Skip to main content
. 2023 Jan 13;29:100452. doi: 10.1016/j.pacs.2023.100452

Table 3.

Evaluation of model performance on the mouse brain vasculature in psnr metrics at different noise levels.

MBLr FIRe 2S-FIRe TV U-Net
6 dB SNR 25.568 ± 1.999 25.236 ± 2.012 25.012 ± 1.831 23.204 ± 1.762 20.854 ± 1.599
9 dB SNR 27.180 ± 2.065 26.624 ± 1.998 26.170 ± 1.723 24.552 ± 1.791 21.724 ± 1.619
12 dB SNR 28.243 ± 2.091 27.614 ± 1.963 26.970 ± 1.683 25.483 ± 1.789 22.184 ± 1.606
15 dB SNR 28.695 ± 2.090 28.037 ± 1.971 27.850 ± 1.638 25.911 ± 1.810 22.562 ± 1.593
18 dB SNR 29.211 ± 2.080 28.565 ± 1.964 27.743 ± 1.645 26.468 ± 1.818 22.515 ± 1.594
21 dB SNR 29.397 ± 2.066 28.740 ± 1.938 27.895 ± 1.637 26.681 ± 1.824 22.580 ± 1.591
24 dB SNR 29.481 ± 2.050 28.834 ± 1.934 27.976 ± 1.618 26.776 ± 1.825 22.602 ± 1.585
27 dB SNR 29.528 ± 2.055 28.884 ± 1.933 28.011 ± 1.627 26.830 ± 1.823 22.615 ± 1.587
30 dB SNR 29.554 ± 2.048 28.911 ± 1.932 28.034 ± 1.626 26.862 ± 1.822 22.624 ± 1.589
- 29.573 ± 2.054 28.918 ± 1.938 28.055 ± 1.624 26.887 ± 1.824 22.628 ± 1.588

MBLr: model-based learning. FIRe: fast iterative reconstruction. 2S-FIRe: two-stage fast iterative reconstruction.TV: total variation. U-Net: single-step post-processing. -: no noise included in collected sensor data.