reference panel. Sub-
sequent analyses were limited to SNPs with allele fraction >5% in the
Haplotype Reference Consortium version 1.1102. Genotypes were then
phased with Eagle2 using the Sanger Imputation Service (https://
imputation.sanger.ac.uk/). Heterozygous SNPs were filtered for map-
ping bias using the WASP pipeline114 and allele-specific read counts
were tabulated using ASEReadCounter from the Genome Analysis
Toolkit v3.8115.

Briefly, stratAS identifies chromatin allelic imbalance—and differ-
ential allelic imbalance between two-sample groups—by modeling the

reads from heterozygous SNPs with a beta-binomial distribution
(https://doi.org/10.1101/631150v1.full.pdf). stratAS takes advantage of
haplotype phasing to sum read counts from heterozygous SNPs from
each phased haplotype for each individual within a given ChIP-seq
peak. stratAS models the reads from individual i overlapping hetero-
zygous germline SNP j as: Ralt,i | Rref,i BetaBin(πj, ρij), whereπ is themean
allelic ratio and ρ is a locally-defined, per-individual sequence read
correlation parameter reflecting overdispersion.

We tested differential chromatin imbalance between ccRCC and
pRCC RCC by the likelihood ratio test between the models
πclearcell,j =πpRCC,j and πclearcell,j ≠πpRCC,j, maximizing the likelihood of
each model by a standard 1-dimensional optimization.

Copy number profiles were estimated from read representation in
ChIP-seq inputs using qdnaseq v1.18. Copy number profiles were used
in the modeling of the overdispersion parameter ρ. This is motivated
by larger degrees of overdispersion in regions of cancer-associated
copy number alterations. ρ is estimated for each individual from all
heterozygous read-carrying SNPs across ten declines of estimated
copy number levels stratAS params.R script, with the following
options:–min_snps 50, min_cov 5,–group_snp TRUE,–group 10.

We tested variants within a consensus set of H3K27ac peaks. This
peak set was derived by dividing the genome into 50 bp windows and
including any window with peaks in two or more samples. We
restricted tests to peaks with at least one read supporting each hap-
lotype (–min_cov 1). The following additional parameters were set for
the stratas.R script:–max_rho 0.2,–window −1, min_cov 1, and–fill_cnv
TRUE. P values for allelic imbalance, and differential imbalance
between ccRCC and pRCC, were corrected for multiple hypothesis
testing as follows. First, all SNPs within a given peak were adjusted by
Bonferroni correction. The corrected P value of the most significant
SNP was taken as the P value for imbalance of the peak. We then
obtained FDR-adjusted q-values for all peaks using the q-value R
package (v4.0.1). Peaks with q < 0.05 were considered significantly
imbalanced. Differentially imbalanced peaks were grouped into cate-
gories for motif enrichment analysis. Peaks with ccRCC-specific chro-
matin imbalance were defined as those with (1) a significant imbalance
in ccRCC, (2), significant differential imbalance between ccRCC and
pRCC, and (3), no significant imbalance in the stratAS analysis of pRCC
alone. Conversely, a set of peaks with pRCC-specific imbalance was
defined by (1) chromatin imbalance in pRCC, (2) differential chromatin
imbalance between the two groups, and (3), no significant chromatin
imbalance in ccRCC. These two groups were analyzed for motif
enrichment using homer v4.7. The background for enrichment was
specified as all peaks imbalanced in pRCC and in ccRCC in the separate
stratAS analyses of these groups. The top three “known results” motif
categories were reported.

The union set of chromatin-imbalanced peaks (i.e., in pRCC,
ccRCC, or in the combined or differential comparisons) were asses-
sed for enrichment of significant SNPs from genome-wide associa-
tion studies (GWAS) of RCC58, prostate cancer (6), psoriasis116,
cardiovascular disease, diagnosis of hypertension117, self-reported
hypercholesterolemia, type 2 diabetes mellitus118, self-reported
hypothyroidism119, all autoimmune diseases, dermatologic dis-
orders, diagnosis of asthma, respiratory disease, and diagnosis of
allergy or eczema. For each GWAS, the number of genome-wide
significant SNPs overlapping chromatin-imbalanced H3K27ac peaks
was counted and divided by the number of base pairs covered by
these peaks. The same process was performed with a background set
of peaks randomly sampled over 10,000 iterations from all RCC
H3K27ac peaks. The relative overlap of chromatin-imbalanced peaks
was divided by the relative overlap of background H3K27ac peaks to
estimate relative enrichment. Enrichmentwas also calculated relative
to random peaks, matched to the chromatin-imbalanced peaks for
number, peak size, and chromosome. Empiric one-sided P values
were calculated from the iterations.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Sequencing reads are aligned to the human genome build hg19. The
DFCI datasets generated in this study, including ChIP-seq, RNA-seq,
and ATAC-seq data (R0929TAT, R0957TAT, R0998TAT, R1097TAT,
R1149TAT, R1152TAT, R991T1AT) have been deposited in the Gene
Expression Omnibus (GEO) database under accession code
GSE188486. The TCGA Kidney Renal Clear Cell Carcinoma (KIRC)
publicly available data used in this study are available in a public
repository from the Broad Institute Firehose Pipeline (http://gdac.
broadinstitute.org). All clinical and correlative sequencing data from
publicly available. CheckMate 009/010/025 publicly available data
used in this study are available in the European Genome-Phenome
Archive database under accession codes EGAS00001004291 and
EGAS00001004292120. ATAC-Seq data publicly available data used in
this study are available in the Genomic Data Commons database
(https://gdc.cancer.gov/about-data/publications/ATACseq-AWG)61.
The remaining data are available within the Article or Supplementary
Information. Any other queries about the data used in this study
should be directed to the corresponding authors of this study. Source
data are provided with this paper.

Code availability
Algorithms used for data analysis are all publicly available from the
indicated references in the Methods section.
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