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SUMMARY

Single-cell Hi-C (scHi-C) technologies can probe three-dimensional (3D) genome structures in 

individual cells. However, existing scHi-C analysis methods are hindered by the data quality 

and complex 3D genome patterns. The lack of computational scalability and interpretability 

poses further challenges for large-scale analysis. Here, we introduce Fast-Higashi, an ultrafast 

and interpretable method based on tensor decomposition and partial random walk with restart, 

enabling joint identification of cell identities and chromatin meta-interactions from sparse scHi-C 

data. Extensive evaluations demonstrate the advantage of Fast-Higashi over existing methods, 

leading to improved delineation of rare cell types and continuous developmental trajectories. Fast-

Higashi can directly identify 3D genome features that define distinct cell types and help elucidate 

cell type-specific connections between genome structure and function. Moreover, Fast-Higashi can 

generalize to incorporate other single-cell omics data. Fast-Higashi provides a highly efficient and 

interpretable scHi-C analysis solution that is applicable to a broad range of biological contexts.

eTOC paragraph

A new computational framework called Fast-Higashi enables efficient and effective analysis of 

single-cell Hi-C data to unveil distinct cell types and identify cell type-specific 3D genome 

features.
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INTRODUCTION

The advent of high-throughput whole-genome mapping methods for the three-dimensional 

(3D) genome organization such as Hi-C (Lieberman-Aiden et al., 2009) has revealed distinct 

features of chromatin folding in various scales within the cell nucleus, including A/B 

compartments (Lieberman-Aiden et al., 2009), subcompartments (Rao et al., 2014; Xiong 

and Ma, 2019), topologically associating domains (TADs) (Dixon et al., 2012; Nora et 

al., 2012), and chromatin loops (Rao et al., 2014). These multiscale 3D genome features 

collectively contribute to vital genome functions such as transcription (Zheng and Xie, 

2019; Kempfer and Pombo, 2020). However, the variation of 3D genome features and their 

functional significance in single cells remain poorly understood (Misteli, 2020; Zhou et al., 

2021). The recent advances of single-cell Hi-C (scHi-C) technologies have provided us with 

unprecedented opportunities to probe chromatin interactions at single-cell resolution, from 

a few cells of given cell types (Ramani et al., 2017; Nagano et al., 2017; Kim et al., 2020; 

Li et al., 2019) to thousands of cells from complex tissues (Tan et al., 2021; Lee et al., 

2019; Liu et al., 2021). These new technologies and datasets have the promise to unveil 

the connections between genome structure and function in single cells for a wide range of 

biological contexts in health and disease (Zhou et al., 2021).

However, the complexity of scHi-C data has created significant analysis challenges. 

Computational methods HiCRep/MDS (Liu et al., 2018), scHiCluster (Zhou et al., 2019), 

LDA (Kim et al., 2020), and the more recent deep learning based methods 3DVI (Zheng 
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et al., 2021) and Higashi (Zhang et al., 2022) have been developed for the embedding 

and imputation of the sparse scHi-C data. These existing methods, however, cannot (i) 

effectively infer informative embeddings for the delineation of rare cell types in complex 

tissues, (ii) directly identify critical chromatin organizations related to cell type-specific 

genome functions, and (iii) efficiently operate on large-scale datasets with limited memory 

resources. It remains an open question on how to develop effective computational methods 

that can identify rare cell types in complex tissues in an interpretable manner with high 

scalability, key to understanding the interplay among chromatin organization, genome 

functions, and cellular phenotypes.

The recent scHi-C embedding method scHiCluster (Zhou et al., 2019) uses linear 

convolution and random walk with restart to impute the sparse contact maps and applies 

principal component analysis (PCA) on the imputed maps. This requires the storage of 

all imputed dense maps in the memory, drastically limiting its application to datasets with 

a large number of cells at high resolution. More recently, deep learning based scHi-C 

analysis methods have been proposed, including 3DVI (Zheng et al., 2021) based on 

a deep generative model and our recent work Higashi (Zhang et al., 2022) that uses a 

hypergraph neural network architecture (Zhang et al., 2020). Both methods suggest better 

embedding results with Higashi being the first scHi-C embedding approach to demonstrate 

that the complex neuron subtypes in human prefrontal cortex can be revealed by chromatin 

conformation only. However, due to the computation-intensive nature of neural networks, 

the scalability of both methods has much room for improvement for large-scale datasets. 

For 3DVI, individual variational autoencoders are trained for each genomic distance and 

each chromosome, leading to thousands of deep neural network models to be trained. 

For Higashi, since the model treats each contact of scHi-C data as individual samples, it 

takes a long time to fully iterate over the dataset or to train the model till convergence. 

Crucially, methods for improving the interpretability of the embeddings for scHi-C data 

are particularly lacking, limiting our understanding of 3D genome structure-function 

connections for a diverse set of cellular phenotypes.

Here, we develop Fast-Higashi, an interpretable and scalable framework for embedding 

and integrative analysis of scHi-C data. We propose a concept for single-cell 3D genome 

analysis, called “meta-interactions” (analogous to the definition of metagenes in scRNA-

seq analysis (Welch et al., 2019)), to improve the model interpretability. Our proposed 

Fast-Higashi algorithm jointly produces embeddings and meta-interactions for a given 

scHi-C dataset. Applications to various scHi-C datasets of complex tissues demonstrate 

that Fast-Higashi has overall comparable or even better embeddings than existing methods 

but is much faster than neural-network based methods (>40x faster than 3DVI and >9x 

faster than Higashi), enabling ultrafast delineation of cell subtypes or rare cell types in 

different biological contexts. Moreover, Fast-Higashi is able to infer critical chromatin 

meta-interactions that define cell types with strong connections to cell type-specific gene 

transcription. Fast-Higashi is the fastest and most scalable method for large-scale scHi-C 

data analysis to date.

Zhang et al. Page 3

Cell Syst. Author manuscript; available in PMC 2023 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



RESULTS

Overview of Fast-Higashi

Fig. 1a illustrates the overall architecture of Fast-Higashi, which is an interpretable model 

for scHi-C analysis. In Fast-Higashi, scHi-C contact maps from different chromosomes are 

represented as multiple three-way tensors. Then a tensor decomposition model is utilized 

and generalized to simultaneously model these 3-way tensors that share only a single 

dimension (single cells). The tensor decomposition model takes the tensor representation 

of scHi-C data as input and decomposes the tensors into multiple factor matrices (Fig. 

1a) to jointly infer cell embeddings as well as meta-interactions. These meta-interactions 

manifest the aggregated patterns of chromatin interactions, which are analogous to the 

concept of metagenes in scRNA-seq analysis. Each meta-interaction corresponds directly to 

a specific dimensions of the cell embeddings, providing a direct solution to interpret the 

association between embedding results and 3D genome features. We derived the mini-batch 

optimization procedure for the tensor decomposition model such that it can efficiently 

model tensors with drastically different sizes and effectively scale to scHi-C datasets with 

a large number of cells or at high resolutions. To mitigate the sparseness of the scHi-C 

contact maps while keeping the advantages of mini-batch training, we proposed a partial 

random walk with restart algorithm (Partial RWR, Fig. 1b) that efficiently imputes the 

sparse scHi-C contact maps before passing them to the tensor decomposition model. The 

detailed descriptions of the tensor decomposition model, the Partial RWR module, and the 

optimization procedures are in STAR Methods.

Fast-Higashi achieves accurate and fast embedding of scHi-C data

We systematically evaluated the performance of Fast-Higashi for generating embedding 

vectors for various scHi-C datasets. To demonstrate the effectiveness of Fast-Higashi for 

delineating subtle cell-to-cell variability of 3D genome features, we applied it to three recent 

scHi-C datasets of complex tissues at 500Kb resolution. These datasets include the (Tan et 

al., 2021) dataset, the (Lee et al., 2019) dataset, and the (Liu et al., 2021) dataset (see STAR 

Methods for data processing). We evaluated the performance of Fast-Higashi and baselines 

under various evaluation metrics including: (1) the modularity score, (2) the adjusted rand 

index (ARI) and adjusted mutual information (AMI) scores, and (3) the Micro-F1 and 

Macro-F1 scores (see STAR Methods for details). We made direct comparisons of Fast-

Higashi against three scHi-C embedding methods, including two very recently developed 

scHi-C embedding methods, Higashi (Zhang et al., 2022) and 3DVI (Zheng et al., 2021) 

as well as scHiCluster (Zhou et al., 2019) (which has been updated recently). It has been 

suggested that the updated scHiCluster can distinguish neuron subtypes better on the Lee et 

al. dataset while the earlier version of scHiCluster cannot achieve (Lee et al., 2019; Zhang et 

al., 2022).

As shown in Fig. 2a-c, the UMAP visualizations of the Fast-Higashi embeddings on these 

three datasets show clear clustering patterns consistently corresponding to the annotated 

cell types. Notably, we observed several major advantages of the Fast-Higashi embeddings 

compared to other methods. On the Lee et al. dataset of the human prefrontal cortex, 

based on the UMAP visualization of the embedding results, Fast-Higashi can resolve the 
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differences among neuron subtypes clearly, separating all Pvalb, Sst, Vip, Ndnf, L2–3, 

L4, L5, and L6 neuron subtypes and showing more detailed structures within some cell 

types (Fig. 2b, marked in red box). To the best of our knowledge, this is the first time 

that excitatory neurons of different layers can be separated by using chromatin interaction 

information only. As a comparison (Fig. S1), the embeddings from Higashi and scHiCluster, 

while separating most of the neuron subtypes, have much weaker capability to distinguish 

excitatory neurons of different layers. The embeddings of 3DVI separate neurons into two 

categories, excitatory neurons and inhibitory neurons, lacking the ability for more refined 

cell type delineation. Moreover, the embeddings from both scHiCluster and 3DVI show 

obvious batch effects (Fig. S1).

On the Liu et al. dataset of the mouse hippocampus, we again observed Fast-Higashi’s clear 

advantage over other methods. Fast-Higashi is the only method that can separate CA3 cells 

from CA1 cells, and successfully identify small clusters of VLMC, PC, and EC cells, while 

all other methods (except Higashi) cannot (Fig. 2c and Fig. S2).

All these observations are supported by our quantitative results, where Fast-Higashi 

consistently achieves the highest or second best scores across all metrics of all three datasets 

(Fig. 2d and Fig. S3). We repeated the evaluation on two sci-Hi-C datasets with relatively 

lower coverage and/or a smaller number of cells and reached similar conclusions (see STAR 

Methods for details).

In addition, we assessed the runtime of all scHi-C embedding methods. As shown in Fig. 

2e, Fast-Higashi is much faster than all existing scHi-C embedding methods, especially the 

neural-network based methods (>40x faster than 3DVI and >9x faster than Higashi on the 

scHi-C datasets used for benchmarking). The runtime of Higashi mostly depends on its 

number of training epochs and is almost constant for datasets with more than 1000 cells.

Together, these results demonstrate that Fast-Higashi achieves the state-of-the-art 

performance for scHi-C embeddings with an ultrafast computational efficiency.

Fast-Higashi enables the identification of rare cell types in complex tissues

In addition to the global evaluation on how well the Fast-Higashi embeddings correspond 

to the annotated cell types from the original datasets, we also sought to demonstrate that 

Fast-Higashi has unique capabilities to further improve the annotation of rare cell types in 

complex tissues.

We first visualized the Fast-Higashi embeddings of the neuron cells in the (Lee et al., 

2019) dataset using the UMAP projection (Fig. 2f). We obtained a new cell type annotation 

from (Luo et al., 2022), where the methylation profiles of the Lee et al. dataset were 

jointly embedded with single-cell methylation profiles from snmC-seq, snmCT-seq, and 

snmC2T-seq on human prefrontal cortex to annotate cell types. This joint analysis allows 

the characterization of neuron subtypes in the Lee et al. dataset at a much more refined 

resolution. Based on the UMAP visualization, we observed that the smaller clusters within 

the same cell type (red box in Fig. 2b) can in fact be delineated into more detailed cell 

subtypes. For instance, the two finer clusters of Sst in Fig. 2b correspond to the CALB1 
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and B3GAT2 cell subtypes in Fig. 2f. By comparing with the UMAP visualization of 

other embedding methods (Fig. S1 last row), we found that Fast-Higashi has the best 

ability to distinguish neuron subtypes, especially for the excitatory neurons. For inhibitory 

neurons, both Fast-Higashi and Higashi perform well and are the only two methods that can 

identify a smaller cluster of the UNC5B type (Fig. S1 last row). To further support these 

observations, we also evaluated each method’s ability of separating neuron subtypes on the 

Lee et al. dataset through silhouette score analysis (Fig. 2g and Fig. S4). Consistent with our 

observations based on the UMAP visualization, Fast-Higashi achieves the highest average 

silhouette score on the neuron subtypes.

We next systematically evaluated the robustness of Fast-Higashi’s ability of identifying 

rare cell types, by simulating scHi-C dataset with different coverage. Specifically, we 

downsampled the contact pairs from the Lee et al. dataset to 10% to 50% of the original 

dataset and applied Fast-Higashi and Higashi, two models with strongest performance 

on these simulated datasets. As demonstrated by the UMAP visualizations in Fig. S5, 

Fast-Higashi is more robust to the coverage of the dataset than Higashi, showing clearer 

clustering patterns that correspond to the cell types. The quantitative evaluation (Fig. S6) 

further supports this observation.

Additionally, we applied Fast-Higashi to the Tan et al. dataset of the developing mouse 

brain. Fast-Higashi is able to separate most of the cell types marked from the data source 

(Fig. 2a). As compared to the existing scHi-C embedding methods, Fast-Higashi preserves 

the local trajectory of the time course better (Fig. S7). In addition, we found two small 

clusters within the interneuron cell types and two separate clusters of neonatal neurons 

that do not correspond to the original Neonatal Neuron 1/2 labels from the dataset. These 

patterns are absent from the embeddings of other existing embedding methods except 

Higashi (Fig. S7). With the observation on the Lee et al. dataset that the small clusters 

within a cell type could reflect more refined subtypes, we believe that this could also be the 

case for the Tan et al. dataset. Detailed results will be discussed in a later section.

Taken together, these results confirm the unique capability of Fast-Higashi for identifying 

rare cell types or subtypes based on scHi-C data only.

Fast-Higashi effectively captures cell-type specific 3D genome structures

We then sought to demonstrate that the meta-interactions captured by Fast-Higashi reflect 

the cell type-specific 3D genome features and can be used to interpret the generated 

embeddings. As a proof-of-principle, we first analyzed the meta-interactions of chromosome 

1 for the (Kim et al., 2020) dataset. In this section, we mainly focus on the 4 cell types with 

enough cell numbers, including GM12878, H1ESC, HAP1, and HFFc6. We first visualized 

the single cell loadings of these meta-interactions (chromosome-specific embeddings). As 

shown in Fig. 3a, each cell type has its preferred set of meta-interactions. Note that due 

to the utilization of SVD (singular value decomposition) for solving the meta-interaction 

during the optimization process (see STAR Methods), the first meta-interaction (sorted by 

the singular value during the SVD process) would correspond to the general contact patterns 

of all cells within the scHi-C data. This is consistent with the observation that for all 

cells, their loadings of the first meta-interaction (marked as “1st MI” in Fig. 3a) are large 
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and similar across all cell types. For all other meta-interactions, they represent how the 

cell type-specific 3D genome features deviate from the population interaction patterns. To 

validate this, we aggregated the cell type-specific meta-interactions weighted by the average 

single cell loadings and made comparisons to the differential contact patterns calculated 

from the bulk Hi-C. Specifically, we first calculated a “common bulk Hi-C” as the average 

of the bulk Hi-C of the same four cell types. Then for each cell type we calculated the 

differential contact patterns as the difference between the bulk Hi-C of that cell type and the 

“common bulk Hi-C”. As shown in Fig. 3b, the differential contact patterns calculated using 

the bulk Hi-C share similar patterns to the aggregated cell type-specific meta-interactions. 

This observation is consistent with the phenomenon that the Spearman correlations between 

cell type specific meta-interactions and the corresponding differential contact map is the 

highest (Fig. 3c).

Next, we analyzed the meta-interactions of a scHi-C dataset on complex tissues, i.e., the 

(Lee et al., 2019) dataset. Fig. 3d shows the single cell loadings of the whole genome meta-

interactions for this dataset. We again can observe a clear preference of meta-interaction sets 

for different cell types. To confirm that these cell type-specific meta-interactions manifest 

cell type-specific 3D genome features that are functionally relevant, we calculated the 

differential contact values for each bin given a specific set of meta-interactions. We first 

aggregated the meta-interactions for a specific cell type by the average single cell loadings, 

leading to one meta-interaction map of size N × N for each chromosome of one cell type. 

We then calculated the differential contact values by summing over the column of this meta-

interaction map, representing the overall deviation of a genomic bin from its population-

level pattern. By comparing to the marker genes called from scRNA-seq (Hawrylycz et al., 

2012; Hodge et al., 2019), we found that there is a strong positive correlation between the 

differential contact values and the expressions of the marker genes (Fig. 3e).

These results demonstrate that the meta-interactions from Fast-Higashi effectively capture 

the cell type-specific 3D genome features that are relevant to cell type-specific gene 

regulation. The meta-interactions from Fast-Higashi can be used to associate the embedding 

results to a specific region of the scHi-C contact map, pointing to further investigation of 

differential 3D chromatin contact patterns of various cell types in complex tissues.

Fast-Higashi unveils single-cell 3D genome features in developing mouse brain

As discussed above, we applied Fast-Higashi to a scHi-C dataset of developing mouse 

brain, i.e., the (Tan et al., 2021) dataset, and observed local clusters of cells within the two 

annotated cell types in the UMAP visualization (Fig. 2a). We postulated that these local 

clusters could potentially be subtypes not captured by other scHi-C embedding methods 

as well as the original data source. To demonstrate that Fast-Higashi can delineate finer 

scale cell types and uncover developmental trajectories, we first obtained Fast-Higashi 

embeddings for all cortex cells and annotated the observed small clusters as Interneuron (A), 

Interneuron (B), Neonatal Neuron (A), and Neonatal Neuron (B) (Fig. 4a).

We sought to confirm our refined cell type labels of neonatal neurons and interneurons 

(highlighted with circles in Fig. 4a) by scA/B values in the gene bodies of marker genes. 

The marker genes were obtained from (Tan et al., 2021), which were calculated using 
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Seurat (Stuart et al., 2019) on the MALBACDT of the developing mouse brain. We 

quantified the A/B compartments of a set of differentially expressed genes (DEGs) by the 

aggregated scA/B value (see STAR Methods). Previous studies reported the existence of 

global correlations between the scA/B values and the gene expression level within the same 

cell type (Su et al., 2020) and across different cell types in complex tissues (Tan et al., 

2021; Zhang et al., 2022). In particular, genes with higher scA/B values are more likely 

to be highly expressed. We found that the aggregated scA/B value of the marker genes of 

Pvalb and Sst is significantly higher in Interneuron (B) as compared to Interneuron (A) and 

the marker genes of Vip show the opposite trend (Fig. 4b). These results suggest that the 

DEGs of Pvalb and Sst neurons are expressed at a higher level in Interneuron (B) than in 

Interneuron (A) and that the DEGs of Vip neurons exhibit the opposite behavior, indicating 

that Interneuron (A) and (B) are more likely to be Vip and Pvalb/Sst, respectively. Similarly, 

the aggregated scA/B value of the marker genes of neonatal inhibitory neurons is higher 

in Neonatal Neuron (A) and the aggregated scA/B value of the marker genes of neonatal 

excitatory neurons is higher in Neonatal Neuron (B) (Fig. 4c), indicating the Neonatal 

Neuron (A) and (B) are neonatal inhibitory neurons and neonatal excitatory neurons, 

respectively. Meanwhile, the aggregated scA/B values of neonatal excitatory neurons do 

not show different distributions (P>0.2) between the Neonatal Neuron 1 and 2 in the original 

annotations from (Tan et al., 2021), confirming that our annotations are indeed a refinement. 

Collectively, we again demonstrate the advantage of Fast-Higashi in identifying finer cell 

types.

To further validate our refined subtype annotation, we jointly embed the cortex and 

hippocampus dataset of Tan et al. with another dataset of the visual cortex of developing 

mouse brain (Tan et al., 2021). The cortex and hippocampus dataset consists of cells from 

mice at 6 ages: P1, P7, P28, P56, P309, and P347, while the visual cortex dataset includes 

cells of mice at ages P7, P14, P21, and P28, which covers the critical development period 

from P7 to P28 that was missed in the original dataset. When we applied Fast-Higashi to 

the union of these datasets, it recovered the complex developmental trajectories of inhibitory 

neurons and excitatory neurons. Specifically, in the UMAP visualization (Fig. 4d), a portion 

of the cells from the visual cortex dataset (light green) connect Neonatal Neuron (A) 

(Inhibitory neonatal neurons) to the 3 mature inhibitory neuronal types: Interneuron (A) 

(Vip), Interneuron (B) (Pvalb/Sst), and Medium Spiny Neuron. Similarly, a different set 

of visual cortex cells connect Neonatal Neuron (B) (Excitatory neonatal neuroins) to the 

multiple excitatory neuronal types: Cortical L2–5, Cortical L6, and Hippocampal Pyramidal. 

Since the Neonatal Neuron (A) and Neonatal Neuron (B) are primarily composed of P1/7 

cells, and the 6 mature neuronal types consist of almost only P28 or older cells, placing 

the P14∼28 cells between P1/7 cells and P28+ cells is consistent with the developmental 

process. Moreover, along the inferred developmental branches (Fig. 4e (curved arrows)), 

cells are indeed ordered by the mouse ages, strongly supporting the ability of Fast-Higashi 

in recovering trajectory from scHi-C datasets. As a comparison, we included the results of 

scHiCluster (see Fig. S8). Although cells are ordered by mouse age in the embedding space 

of scHiCluster, we found that inhibitory neurons and excitatory neurons are not separated 

and scHiCluster cannot delineate two distinct developmental trajectories of inhibitory 

neurons and excitatory neurons.
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In summary, using the (Tan et al., 2021) dataset, we have demonstrated the clear advantages 

of Fast-Higashi in unveiling finer cell types over existing methods as well as the unique 

ability of Fast-Higashi to characterize the cell-to-cell variability of 3D genome features 

along complex biological processes.

DISCUSSION

In this work, we developed Fast-Higashi, an ultrafast and interpretable framework for 

scHi-C data analysis. Our generalization from core-PARAFAC2 to Fast-Higashi not 

only leverages its strong scalability, but also enables joint and interpretable modeling 

of meta-interactions and cell embeddings. The development and incorporation of the 

Partial RWR algorithm further improve the performance of Fast-Higashi with negligible 

impact to the scalability. Evaluations of Fast-Higashi using a wide range of real scHi-

C datasets have demonstrated its effectiveness and scalability for inferring informative 

cell embeddings, enabling the delineation of rare cell types and the reconstruction of 

developmental trajectories. Besides, as a proof-of-principle, we identified cell type-specific 

meta-interactions that are related to cell type-specific gene transcription. Together, we have 

demonstrated the effectiveness, scalability, and interpretability of our method Fast-Higashi.

By using its predecessor Higashi (Zhang et al., 2022) as a direct baseline to compare, 

we demonstrated the superior scalability of Fast-Higashi to data size, robustness to data 

quality, and effectiveness in generating informative cell embeddings that facilitate rare cell 

type identification. Moreover, the unique scheme of meta-interactions allows direct analysis 

of cell type-specific 3D genome features that correspond to the embedding results. Even 

though Fast-Higashi has superior effectiveness and interpretability for scHi-C analysis, we 

note that Fast-Higashi is not developed to replace Higashi (Zhang et al., 2022). For instance, 

Fast-Higashi uses a random-walk-with-restart based method for imputing the sparse contact 

maps, which is efficient but also has limited imputation power. As demonstrated in (Zhang 

et al., 2022), the accurate imputation empowered by hypergraph representation learning 

is key to unveiling some important 3D genome features related to cell type-specific gene 

regulation. On the other hand, the underlying relationship between the tensor representation 

and the hypergraph representation of scHi-C data makes Fast-Higashi in some way a 

quasi-linear version of Higashi and can thus be used to initialize the Higashi model. As 

a proof-of-principle, we found that the Fast-Higashi initialized Higashi model can indeed 

achieve even better performance than any of these two methods (Fig. S9). As one of the 

future directions, we plan to integrate Fast-Higashi into the Higashi software suite, providing 

a more flexible and comprehensive framework for scHi-C analysis.

Fast-Higashi can be further enhanced by incorporating multimodal single-cell omics data, 

such as single-cell RNA-seq data and single-cell methylome data. Jointly modeling of 

co-assayed scHi-C data and other multimodal data has the potential to further improve cell 

embeddings and to establish connections between different modalities. Fast-Higashi may 

also be applied to study DNA-RNA interactions in single cells (Takei et al., 2021).

The continued development of scHi-C related technologies is expected to expand rapidly 

in the coming years. Fast-Higashi has the potential to become an essential method in 
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the toolbox of single-cell 3D epigenomic analysis to greatly enhance the integrative 

investigation of 3D genome organization, genome functions, and cellular phenotypes at 

single-cell resolution for a wide range of biological applications.

STAR METHODS

RESOURCE AVAILABILITY

Lead Contact: Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Jian Ma (jianma@cs.cmu.edu)

Materials Availability: This study did not generate new materials or reagents.

Data and Code Availability:

• This paper analyzes existing, publicly available data. These accession numbers 

for the datasets are listed in the key resources table.

• All original code has been deposited at https://github.com/ma-compbio/Fast-

Higashi, and is publicly available as of the date of publication. DOIs are listed in 

the key resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

METHOD DETAILS

The design of Fast-Higashi is based on a tensor decomposition model, called core-

PARAFAC2 (Van Benthem et al., 2020), and is generalized to simultaneously model 

multiple 3-way tensors that share only a single dimension (single cells). The core-

PARAFAC2 model is usually used to analyze multimodal data where observations may not 

be aligned along one of its modes. A concrete example in other applications is the electronic 

health records that contain multimodal phenotypes of multiple patients at various time 

points. Because a particular disease stage may begin at different time points and may have 

varying lengths across patients, a critical difficulty is that it is hard to align observations 

of different patients along the temporal dimension. Similarly, in scHi-C contact maps, 

TAD-like structures usually have varying sizes and boundaries in different genomic bins, 

obscuring the direct alignment of genomic bins. Therefore, we have developed Fast-Higashi 

based on core-PARAFAC2 to address this issue. In the following sections, we first introduce 

how Fast-Higashi performs tensor decomposition on the scHi-C datasets assuming that 

contact maps of only one chromosome are present. We discuss next how we generalize 

to multi-chromosome cases. We then derive the optimization procedure and introduce the 

partial random walk with restart (Partial RWR) module to address the sparseness of single-

cell Hi-C dataset efficiently.

Problem formulation of the Fast-Higashi model—For a scHi-C dataset, let C denote 

the set of chromosomes. We formulate a collection of scHi-C contact maps of chromosome 

c ∈ C as a 3-way tensor, denoted by X(c) ∈ ℝNc × Lc × M, where Nc is the number of 

genomic loci (also denoted as genomic bins) in chromosome c, Lc is the number of features 
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at each bin, and M is the number of cells in this dataset. In principle, Lc need not be equal 

to Nc because, for example, we may use different resolutions for genomic bins along the 

two dimensions and even include additional epigenomic features. However, for convenience, 

here we only consider contact maps and use the same resolution for both dimensions. We 

assume that X(c) follows a 3-way core-PARAFAC2 model which includes: (1) a 3-way 

tensor B(c) ∈ ℝNc × Lc × rc of rc meta-interactions; (2) a matrix A(c) ∈ ℝNc × rc of bin weights 

indicating importance for each bin in every meta-interaction; (3) a chromosome-specific 

transformation matrix D(c) ∈ ℝR × rc; and (4) an orthogonal matrix V ∈ ℝM × R that contains 

cell embeddings and is shared across all chromosomes, where rc and R are hyperparameters, 

representing the dimensions of the chromosome-specific cell embedding and shared cell 

embedding.

We first introduce the cell-wise form of our model. As shown in Fig. 1a, the ℓ-th slice of 

X(c) along the last dimension, denoted by X ⋅ , ⋅ , ℓ
(c) , is the ℓ-th single-cell contact map, and we 

assume that it can be approximated by the weighted sum of meta-interactions:

X ⋅ , ⋅ , ℓ
(c) = ∑

k = 1

rc
Diag A ⋅ , k

(c) × B ⋅ , ⋅ , k
(c) × V D(c)

ℓ, k + E ⋅ , ⋅ , ℓ
(c) , (1)

where E ⋅ , ⋅ , ℓ ∈ ℝNc × Lc is a matrix of i.i.d. Gaussian noises with zero mean and arbitrary 

variance. Since V is the cell embedding matrix shared across all chromosomes, right 

multiplying V by the chromosome-specific transformation matrix D(c) projects V to another 

space, which we term the chromosome-specific embedding space. The chromosome-specific 

embeddings V D(c) directly quantify the contribution of each meta-interaction to single-cell 

contact maps, i.e., the overall weight of the k-th meta-interaction in cell ℓ is equal to 

V D(c)
ℓ, k. Additionally, we also assume that bins in a meta-interaction may have different 

weights, i.e., the weight of bin i in the k-th meta-interaction is Ai, k
(c) . Together, the weight 

of the k-th meta-interaction at the i-th bin in cell ℓ is equal to the product of (1) the 

meta-interaction weight in the chromosome-specific embedding of cell ℓ and (2) the bin 

weight in the bin weight matrix, i.e., V D(c)
ℓ, k ⋅ Ai, k

(c) .

To simplify the optimization problem, we introduce an alternative bin-wise form of this 

model (Kiers et al., 1999). Let Xi
(c) ∈ ℝLc × M i ∈ Nc  be the i-th slice along the first 

dimension of X(c), i.e., the features of the i-th bin across all cells, and we use similar 

notations for other tensors. We assume that Xi
(c) has the following decomposition:

Xi
(c) = Bi

(c) × Diag Ai
(c) × D(c) ⊤ × V ⊤ + Ei

(c), (2)

where Ei ∈ ℝLc × M is a noise matrix. Since the noise is assumed to follow i.i.d. Gaussian 

distributions, the optimal set of parameters is the solution to the following optimization 

problem:
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argmin
∀c, B(c), A(c), D(c)

V

∑
c ∈ C

∑
i = 1

Nc
Xi

(c) − Bi
(c) × Diag Ai

(c) × D(c) ⊤ × V ⊤
F
2

(3)

Additional constraints for uniqueness—Now we introduce additional constraints to 

address the uniqueness issue of Eqn. 3 and to improve the ability of Fast-Higashi to capture 

critical topological patterns in single-cell Hi-C contact maps.

Without loss of generality, we show the uniqueness issue on a 

dataset with only one chromosome, denoted by c. Let B(c), A(c), D(c), V

be one optimal solution to Eqn. 3. Then for any P (c) ∈ ℝrc × rc and 

S(c) ∈ ℝNc × rc, Bi
(c)Diag Ai

(c) P (c) −1Diag Si
(c) −1

i = 1

Nc
, S(c), D(c)P (c) ⊤ , V  is also an optimal 

solution to Eqn. 3, implying the non-uniqueness. To address this, we impose constraints on 

the Gram matrices of Bi
(c) that,

Bi
(c) ⊤ Bi

(c) ≡ B0
(c), ∀i ∈ Nc (4)

where B0
(c) ∈ ℝrc × rc is constant over i. This is equivalent to requiring that Bi

(c) can be 

transformed to each other by left multiplying an orthogonal matrix, i.e., a rotation along 

the feature dimension. Note that B0
(c) is not determined a priori and is optimized during 

inference. Similarly, for any Q ∈ ℝR × R, solution B(c), A(c), Q−1D(c), V Q  is also equivalent 

to B(c), A(c), D(c), V , implying the non-uniqueness. To address this, we require V to be 

orthogonal. The scaling of tensors B(c), A(c), and D(c) also leads to non-uniqueness and is 

addressed in Eqn. 11.

These constraints enable Fast-Higashi to be less prune to noise and allow Fast-Higashi 

capture critical topological patterns from single-cell Hi-C contact maps. A concrete example 

is the TAD-like structure where the number of interactions within this region is expected 

to be higher but also non-uniform, in that, the near-diagonal elements usually include 

more interactions. The characteristics of a TAD-like structure cause the boundaries of this 

TAD-like structure to be the same for all bins in it but cause the location of the peak to 

vary across these bins. This indicates that it is impossible to directly find a pattern that fits 

more than one bin in this TAD-like structure. However, since we allow bin-specific rotations 

along the feature dimension, these rotations potentially can keep the boundary unchanged 

and redistribute the contacts among the features of each bin, allowing the shift of the peak. 

Matrices A(c) are designed to capture the other bin-to-bin variability in scHi-C datasets. 

For example, bins usually have varying accessibility, which leads to different row sums in 

single-cell contact maps, and even in bins from one TAD-like structure. This variability 

is expected to be biologically meaningful and cannot be corrected by normalization. In 

Fast-Higashi, the bin weight matrix A(c) will capture this variability. In addition, a single 
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bin may also show cell type-specific accessibility, which is expected to be reflected as 

variation across meta-interactions in Fast-Higashi. In Fast-Higashi, these bin-specific and 

cell type-specific characteristics will be captured in the bin weight matrix A(c) so that (1) any 

two bins may have different scaling factors in one meta-interaction and (2) one bin may have 

different scaling factors in any two meta-interactions. Therefore, these constraints retain the 

ability of capturing critical structures but also reduce the parameter spaces of Fast-Higashi, 

making it more robust to tolerate noise.

Efficient parameter inference in Fast-Higashi—Here we show key steps in the 

derivation of a coordinate descent optimization procedure (summarized in Algorithm 1) 

for the optimization problem in Eqn. 3. We also introduce necessary tricks for a GPU-

compatible algorithm.

Reformulation of the optimization problem: To simplify the optimization, we express Bi
(c)

as Ui
(c)B(c) where Ui

(c) ∈ ℝLc × rc is orthogonal, and B(c) ∈ ℝrc × rc. Both U(c) and B(c) are 

model parameters and are optimized during inference. The relation between B0
(c) in Eqn. 4 

and B(c) is B0
(c) = B(c) ⊤ B(c). With this reformulation, the optimization problem in Eqn. 3 can 

be rewritten as

argmin
∀c, U(c), B(c), A(c), D(c)

V

∑
c ∈ C

∑
i = 1

Nc
Xi

(c) − Ui
(c) × B(c) × Diag Ai

(c) × D(c) ⊤ × V ⊤
F
2

(5)

Derivation for the optimal solution of Ui
(c) and V *: Now we derive the optimal value of 

Ui
(c) given the rest parameters. For the sake of simplicity, let TU be B(c)Diag Ai

(c) V D(c) ⊤

and the optimization of Ui
(c) can be simplified as follows:

Ui
(c) * : = argmin

Ui
(c)

Xi
(c) − Ui

(c)TU F
2 = argmin

Ui
(c)

Ui
(c)TU F

2 − 2 Xi
(c), Ui

(c)TU (6)

= argmin
U(c)

TU
⊤

F
2 − 2 Ui

(c), Xi
(c)TU

⊤ = argmax
U(c)

Ui
(c), Xi

(c)TU
⊤ , (7)

where the second to last equality is true because UT F = T F  holds for any orthogonal 

matrix U. Since Ui
(c) is orthogonal, the solution to this optimization has a closed form. 

Specifically, let the SVD of Xi
(c)TU

⊤ be UUΣUV U
⊤, and the optimal solution of Ui

(c) *  is UUV U
⊤. 

Note that, the optimal value of different frontal slices of U(c) can be solved in parallel.
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The closed form of V * can be derived similarly. Let Ti
(c): = Ui

(c)B(c)Diag Ai, ⋅
(c) D(c) ⊤ , and 

then

V *: = argmin
V

∑
c, i

Xi
(c) − T i

(c)V ⊤
F
2 = argmax

V
V , ∑

c, i
Xi

(c) ⊤ T i
(c) , (8)

which implies V * = UV V V
⊤ where UV ΣV V V

⊤ is the SVD of ∑c, iXi
(c) ⊤ Ti

(c).

Derivation for the optimal solution of B(c)
, A(c), and D(c): Next, we derive the 

optimization of B(c), A(c) and D(c). Since Ui
(c) and V are orthogonal, we can simplify the 

optimization in Eqn. 5 to

argmin
B(c), A(c), D(c)

∑
i

B(c)Diag Ai, ⋅
(c) D(c) ⊤ − Ui

(c) ⊤ Xi
(c)V F

2
(9)

After we stack the rc-by-R matrices Ui
(c) ⊤ Xi

(c)V  to create a 3-way tensor Y (c) ∈ ℝNc × rc × R, 

the optimization becomes:

argmin
B(c), A(c), D(c)

∑
k = 1

rc
A ⋅ , k

(c) ⊗ B ⋅ , k
(c) ⊗ D ⋅ , k

(c) − Y (c)

F

2

, (10)

which is exactly the PARAFAC model and B(c), A(c), and D(c) can be solved by alternative 

least square (ALS) (Bro, 1997). To guarantee the uniqueness of the solution, we include an 

additional constraint that controls the scaling of the three factors:

B ⋅ , k
(c)

2
2

= A ⋅ , k
(c)

2
2 and D ⋅ , k

(c)
2
2 = 1, ∀k ∈ rc (11)

Mini-batch optimization: To improve the scalability of the method, we implemented the 

optimization of U(c) in a batch-wise manner. For a typical human scHi-C dataset of 10,000 

cells, if we set the resolution to 500Kb, the 3-way dense tensor of chromosome 1 that is 

ready for tensor operations takes up to 6GB GPU RAM, which leaves inadequate RAM 

for subsequent computations on GPU. To utilize the computation power of GPU, we divide 

X(c) and U(c) into batches along the first dimension, and update all the frontal slices of U(c)

from this batch in parallel using GPU. To minimize the data transfer amount between CPU 

and GPU, we compute the Ti
(c) for the optimization of V in Eqn. 8 before we remove the 

copy of this batch from GPU. Since rc is much smaller than Nc in practice, the entire tensor 

T (c) fits in the GPU. Besides, we store these 3-way tensors X(c) in the COO format and 

transfer each batch of slices into GPU in the form of sparse COO tensors, which minimizes 

the data transfer as well as CPU memory usage. Hence, our method is optimized for GPU 

with limited RAM and data transfer rate to utilize its computation power and accelerate the 

overall running time.
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Algorithm 1

Optimization procedure for Fast-Higashi

1: for chromosome cdo

2:  Initialize A(c) to be full of one

3:
 Initialize B(c)

 to be the identity matrix

4:  Flatten the first two dimensions of X(c), denote its rc right singular vectors by (V D)(c)

5: end for

6: Concatenate all (V D)(c) along the rank dimension, and initialize V as its top R left singular vectors

7: Initialize D(c) as V ⊤(V D)(c) for every chromosome c

8: for1 ≤ t ≤ T do

9:  Update the value of U(c) by its closed form for each chromosome c

10:  Update the value of V by its closed form

11:
 Update B(c)

, A(c), D(c) by alternative least square (ALS) until convergence for chromosome c

12: end for

Initialization of the Fast-Higashi model—Here we provide efficient initialization of 

model parameters based on their interpretations (Algorithm 1). We initialize the matrix A(c)

to be full of one and the square matrix B(c) to be the identity matrix, for each chromosome. 

For chromosome c, we find the SVD of the single-cell contact maps of chromosome c and 

keep the top rc right singular vectors which are the initial cell embeddings of chromosome 

c. To aggregate information from multiple chromosomes, we concatenate the initial cell 

embeddings from all chromosomes and find its SVD. We initialize the meta embedding V to 

be one of the orthogonal matrix and D(c)’s to contain the rest components in the SVD.

Embedded partial random walk with restart (Partial RWR)—To mitigate the 

sparseness of the scHi-C contact maps, we sought to incorporate the random walk with 

restart (RWR) data imputation method (Zhou et al., 2019) into the Fast-Higashi framework. 

However, direct utilization of RWR before the tensor decomposition process is not desirable. 

The RWR imputed contact maps are usually much denser than the original contact map, 

leading to much higher memory consumption for storing the results and lower computational 

efficiency for transforming data format between sparse matrices to dense tensors as well 

as data transferring between GPU and CPU. Our solution is to integrate the RWR process 

during the optimization process of tensor decomposition and compute the RWR imputation 

batch by batch. The challenge for this design is that, as mentioned in the above section, 

the batch of the tensor decomposition optimization process is defined at the frontal slice of 

the tensor (Eqn. 3), i.e., the genomic bins, while the normal RWR requires the input of a 

complete graph adjacency matrix. To utilize RWR in our framework, here we propose the 

partial random walk with restart (Partial RWR) algorithm. The procedures of this algorithm 

are shown in Fig. 1b, which consists of the following steps: For simplicity, in this section, 
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we use X ∈ ℝN × N × M to represent the tensor representation of scHi-C contact maps of one 

chromosome. First, we fetch a small batch of the tensor x(i): = Xi: i + bs ∈ ℝbs × N × M along 

the first dimension, where bs represents the batch size. Then, based on this small batch of 

tensor, we calculate the local affinity matrix a(i, ℓ) ∈ ℝbs × bs of bins within this batch for 

each cell ℓ based on dot-product similarity:

pj, k, ℓ = x(i)j, k, ℓ
∑k′x(i)j, k′, l

a*(i, ℓ) = p ⋅ , ⋅ , ℓ ⋅ p ⋅ , ⋅ , ℓ
⊤

(12)

After that, the standard RWR algorithm is applied to these local affinity matrices:

at(i, ℓ) = (1 − ρ)at − 1(i, ℓ)a*(i, ℓ) + ρI (13)

where a0(i, ℓ) = I, and ρ is the restart probability in the RWR algorithm. We denote the 

converged results of the RWR algorithm as a∞(i, ℓ) ∈ ℝbs × bs and use it as the weight to 

propagate the information from the original batch of the tensor x(i, ℓ)

y(i, ℓ) = a∞(i, ℓ) ⋅ x(i, ℓ) (14)

Finally, we use y(i, ℓ) as the imputed results and pass it to the tensor decomposition 

optimization procedure. Our analysis showed that partial RWR can approximate the 

imputation of standard RWR well even with small batch sizes (see later section for details. 

In this work, we use batch size 64 to keep the balance between accuracy and computational 

efficiency.

Data processing—We used several publicly available single-cell Hi-C datasets in this 

work. We refer to them as (Lee et al., 2019) (GEO: GSE130711), (Liu et al., 2021) 

(GEO: GSE156683), (Tan et al., 2021) (GEO: GSE162511), (Ramani et al., 2017) (GEO: 

GSE84920), (Kim et al., 2020) (4DN Data Portal: 4DNES4D5MWEZ, 4DNESUE2NSGS, 

4DNESIKGI39T, 4DNES1BK1RMQ, and 4DNESTVIP977).

For all datasets except the Kim et al. dataset, we downloaded the contact pairs file from the 

corresponding GEO repository and transformed them into sparse contact maps at a given 

resolution (1Mb for the Ramani et al. dataset, 500Kb for the Lee et al., Liu et al., and 

Tan et al. datasets). For the Kim et al. dataset, we downloaded the FASTQ files from 4DN 

data portal and used the recommended processing pipeline (https://github.com/VRam142/

combinatorialHiC).

Benchmarking scHi-C embedding methods—In this work, we mainly compared 

Fast-Higashi against three existing scHi-C embedding methods: Higashi (Zhang et al., 

2022), scHiCluster (Zhou et al., 2019), and 3DVI (Zheng et al., 2021) in terms of the quality 

of the generated embeddings and the runtime. We kept the embedding dimensions as the 

recommended ones for each method. The default hyper-parameters of Fast-Higashi sets R 
as 64, and rc as 0.6Nc. But due to the orthogonal property of V, one can always set R 
as a large enough number, and then use only the top-k dimensions. The final dimension 
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number k can be determined using methods developed for selecting the number of principal 

components for scRNA-seq analysis (Hao et al., 2021). For methods that allow selecting the 

maximum genomic distance to be considered, we set it to be 100Mb for all methods. We 

evaluated the embeddings generated by different methods under various evaluation metrics 

including: (1) Modularity score between the generated embeddings and the reference cell 

type label, (2) Adjusted rand index (ARI) and adjusted mutual information (AMI) score 

between the louvain clustering results and reference cell type label. Because the embeddings 

from different methods may reach the best clustering results at different combinations of 

parameters of Louvain clustering, we did a grid search for the number of neighbors and 

resolution parameters of the Louvain clustering for each method. The top 5 best clustering 

results for each method were kept and averaged as the final results. (3) We trained a logistic 

regression model using 10% of the cells and predicted the cell type for the rest 90% of cells. 

The Micro-F1 and Macro-F1 scores between the predicted cell type and reference ones were 

used to quantify the performance.

For the runtime analysis, all methods require different input formats and methods including 

3DVI and Higashi can choose to only generate embeddings skipping the process of imputing 

sparse contact maps. To make a fair comparison, the runtime of all methods was calculated 

without the time of data processing, including transforming the scHi-C data into the 

format of a hypergraph in Higashi and reformatting the sparse contact maps into bands 

in 3DVI. For 3DVI and Higashi, we turned off the imputation function in the program 

and only used them to generate embeddings. For all methods, we added multiprocessing 

when possible even the multiprocessing was not originally implemented in some of the 

methods. Specifically, we parallelized the linear convolution and the random walk with 

restart algorithm of scHiCluster across all cells. We also parallelized 3DVI across different 

chromosomes, allowing the program to make full utilization of the GPUs. All methods were 

tested on a Linux machine with 1 NVIDIA RTX 2080 Ti GPU card, a 16-core Intel Xeon 

Silver 4110 CPU, and 252GB memory. All methods were set to use GPU when supported.

Aggregated single-cell A/B value—We developed the aggregated single-cell A/B 

value to collectively quantify the chromatin conformation at multiple loci in one cell. 

We calculated the scA/B value of every 500Kb genomic locus in single cells following 

the method proposed in (Tan et al., 2021). We defined the scA/B value of one gene as 

the average of the scA/B values of the genomic loci spanned by that gene. Although 

Higashi software includes an algorithm to to calculate scA/B values based on its embeddings 

and imputations, to avoid potential analysis bias, we instead used the more orthogonal 

method from (Tan et al., 2021). It is worth noting that in/Volumes/GoogleDrive/My Drive/

mywork/Ruochi.FastHigashi/CellSystems-0830/latex/refs.bib (Tan et al., 2021), by using 

the calculated scA/B values as embeddings, the observed refined clustering results in Fast-

Higashi embeddings do not exist. To summarize the behavior of a group of genes, we 

defined the aggregated scA/B value of these genes in one cell as the average scA/B value 

across all genes in that cell. To systematically assess the differential expression of a group of 

genes between two sets of cells, we examined the difference in the distribution of aggregated 

scA/B value of these genes between the two sets of cells by t-test.
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Evaluation for Partial RWR—To evaluate how the Partial RWR algorithm would 

perform for sparse data imputation compared to the original RWR algorithm, we tested the 

impact of batch size on chromosome 1 of the (Lee et al., 2019) dataset at 500Kb resolution. 

Specifically, we applied Partial RWR of different batch sizes and RWR on the sparse 

contact maps and then calculated Pearson and Spearman correlation scores between the 

imputed results from the Partial RWR and the standard RWR. As expected, both similarity 

measurements increase with the batch size (Fig. S10). We also observed that even for a 

relatively small batch size, such as 32 or 64, the correlation score already surpasses 0.9.

To evaluate how the Partial RWR algorithm would improve the performance of Fast-Higashi 

under scHi-C datasets with various coverage, we compared the embeddings generated by 

Fast-Higashi with and without Partial RWR for the (Lee et al., 2019) dataset at 500Kb 

resolution with different downsample rate. As shown in Fig. S5 and Fig. S6, Partial RWR 

consistently improves the ability of Fast-Higashi to delineate cell types on complex tissues 

over all downsampling rate. The improvement is more profound when applying Fast-Higashi 

to a dataset with smaller coverage. Moreover, Fast-Higashi without Partial RWR can still 

outperform the original Higashi algorithm, further demonstrating the robustness of Fast-

Higashi.

Evaluation on sci-Hi-C datasets—To further demonstrate that Fast-Higashi can work 

with scHi-C datasets with relatively lower coverage with a simpler cell type composition, 

we applied it to two sci-Hi-C datasets at 1Mb resolution: the (Ramani et al., 2017) dataset 

and the (Kim et al., 2020) dataset (Fig. S11). On these two relatively simpler datasets, all 

four embedding methods performed well based on the quantitative evaluation (Fig. S3). In 

terms of identifying cell types with a relatively small number of cells, Fast-Higashi and 

Higashi perform the best for the Ramani et al. dataset, where the GM12878 cells form into 

a small cluster. 3DVI performs the best on the Kim et al. dataset, where the IMR90 cells are 

clustered into a corner of the HFFc6 cell cluster.

In addition, we assessed the runtime of all scHi-C embedding methods on these two 

datasets. As shown in Fig. S12, Fast-Higashi is much faster than all existing scHi-C 

embedding methods.

QUANTIFICATION AND STATISTICAL ANALYSIS

The statistical tests were carried out using the SciPy package (version 1.5.3) in python.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Fast-Higashi models single-cell Hi-C data using tensor decomposition.

• It is a highly efficient and interpretable method for single-cell Hi-C data 

analysis.

• It delineates cell types and reconstructs biological trajectories.

• It identifies cell type-specific 3D genome features based on single-cell Hi-C 

data.
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Box 1

PROGRESS AND POTENTIAL

Progress:

The emerging single-cell Hi-C (scHi-C) technologies provide us with an unprecedented 

opportunity to probe the 3D genome organization by detecting genome-wide chromatin 

interactions in individual cells. However, there are critical analysis challenges for scHi-C 

data. Existing computational methods for scHi-C data often cannot: (i) effectively infer 

informative cell embeddings for the delineation of rare cell types in complex tissues, (ii) 

directly identify important 3D chromatin features related to cell type-specific genome 

functions, and (iii) efficiently operate on large-scale datasets with limited memory 

resources.

Our proposed method Fast-Higashi improves the scHi-C analysis by addressing 

these three challenges directly. We propose a concept for single-cell 3D genome 

analysis, called chromatin “meta-interactions”, representing combinations of chromatin 

interactions that can serve as informative signatures to identify cell types. The key 

conceptual advance of Fast-Higashi is to jointly identify cell identities and chromatin 

meta-interactions, providing an effective and interpretable solution for scHi-C analysis. 

To achieve the goal, we leverage a tensor decomposition model called core-PARAFAC2 

that can efficiently model tensors with drastically different sizes and effectively scale to 

scHi-C datasets with a large number of cells or at high resolutions.

Our extensive evaluations using the available scHi-C datasets have demonstrated the 

advantage of Fast-Higashi over existing methods, leading to improved delineation of 

rare cell types and better reconstruction of developmental trajectories. The inferred 

meta-interactions directly connect the embedding results to cell type-specific chromatin 

structures that are correlated with cell type-specific transcriptional activities.

Potential:

Fast-Higashi shows superior efficiency, effectiveness, and interpretability for scHi-C 

analysis compared to its predecessor Higashi, but Fast-Higashi is not developed to 

replace Higashi. Crucially, the underlying relationship between tensor representation (in 

Fast-Higashi) and the hypergraph representation (in Higashi) of scHi-C data allows Fast-

Higashi to hot-initialize the Higashi model. As demonstrated in the paper, the integration 

of Fast-Higashi and Higashi can achieve even better performance. Moreover, Fast-

Higashi can be extended to incorporate co-assayed scHi-C data and other multimodal 

data, with the potential to further improve cell embeddings and to establish connections 

between different modalities.

With the upcoming scHi-C datasets of larger number of cells on complex tissues, Fast-

Higashi has the potential to become an essential method for large-scale single-cell 3D 

epigenomic studies. Our method provides a unique solution to the integrative analysis 

of 3D genome organization, genome functions, and cellular phenotypes at single-cell 

resolution for a wide range of biological applications.
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Figure 1: Overview of Fast-Higashi.
a. Workflow of the Fast-Higashi algorithm. Given an input scHi-C dataset of k 
chromosomes, Fast-Higashi models it as k 3-way tensors. The tensor of chromosome c 
is denoted by X(c), where the first two dimensions correspond to genomic bins and the 

last dimension corresponds to the single cells. Fast-Higashi then decomposes the tensors 

X(c) into four factors: a set of meta-interactions (B(c)), a genomic bin weights indicating 

importance for each bin (A(c)), a cell embedding matrix V that is shared across all 

chromosomes, and a chromosome-specific transformation matrix D(c) that transforms the 

shared cell embeddings into chromosome-specific ones. b. Workflow of the partial random 

walk with restart (Partial RWR) algorithm. The Partial RWR is integrated into the Fast-

Higashi framework. When calculating the decomposed factors for frontal slices of the tensor 

X(c), the corresponding slices would be imputed through Partial RWR first. The imputation 

process includes the calculation of local affinity, standard RWR algorithm, and information 

propagation using both sliced tensor and the RWR imputed affinity matrix.
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Figure 2: Evaluation of Fast-Higashi for generating embeddings for scHi-C data.
a. UMAP visualization of the Fast-Higashi embeddings for the (Tan et al., 2021) 

dataset (GEO:GSE162511). See also Fig. S7. b. UMAP visualization of the Fast-Higashi 

embeddings for the (Lee et al., 2019) dataset (GEO:GSE130711). Cells in the red box 

are neuron cells. c. UMAP visualization of the Fast-Higashi embeddings for the (Liu et 

al., 2021) dataset (GEO:GSE156683). See also Fig. S2. d. Quantitative evaluation based 

on adjusted rand index (ARI) scores of the Louvain clustering results for each scHi-C 

embedding methods. See also Fig. S3. e. Runtime of different embedding methods across 
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different datasets. f. UMAP visualization of the Fast-Higashi embeddings for the neuron 

cells in the Lee et al. dataset (cells in the red box in (b)). Cell type information is from (Luo 

et al., 2022). See also Fig. S1. g. Quality of the embeddings for the neuron cells in the Lee et 

al. dataset measured as silhouette coefficients for neuron subtypes. See also Fig. S4. All cell 

type abbreviations are consistent with the data source.
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Figure 3: Analysis of the chromatin meta-interactions generated by Fast-Higashi.
a. Heatmap of the single cell loadings for each meta-interaction of chromosome 1 for 

the (Kim et al., 2020) dataset. b. Visualization of the differential contact maps generated 

based on meta-interactions and those generated based on bulk Hi-C (marked with “ground 

truth”). Border color matches the cell type color in (a). c. Spearman correlation between 

differential contact maps generated based on meta-interactions and those generated based on 

bulk Hi-C (marked with “ground truth”). d. Heatmap of the single cell loadings for each 

meta-interaction of the whole genome for the (Lee et al., 2019) dataset. e. Mean differential 

contact values of the lists of cell type marker genes averaged for each cell type. The mean 

differential contact values are calculated using the corresponding meta-interactions as the 

summation of values for each bin in the meta-interaction contact map. For each cell type, the 

top 200 marker genes were identified using Seurat (Stuart et al., 2019).
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Figure 4: Application of Fast-Higashi to the (Tan et al., 2021) scHi-C dataset of the mouse 
developing brain for more detailed identification of cell types and developmental trajectories.
a. UMAP visualization of the Fast-Higashi embeddings for the cortex cells in the Tan et 

al. dataset (GEO:GSE162511). Cell subtypes identified by Fast-Higashi are highlighted 

with circles and texts. b. Distribution of the scaled aggregated single-cell A/B values 

for interneuron (A) and interneuron (B) subtypes identified by Fast-Higashi. For better 

visualization, the aggregated single-cell A/B values are linearly scaled to the range from 

0 to 1 for each differentially expressed gene (DEG) group. c. Distribution of the scaled 

aggregated single-cell A/B values for Neonatal Neuron (A) and Neonatal Neuron (B) 

subtypes identified by Fast-Higashi. The scaling is the same as in panel (b). d-e. UMAP 

visualization of the joint Fast-Higashi embeddings of visual cortex, cortex, and hippocampus 

scHi-C datasets in (Tan et al., 2021) (GEO:GSE162511). The potential developmental 

trajectories from neonatal neurons to fully mature neurons are marked by dashed arrows. 

Note that here (d) is colored with cell type labels and (e) is colored with ages of the mouse.
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Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Bacterial and virus strains

Biological samples

Chemicals, peptides, and recombinant proteins

Critical commercial assays

Deposited data

sn-m3c-seq dataset of human prefrontal cortex Lee et al., 2019 GEO:GSE130711

sn-m3c-seq dataset of mouse hippocampus Liu et al., 2021 GEO:GSE156683

Dip-C dataset of developing mouse brain Tan et al., 2021 GEO:GSE162511

sci-Hi-C dataset of 4 cell lines (GM12878, HAP1, HeLa, K562) Ramani et al., 2017 GEO:GSE84920

sci-Hi-C dataset of 5 cell lines (GM12878, H1ESC, HAP1, 
HFFc6, IMR90)

Kim et al., 2020 4DN Data Portal: 4DNES4D5MWEZ, 
4DNESUE2NSGS, 4DNESIKGI39T, 
4DNES1BK1RMQ, and 4DNESTVIP977

Experimental models: Cell lines

Experimental models: Organisms/strains

Oligonucleotides

Recombinant DNA
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REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Fast-Higashi This paper DOI: 10.5281/zenodo.7023632

Other
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