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Hem1 (hematopoietic protein 1), a hematopoietic cell–
specific member of the Hem family of cytoplasmic adaptor
proteins, is essential for lymphopoiesis and innate immunity as
well as for the transition of hematopoiesis from the fetal liver to
the bone marrow. However, the role of Hem1 in bone cell dif-
ferentiation and bone remodeling is unknown. Here, we show
that deletion of Hem1 resulted in a markedly increase in bone
mass because of defective bone resorption in mice of both sexes.
Hem1-deficient osteoclast progenitors were able to differentiate
into osteoclasts, but the osteoclasts exhibited impaired osteo-
clast fusion and decreased bone-resorption activity, potentially
because of decreased mitogen-activated protein kinase and
tyrosine kinase c-Abl activity. Transplantation of bone marrow
hematopoietic stem and progenitor cells from wildtype into
Hem1 knockoutmice increased bone resorption and normalized
bonemass. Thesefindings indicate thatHem1plays a pivotal role
in the maintenance of normal bone mass.

Bone is a highly dynamic tissue that responds and adapts to
changes in systemic signals and to mechanical forces. Bones
regenerate periodically in discrete sites via a remodeling
process through which old or damaged bone is resorbed by
osteoclasts and is replaced with new bone by osteoblasts (1, 2).

Osteoclasts differentiate from hematopoietic precursor cells
of the monocyte/macrophage lineage in response to two crit-
ical osteoclastogenic cytokines—macrophage colony–
stimulating factor (M-CSF) and receptor activator of nuclear
factor-kappa B ligand (RANKL) (3). Osteoclasts develop in
several steps, beginning with proliferation of hematopoietic
progenitor cells that differentiate to mononuclear
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preosteoclasts that then fuse to become multinucleated mature
osteoclasts (3). These cells are uniquely capable of dissolving
and digesting the bone matrix because of their ability to trigger
actin polymerization in actin ring and to form a “podosome
belt” that tightly adheres to the bone area that is targeted for
removal, creating a sealed microenvironment into which the
cells secrete protons and lysosomal enzymes (3, 4). The high
energy demands of these tasks are likely the reason for the
abundance of mitochondria within osteoclasts, a distinct
cellular feature of these cells (5, 6). The balancing act of
healthy bone remodeling is accomplished by osteoblasts
refilling each resorption cavity with new bone. Osteoblasts
derive from mesenchymal stem cells present in the bone
marrow (1). Osteoblast differentiation occurs in response to
osteoblast-formation signals, including matrix-derived factors
released during bone resorption. The contribution of
osteoclast-derived signals or factors released during resorption
to osteoblast generation is referred to as “coupling” (7, 8).

Hematopoietic protein 1 (Hem1), also known as Nck-
associated protein 1-like (NAP1l or Nckap1l), is a member of
the Hem family of cytoplasmic adaptor proteins. Orthologs of
Hem1 in lower organisms, such asDrosophilamelanogaster and
Caenorhabditis elegans, are essential for cytoskeletal reorgani-
zation, embryonic cell migration, and morphogenesis (9–11).
Studies inmice and cell lines indicate that Hem1 is a component
of the “WAVE (WASP [Wiskott–Aldrich syndrome protein]-
family verprolin homologous protein)” complex, which signals
downstream of activated Rac and upstream of the Arp2/3
complex to stimulate actin polymerization in response to
immunoreceptor signaling (9, 12). Recent work from our group
has shown that mice with deletion of Hem1 exhibit growth
retardation andpremature death at about 6weeks. These defects
were associated with premature exhaustion of neonatal bone
marrow hematopoietic stem cells, indicating that Hem1 is
required for hematopoiesis to transition from the fetal liver to
the bone marrow (13). In contrast, Hem-1 is essential for the
normal development and function of the other organ systems.
Because osteoclasts differentiate from the hematopoietic
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Role of Hem1 in osteoclastogenesis and bone remodeling
lineage, we examined the roles played by Hem1 in the skeleton.
Here, we show that deletion of Hem1 led to a defect in osteoclast
maturation, a decrease in bone resorption, and a marked in-
crease in trabecular bone volume. All these abnormalities could
be corrected by transplantation of normal bone marrow he-
matopoietic stem and progenitor cells.
Results

Hem1 knockout mice have increased bone mass

To address the role of Hem1 in bone remodeling, we
generated Hem1 knockout mice as described previously (13).
At 5.5 weeks of age, Hem1 knockout mice had reduced body
size, body weight (13), and femoral length than their littermate
wildtype controls (Fig. 1A). The morphology of the femoral
growth plate was not overtly affected indicating that the de-
fects in bone size do not seem to result from defective growth
plate chondrogenesis (Fig. S1). Consistent with the reduced
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Figure 1. Deletion of Hem1 increases trabecular bone mass in mice. Micro
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femoral length in Hem1 knockout mice, the femurs had lower
cortical thickness, total area, and medullary area than wildtype
littermates (Fig. 1, B and C), as determined by micro-CT. In
contrast, distal femurs of both male and female Hem1
knockout mice had elevated trabecular bone volume and bone
mineral density (Figs. 1, D and E and S2) because of an in-
crease in trabecular number and a decrease in trabecular
spacing. Trabecular thickness was unchanged in male (Fig. 1E)
but slightly increased in female Hem1 knockout mice (Fig. S2).
Consistent with the micro-CT results, histological analysis of
femoral bone showed higher trabecular bone area and
trabecular number and reduced trabecular spacing in Hem1
knockout mice than in wildtype controls (Fig. 1, F and G).

Hem1 knockout mice have more osteoclasts but less bone
resorption than wildtype mice

To determine the cellular basis of the increase in trabecular
bone mass, we enumerated osteoclasts and osteoblasts in the
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Role of Hem1 in osteoclastogenesis and bone remodeling
distal femur. Surprisingly, the knockout mice had increased
numbers of osteoclasts, as determined by tartrate-resistant
acid phosphatase (TRAP) staining in histological sections
(Fig. 2A). These changes were associated with an increase in
the number of myeloid cells in the bone marrow (Fig. S3).
However, bone resorption as determined by serum levels of
collagen degradation product (C-terminal telopeptide of type 1
collagen (CTx)) was severely reduced from that seen in wild-
type controls (Fig. 2B). A decrease in osteoclast multi-
nucleation has been associated with decreased bone resorption
(14). In an attempt to explain the discrepancy between oste-
oclast number and bone resorption in Hem1 knockout mice,
we quantified the number of nuclei in osteoclasts. Hem1
knockout mice exhibited lower number of nuclei per osteo-
clast than wildtype mice (Fig. 2A).

Consistent with the observed reduction in bone resorption,
osteoblast numbers were lower in Hem1 knockout mice
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(Fig. 2C). The serum levels of the bone formation marker
osteocalcin were not impacted in Hem1 knockout mice
(Fig. 2D). This is most likely because of the increase in
trabecular bone mass and consequently an increase in bone
surfaces, which could compensate for the decrease in osteo-
blast number per bone surface. To examine whether the
number of mesenchymal progenitors was affected by Hem1
deletion, we quantified the number of colony-forming unit
(CFU)-fibroblasts (CFU-Fs), CFU-osteoblasts (CFU-OBs), and
CFU-adipocytes (CFU-ADs) formed by mesenchymal pro-
genitors from wildtype and Hem1 knockout mice in ex vivo
bone marrow cultures. The numbers of CFU-F, CFU-OB, and
CFU-AD were greater in Hem1 knockout mice than in wild-
type mice (Fig. 2, E–G). In addition, we counted
CD45−Lin−CD31−Sca1+CD51+ mesenchymal stem cells in
the bone marrow and found that, consistent with the observed
increase in number of CFU, the number of this population was
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Role of Hem1 in osteoclastogenesis and bone remodeling
greater in Hem1 knockout mice (Fig. S4A). Strikingly, how-
ever, osteoblast and adipocyte differentiation as determined by
mRNA levels of ALP and PPARγ, respectively, were reduced
from that seen in wildtype littermate controls (Fig. S4B). We
next performed high-density cultures of bone marrow stromal
cells to examine possible effects on osteoblast differentiation.
Cells from Hem1 knockout mice exhibited lower osteoblast
maker levels (i.e., Runx2, Osterix, and Osteocalcin) when
cultured under osteogenic conditions (Fig. S4C). These results
indicate that the low osteoblast number in knockout mice is
not because of reduced mesenchymal progenitors. However,
these progenitors seem to be less differentiated in the absence
of Hem1. In any case, even if a decrease in osteoblast differ-
entiation contributes to the decrease in the number of osteo-
blasts, these events could not explain the high bone mass in
Hem1 knockout mice. Taken together, these findings suggest
that the high bone mass of Hem1 knockout mice is due to a
decrease in osteoclastic bone resorption.
Deletion of Hem1 decreases osteoclast fusion and activity
in vitro

To investigate the role of Hem1 in osteoclastogenesis, bone
marrow macrophages were cultured in the presence of M-CSF
and RANKL. The Hem1 mRNA expression and protein levels
was about threefold higher in mature osteoclast than macro-
phages or preosteoclasts from wildtype mice (Fig. 3, A and B).
Macrophages from Hem1 knockout mice failed to form
multinucleated giant osteoclasts (with more than ten nuclei)
but formed a higher number of smaller osteoclasts (with 3–5
nuclei) than those from wildtype mice (Fig. 3, C and D). In
agreement with these findings, the levels of mature osteoclast
markers (TRAP, cathepsin K, calcitonin receptor, and Oscar)
were lower in cultures from Hem1-deficient mice than in those
from wildtype littermates (Fig. 3E).

The findings that bone resorption is greatly decreased in
Hem1 knockout mice associated with deficient osteoclast
multinucleation led us to focus our attention on the impact of
Hem1 on osteoclast resorptive capacity. To this end, osteo-
clasts from wildtype and Hem1 knockout mice were cultured
on plates coated with a bone biomimetic synthetic surface. We
found that the area resorbed (Fig. 3F) and actin ring formation
(Fig. 3G) by osteoclasts of Hem1-deficient mice were greatly
diminished compared with the cells from wildtype mice.
Consistent with these results, mRNA levels of Dc-stamp and
Atp6v0d2, which are involved in osteoclast fusion and actin
ring formation (15, 16), were significantly decreased in pre-
osteoclasts and osteoclasts from Hem1-deficient mice
(Fig. 3H).

To confirm that the defects seen in bone resorption of
Hem1 knockout mice were due to direct effects of Hem1 in
macrophages, we expressed Hem1 in bone marrow macro-
phage cultures from Hem1 knockout mice (Fig. 4A). Expres-
sion of Hem1 increased osteoclast formation (Fig. 4B) and
resorption capacity by twofold to threefold (Fig. 4C). The
mRNA levels of osteoclast-related genes (TRAP, Cathepsin K,
4 J. Biol. Chem. (2023) 299(2) 102841
Dc-stamp, and Atp6v0d2) also increased in response to Hem1
expression (Fig. 4D).

Cells of the mesenchymal lineage including stromal cells are
major producers of RANKL and other cytokines that support
osteoclastogenesis. We also examined whether osteoclast dif-
ferentiation in Hem1 knockout mice could be affected indi-
rectly by bone marrow–mesenchymal cells. To this end, we
cocultured bone marrow macrophages from wildtype mice
with stromal cells from wildtype or Hem1 knockout mice.
Stromal cells from either genotype equally supported osteo-
clast formation (Fig. S5). These data further support to the idea
that Hem1 contributes directly to the formation of multinu-
cleated osteoclasts.
Deletion of Hem1 decreases mitochondrial respiration and
c-Abl signaling in osteoclasts

Activation of the Arp2/3 complex in yeast is indispensable
for actin polymerization and cell migration and the accom-
panying enhanced mitochondrial function (17, 18). However,
little is known about the role of Hem1 in regulation of mito-
chondrial function in mammalian cells. To examine this po-
tential role of Hem1 in osteoclasts, we performed extracellular
flux analysis, comparing osteoclasts from Hem1 knockout
mice with those from wildtype mice. In osteoclasts from Hem1
knockout mice, mitochondrial respiration was significantly
reduced (Fig. 5A), as were ATP-linked respiration, proton
leakage, maximum respiration (the oxygen consumption rate
when electron transport chain operates at maximum capacity),
reserve respiratory capacity (flexibility of cells to increase ox-
ygen consumption during increased energy demands), and
nonmitochondrial respiration (Fig. 5, B–F). Consistent with
the effects of Hem1 deletion on respiration, osteoclasts from
Hem1 knockout mice had decreased ATP production in
response to RANKL stimulation (Fig. 5G). Mitogen-activated
protein kinase (MAPK), Akt, and both canonical and nonca-
nonical NF-κB pathway are stimulated by RANKL and are
essential for osteoclast survival and differentiation (19–23).
We examined whether Hem1 alters RANKL-induced stimu-
lation of these pathways. Cells from Hem1 knockout mice had
reduced phosphorylation of Erk, Jnk, and IkB, whereas other
signaling pathways, such as p38, Akt, (Fig. 5H), and RelB
(Fig. S6) were not affected. Expression of NFATc1 and c-Fos,
two essential transcription factors for early osteoclast differ-
entiation, was not affected by Hem1 deletion (Fig. S6), sug-
gesting that the inhibition of MAPK and canonical NF-κB
pathway might contribute to the decreased mitochondrial ac-
tivity seen in cells lacking Hem1.

We have shown that c-Abl, a tyrosine kinase that regulates
actin polymerization and cell migration (24–27), contributes
to the impairment of hematopoietic stem cells in Hem1-
deficient mice (13). Here, we examined whether c-Abl
signaling also mediated the effects of Hem1 on osteoclast
formation. Compared with osteoclasts from wildtype mice,
those from Hem1 knockout mice had less phosphorylation of
the c-Abl downstream target Crkl but no changes in total
protein levels of Crkl (Fig. 5I). Addition of imatinib, a synthetic
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small-molecule inhibitor of c-Abl, to cultures of osteoclast
progenitors from wildtype C57BL/6 mice resulted in decreased
formation of osteoclasts (Fig. 5J), and most of these osteoclasts
were small (Fig. 5J), reminiscent of osteoclasts from Hem1
knockout mice. We found no differences in cell survival and
proliferation between vehicle and imatinib treatment (Fig. S7).
Addition of 5-(1, 3-diaryl-1H-pyrazol-4-yl) hydantoin, a potent
cell-permeable c-Abl activator, to cultures of osteoclast pro-
genitors from Hem1 knockout mice significantly increased
osteoclast formation and expression of Dc-stamp and TRAP
(Fig. 5, K and L).
Skeletal phenotype of Hem1 knockout mice is rescued by
transplantation of bone marrow hematopoietic stem and
progenitor cells from wildtype mice

Our previous studies showed that Hem1 knockout mice
exhibited significant reductions in the numbers of total bone
marrow nucleated cells, hematopoietic progenitor cells, he-
matopoietic stem cells, and cobblestone area-forming cells,
which could be corrected by transplantation of normal wild-
type bone marrow hematopoietic stem and progenitor cells
(13). Therefore, we investigated whether transferring these
nuclei) and phalloidin (red; actin rings) staining of osteoclast cultures (scale
markers during osteoclastogenesis. All cultures were completed in triplicate. Li
one-way ANOVA or (C–H) Student’s t test. DAPI, 40 ,6-diamidino-2-phenylindol
receptor activator of nuclear factor-kappa B ligand; TRAP, tartrate-resistant ac

6 J. Biol. Chem. (2023) 299(2) 102841
cells could rescue the bone effects because of Hem1 deletion.
We transplanted 1 × 106 Lin−CD45+ bone marrow cells from
normal C57BL/6-Tg (CD45.2/CAG-EGFP) mice into 3-week-
old nonablated CD45.1 wildtype and Hem1 knockout mice
(Fig. 6A). About 10 weeks after transplantation, most com-
ponents of the hematopoietic system, including hematopoietic
stem and progenitor cells, were comparable in wildtype and
Hem1 knockout recipient mice (Fig. S8). In Hem1 knockout
recipient mice, almost 90% of cells in the peripheral blood and
bone marrow were derived from CD45.2/GFP donor cells;
however, in wildtype recipient mice, no donor cells were
detected. These results indicate that the transplanted normal
hematopoietic cells reconstituted the hematopoietic system in
Hem1 knockout recipient mice. Transplantation with normal
hematopoietic cells also restored body size (Fig. 6B). Although
not fully rescued, femoral length (Fig. 6C), cortical thickness,
total area, and medullary area were much improved (Fig. 6, D
and E) in transplanted Hem1 knockout mice than in non-
transplanted Hem1 knockout mice (Fig. 1, B and C).
Remarkably, trabecular bone volume and microarchitecture in
the distal femur (Fig. 6, F and G) and serum levels of CTx in
Hem1 knockout recipient mice were similar to wildtype
(Fig. 6H). Consistently, in vitro bone-resorption ability was
bar represents 500 μm). H, mRNA levels (qPCR assay) of osteoclast fusion
nes and error bars represent mean ± SD. p Values were determined with (A)
e; Hem1, hematopoietic protein 1; M-CSF, hematopoietic protein 1; RANKL,
id phosphatase.
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Figure 5. Deletion of Hem1 attenuates respiration by suppressing c-Abl signaling. A–F, bone marrow macrophages from indicated genotypes were
cultured with M-CSF and RANKL for 3 days. Different fractions of mitochondrial and nonmitochondrial respiration per 10,000 cells, in osteoclasts, were
measured by Seahorse XF96 (n = 11–12 wells/group). G–I, bone marrow macrophages lacking Hem1 were cultured with M-CSF and RANKL for (G) 3 days or
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comparable for osteoclasts from both genotypes of recipient
mice (Fig. 6I). In addition, osteoclast cultures from the bone
marrow of transplanted Hem1 knockout mice had significantly
increased osteoclast formation (Fig. 6J) and upregulated the
expression of TRAP, cathepsin K, calcitonin receptor, and
Oscar (Fig. 6K). Actin ring formation in osteoclasts from
transplanted Hem1 knockout mice was comparable to that in
wildtype mice, as was expression of Dc-stamp, Oc-stamp,
Atp6v0d2, and Nfatc1 (Fig. 6, L and M).
Discussion

The pathways of osteoclastogenesis that regulate RANKL-
induced osteoclast differentiation have been studied exten-
sively, but less is known about osteoclast fusion, a unique
feature of osteoclast maturation that is required for the proper
bone resorption. Herein, we provide evidence that the
hematopoietic-specific WAVE complex scaffold Hem1 is
required for osteoclast fusion and bone-resorption activity
and, thereby, contributes to the maintenance of bone mass in
mice.

Our bone histomorphometric analysis demonstrated unex-
pectedly that the bone formation parameters, such as the
osteoblast number and the serum concentration of osteocalcin,
were significantly decreased or at least trended lower in Hem1
knockout mice, suggesting impaired bone formation. Thus, it
could be concluded that the reduced osteoblast number and
activity in Hem1 knockout mice would have resulted in low
bone mass; however, a disproportionate effect on bone
resorption could mask an effect of Hem1 on bone formation,
resulting in high bone mass in Hem1 knockout mice. Similar
findings have been reported in mice with loss-of-function
mutations in proteins important for mitochondria in osteo-
clasts. For example, global deletion of PGC1β, a critical tran-
scription factor for mitochondrial oxidative energy
metabolism, decreases bone formation rate, mineralizing sur-
face and osteoblast number but increases bone mass because
of the impaired bone resorption (14).

Here, we showed that transplanting normal hematopoietic
stem and progenitor cells into Hem1 knockout mice fully
restored trabecular bone volume and microarchitecture in the
distal femur as well as bone-resorption activity. These findings
suggest that Hem1 is essential during growth for normal bone
remodeling and for hematopoietic stem cell maintenance. Our
previous studies showed that Hem1 knockout mice exhibit
significant defects in the transition of hematopoiesis from the
fetal liver to the bone marrow, which can be corrected by
adoptive transfer of wildtype bone marrow hematopoietic stem
and progenitor cells (13). This transfer also rescues growth
retardation and premature death of Hem1 knockout mice.
presence or the absence of imatinib (5 μM). Representative pictures (left), numb
with more than ten nuclei (scale bar represents 500 μm) (triplicate cultures).
Hem1 knockout mice and wildtype littermates and were cultured with M-CSF an
K, number of TRAP-positive multinucleated osteoclasts generated from bone m
markers during osteoclastogenesis. Lines and error bars represent mean ± SD. p
(K and L) two-way ANOVA. DPH, 5-(1, 3-diaryl-1H-pyrazol-4-yl); Hem1, hemat
receptor activator of nuclear factor-kappa B ligand; TRAP, tartrate-resistant ac
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Thus, regeneration of the bone marrow microenvironment in
Hem1 knockout mice has multiple other consequences besides
restoration of osteoclast function.

In line with our findings, studies of short interfering RNA
oligonucleotides in an osteoclast cell line revealed that the
Arp2/3 complex regulates actin polymerization and promotes
bone resorption (28), and other studies showed that the Arp2/
3 complex locates in the core of the podosomes that make up
actin rings, where it colocalizes with cortactin, a known
regulator of Arp2/3 complex activity (29, 30). Interestingly, a
recent study with mice lacking Hem1 have revealed that Hem1
is required for macrophage function (31). In yeast, the Arp2/3
complex promotes actin polymerization by regulating mito-
chondrial dynamics, but little is known about its role in
mitochondria metabolism in mammalian cells (17, 18). Here,
we showed that in osteoclasts, deletion of Hem1 decreased
mitochondrial respiration. Overall, these findings support the
notion that, Hem1, a component of the Rac-WAVE-Arp2/3
pathway, exerts effects in osteoclasts at least in part via an
effect on mitochondrial function. Support for a link between
Hem1, mitochondria, and bone resorption is provided by
studies in which mitochondria activity has been attenuated in
osteoclasts (14, 32, 33). These studies indicate that normal
mitochondria metabolism is critical for osteoclast fusion and
bone resorption. Nonetheless, future work is required to
identify the range of target proteins and mitochondrial path-
ways that are responsible for the effects of Hem1 on osteoclast
development.

A decrease in bone resorption was, most likely, responsible
for the increase in trabecular bone mass in Hem1 knockout
mice. Nonetheless, changes in mesenchymal lineage cell
number, specifically CFU-F, CFU-AD, CFU-OB, and osteo-
blast were also noted. These changes are, most likely, indirect
as the expression of Hem1 is very low in mesenchymal lineage
cells (CD45−) from wildtype mice (Fig. S9). Strikingly, Hem1
knockout mice exhibited low numbers of osteoblast on
trabecular bone surfaces, which could not be explained by
changes in progenitor cell numbers indicated by CFU assays.
One possible explanation for the decrease in osteoblasts could
be the decrease in growth factors released from the matrix
during bone resorption (7, 8). In view of the major decrease in
osteoblast number in the Hem1 knockout mice, it is also
possible that Hem1 plays a key role in supporting osteoblasts
by stimulating osteoclasts to express coupling factors. None-
theless, further biochemical and genetic studies are necessary
to elucidate this possibility.

Bone homeostasis requires a bidirectional crosstalk between
hematopoietic and mesenchymal lineage cells including oste-
oclasts, lymphocytes, osteoblasts, osteocytes, bone lining cells,
adipocytes, as well as vascular endothelial cells by regulatory
er (middle), and total area (right) of TRAP-positive multinucleated osteoclasts
K and L, bone marrow macrophages were isolated from 5.5-week-old male
d RANKL for (K) 5 or (L) 3 days in the presence or the absence of DPH (1 μM).
arrow macrophages. L, mRNA levels (quantitative PCR assay) of osteoclast
Values were determined with (A–G) Student’s t test, (J) one-way ANOVA, or
opoietic protein 1; M-CSF, macrophage colony–stimulating factor; RANKL,
id phosphatase.
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signaling pathways that tightly interact through complex
autocrine/paracrine mechanisms (34). We counted
CD45−Lin−CD31−Sca1+CD51+ mesenchymal stem cells in the
bone marrow and found that the number of this cell popula-
tion was higher in Hem1 knockout mice (Fig. S4), consistent
with the observed increase in number of CFU. On the other
hand, mRNA levels of osteoblast and adipocyte differentiation
markers in fluorescence-activated cell sorted cells were
reduced from that seen in wildtype littermate controls
(Fig. S4). High-density stromal cell cultures also have
decreased capacity to differentiate into osteoblasts or adipo-
cytes (Fig. S4). The seemingly decreased capacity for differ-
entiation in cells from Hem1 knockout mice might contribute
to decrease in osteoblast number in bone. The changes in
mesenchymal cells seen in Hem1 knockout mice are, most
likely, secondary to the altered composition of the bone
marrow microenvironment.

While our findings suggest that Hem1 in osteoclastic cells
directly impact bone resorption, it is possible that changes in
other hematopoietic cells contribute indirectly to the increased
bone mass in Hem1 knockout mice. We found that Hem1 is
essential for B cell, but not T cell, development (Fig. S3).
Lymphocytes have been proposed to regulate bone mass via a
variety of mechanisms (35, 36). Both in vitro and in vivo
studies have suggested that B cells at several stages of differ-
entiation, from pre-B cells to mature B lymphocytes, can
support osteoclast differentiation (37–41). Therefore, the
decrease in B-cell number might contribute to the low bone
resorption in Hem1 knockout mice. Future studies are needed
to further dissect the pathways via which Hem1 directly and
indirectly impacts osteoclast formation.

We previously reported that the defects in hematopoietic
cells in Hem1 knockout mice are associated with decreased c-
Abl signaling. Here, we found that c-Abl signaling is also
decreased in osteoclast progenitors. Inhibition of c-Abl in
wildtype osteoclast progenitors caused defects in osteoclasto-
genesis similar to the ones caused by Hem1 deletion. These
results suggest that c-Abl mediate the effects of Hem1 on
osteoclast formation and function. Interestingly, c-Abl pro-
motes mitochondrial dynamics in primary neurons via direct
phosphorylation of target proteins such as Drp1 (42). This,
together with our present findings that Hem1 stimulates
mitochondria function, supports the notion that c-Abl also
mediates the effects of Hem1 on mitochondria of osteoclasts.

RANK-proximal signaling pathways including MAPKs, Src,
Akt, and NF-κB have been shown to be involved in osteoclast
differentiation and function (19–21). Among these signaling
pathways, ablation of Hem1 prevents the RANKL-induced
NF-κB activation. Indeed, previous studies demonstrated that
NF-κB plays a role in mitochondrial metabolism (43, 44), and
this signaling is also essential for skeletal and mineral
homeostasis (21). Therefore, future studies are needed to
further dissect the pathways via which Hem1 regulates NF-κB
signaling pathway in osteoclasts and whether this cascade
impacts osteoclast mitochondria and function.

Based on the results of the present work, we propose that
Hem1 directly regulates osteoclast fusion during bone
10 J. Biol. Chem. (2023) 299(2) 102841
development. In a separate line of work, we also showed that
overexpression of Hem1 in cultured osteoclasts has enhanced
actin ring formation and partially rescued the cytoskeletal
defect in transferrin receptor 1 lacking osteoclasts (45).
Further studies with models of cell lineage–specific deletion of
Hem1 are needed to examine the role of Hem1 in adult bone
both under physiological conditions and conditions of
increased bone remodeling such as estrogen deficiency.

Experimental procedures

Mice

Hem1 knockout mice were bred in our facility from pairs of
mice heterozygous for the Hem1 mutant allele (C57BL/6
background), as described previously (13). C57BL/6-Tg(CAG-
EGFP) mice were purchased from Jackson Laboratories (Bar
Harbor). All mice used in this study were housed under
standard laboratory conditions with a 12 h dark, 12 h light
cycle, a constant temperature of 23 �C, and humidity of 48%. A
standard rodent diet (Envigo, Teklad 22/5) containing 22%
protein, 1.13% calcium, and 0.94% phosphorus was provided to
mice ad libitum. All mice were maintained at the University of
Arkansas for Medical Sciences animal facility, which is
accredited by the Association for the Assessment and
Accreditation of Laboratory Animal Care International. Mice
were randomly assigned to four or five mice per cage. All
animal procedures were approved by the University of
Arkansas for Medical Sciences Institutional Animal Care and
Use Committee.

Micro-CT analysis

Bone architecture was determined on dissected femurs that
were cleaned of adherent soft tissues, fixed in Millonig’s
phosphate buffer (Leica Microsystems), and gradually dehy-
drated in 100% ethanol. Bones were scanned with μCT40
(Scanco Medical) at high resolution for obtaining images and
at medium resolution for making quantitative determinations
as described previously (46). Specifically, scans were performed
at medium resolution (12 μm isotropic voxel size) for quan-
titative determinations and integrated into 3-D voxel images
(1024 × 1024 pixel matrices for each individual planar stack).
To reduce signal noise, a Gaussian filter (sigma = 0.8, sup-
port = 1) was applied. Scano Eval Program version 6.0 (Scanco
Medical) was used to measure bone volume. Scan settings
were applied to X-ray tube potential (E = 55 kVp), X-ray in-
tensity (I = 145 μA), and integration time (220 ms). Nomen-
clature conforms to recommendations of the American Society
for Bone and Mineral Research (47). Trabecular bone mea-
surements of the distal femur were made on 151 transverse
slices that were taken from the epicondyles, extending toward
the proximal end of the femur; cortical bone and primary
spongiosa were manually excluded from the analysis. All
trabecular analyses were performed on contours of every 10 to
20 cross-sectional images and were measured at a threshold of
220 mg/cm3. Trabecular architecture was determined using
sphere filling distance–transformation indices without as-
sumptions about the bone shape as a rod or a plate. Cortical
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dimensions were determined at the diaphysis (18 slices,
midpoint of the bone length as determined in scout view) at a
threshold of 200 mg/cm3.

Bone histology

The terminology used in this report is that which is rec-
ommended by the Histomorphometry Nomenclature Com-
mittee of the American Society for Bone and Mineral Research
(47). The femoral bones were fixed for 24 h in Millonig’s
phosphate buffer, transferred to 100% ethanol, and embedded
undecalcified in methyl methacrylate. For histomorphometric
measurements, 5-μm-thick longitudinal sections were cut in
the medial–lateral plane. To visualize osteoclasts, sections
were stained with Naphthol AS-MX and Fast Red TR salt
(Sigma–Aldrich) to detect TRAP activity. Sections also were
stained with 0.3% toluidine blue in phosphate-buffered citrate,
pH 3.7, to visualize osteoblasts, osteoid, and cement lines.
Standard histomorphometric parameters including the num-
ber of TRAP-positive cells and osteoblasts on trabecular bone
surface of longitudinal section were measured using an
Olympus BX53 microscope and Olympus DP73 camera
(Olympus America, Inc) interfaced with a digitizer tablet with
Osteomeasure software, version 4.1.0.2 (OsteoMetrics, Inc).
One section per sample was analyzed by a histopathologist
blinded to the study groups.

CTx and osteocalcin ELISA

Circulating CTx and osteocalcin in serum was measured
using a mouse RatLaps (CTx-I) EIA kit (Immunodiagnostic
Systems) and an Osteocalcin enzyme immunoassay kit
(Thermo Fisher Scientific) according to the manufacturer’s
directions. Blood was collected into 2.0 ml microcentrifuge
tubes by retro-orbital bleeding. Blood was then kept on ice for
1 h and centrifuged at 10,000× rpm for 10 min to separate
serum from cells.

Osteoclast differentiation

Bone marrow macrophages were obtained as described
previously (48). Briefly, bones (i.e., femurs and tibias) were
isolated and cleared of soft tissues. After red blood cells were
removed using ACK buffer (0.01 mM EDTA, 0.011 M KHCO3,
and 0.155 M NH4Cl, pH 7.3), the remaining cells were
cultured with 10% fetal bovine serum (FBS), 100 units ml−1 of
penicillin, and 100 μg ml−1 of streptomycin in the presence of
10 ng ml−1 M-CSF (R&D Systems) for 24 h. Nonadherent bone
marrow cells were collected and cultured in petri dishes with
30 ng ml−1 M-CSF for 3 days to generate bone marrow mac-
rophages; adherent bone marrow macrophages were harvested
as osteoclast progenitors.

To generate preosteoclasts and osteoclasts, bone marrow
macrophages were cultured in 6-well (for RT–PCR and West-
ern blot analysis), 24-well (for resorption assays), or 48-well (for
TRAP staining) plates in α-minimum essential complete me-
dium with 30 ng ml−1 M-CSF and 30 ng ml−1 RANKL (R&D
Systems) for 2 and 4 days, respectively. Imatinib (Selleckchem,
catalog no.: S2475) and 5-(1, 3-diaryl-1H-pyrazol-4-yl)
hydantoin (Sigma–Aldrich) were used in some of the experi-
ments at the indicated concentrations. ATP levels were
measured by a luciferin-luciferase–based assay using an
ENLITEN ATP assay system bioluminescence detection kit
(Promega) according to the manufacturer’s protocol, as previ-
ously described (49).

For coculture systems, bone marrow–derived stromal cells
and bone marrow macrophages were seeded in 48-well plates
with 1α,25(OH)2D3 (10−8 M; Sigma) and prostaglandin E2
(10−8M; Sigma) for 5 to 6 days in α–minimum essential
complete medium.

To enumerate osteoclasts, cells were fixed with 10% neutral-
buffered formalin for 10 min, permeabilized with 0.1% Triton
X-100 in PBS for 5 min, and stained for TRAP with the
Leukocyte Acid Phosphatase Assay Kit (Sigma–Aldrich),
following the manufacturer’s instructions. Preosteoclasts were
identified as round mononuclear TRAP-positive cells; osteo-
clasts were identified as multinucleated (>3 nuclei) TRAP-
positive cells.

Retroviral gene transduction

To prepare retroviral particles, Plat-E retroviral packaging
cells were plated on a 10 mm culture dish and transfected with
murine stem cell virus vectors encoding Hem1 using Lip-
ofectamine 2000 (Invitrogen). After 3 days, the medium con-
taining retroviruses was harvested and passed through a
syringe filter (0.2 μm pore diameter). Bone marrow macro-
phages were infected with retroviruses for 8 h with 6 μg ml−1

polybrene (Sigma–Aldrich) in the presence of 30 ng ml−1 M-
CSF. After washing with fresh medium, the cells were cultured
for 2 days in the presence of 2 μg ml−1 puromycin (Sigma–
Aldrich) with 30 ng ml−1 M-CSF. Puromycin-resistant bone
marrow macrophages were studied.

CFU assay

CFU-F, CFU-AD, and CFU-OB numbers were determined
as previously described (50), 15% FBS, and 1 mM ascorbate-2-
phosphate. Half of the medium was replaced every 5 days.
CFU-Fs were enumerated at 10 days of culture after staining
for AP, and CFU-OBs were enumerated at 25 days of culture
after von Kossa staining. CFU-AD was enumerated at 6 days of
culture in the presence of 1 μM rosiglitazone after Oil Red O
staining.

Bone resorption assay

Bone marrow macrophages were isolated as described pre-
viously and stimulated with RANKL to form osteoclasts on
24-well Osteo Assay Surface plates (Corning Life Sciences),
which are coated with an inorganic bone biomaterial surface.
Cells were removed with a 2% hypochlorite solution for 5 min,
washed with distilled water, and dried at room temperature.
For Von Kossa staining, wells were incubated for 20 min in
darkness with 5% (w/v) aqueous silver nitrate solution
(150 μl/well). Plates then were washed for 5 min with distilled
water and incubated in darkness with 5% (w/v) sodium car-
bonate (150 μl/well) in 10% formalin solution. Wells were
J. Biol. Chem. (2023) 299(2) 102841 11



Role of Hem1 in osteoclastogenesis and bone remodeling
washed twice with PBS, rinsed with distilled water, and dried
for 30 min at 50 �C. Each well was imaged with a microscope;
the resorbed areas are white, and the unresorbed mineralized
surface areas are black. Three wells were assessed for each
group.

Cellular bioenergetics

Application of extracellular flux analysis was performed as
we previously described (49, 51). Bone marrow macrophages
were plated and treated with 30 ng ml−1 M-CSF and
30 ng ml−1 RANKL for 3 days. The media in the wells were
replaced with XF assay media, and the plate was kept in a non-
CO2 incubator for 20 min at 37 �C. After recording three total
cellular respiration measurements with the XF96 analyzer,
10 μg ml−1 oligomycin was added to inhibit mitochondrial
ATP synthase and measure the decrease in the oxygen con-
sumption rate that is linked to ATP turnover. To determine
the maximal respiration potential of the cells, 10 μM carbonyl
cyanide-p-trifluoromethoxyphenylhydrazone (FCCP; an un-
coupler of oxidative phosphorylation) was used. The amount
of nonmitochondrial oxygen consumption was determined by
inhibiting the respiratory chain activity with an antimycin A
and 10 μM rotenone cocktail. These data were used to
calculate the mitochondrial basal respiration, ATP-linked
respiration, reserve respiratory capacity, and proton leak.

Hematopoietic cell transplantation

Bone marrow mononuclear cells were isolated from 8-week-
old GFP mice and resuspended at the concentration of
107 cells ml−1. Cells were incubated with purified lineage an-
tibodies (CD11b, Gr1, CD3e, B220, Ter119, and BD) for
30 min at 4 �C and then washed twice with 2% FBS/Hanks’
balanced salt solution. The labeled mature cells were depleted
by incubation with goat antirat immunoglobulin G magnetic
beads (Thermo Fisher Scientific) in a magnetic field. The
isolated Lin− cells were washed and incubated with APC-Cy7-
conjugated antimouse CD45 antibody. Lin−CD45+ cells were
sorted with an Aria II cell sorter (BD Biosciences). About 1 ×
106 GFP+Lin−CD45+ cells were retro-orbitally transplanted
into a 3-week-old Hem1 knockout mouse or wildtype litter-
mate control. Body weights were measured every week after
transplantation. Mice were analyzed at 10 weeks after trans-
plantation. Femurs and tibias were isolated, and bone marrow
macrophages and bone marrow mononuclear cells were
collected for subsequent analysis.

RNA isolation and quantitative RT–PCR analysis

Total RNA was purified from cultured bone marrow–
derived macrophages or bone marrow stromal cells using
TRIzol reagent (Thermo Fisher Scientific) according to the
manufacturer’s directions. From 2 μg of total RNA extract,
complementary DNA (cDNA) was obtained with the High-
Capacity cDNA Archive Kit (Applied Biosystems) according
to the manufacturer’s instructions. TaqMan quantitative real-
time PCR was performed with the following primers from
Applied Biosystems: TRAP (Mn00475698_m1), Ctsk
12 J. Biol. Chem. (2023) 299(2) 102841
(Mm00484039_m1), Calcr (Mm00432271_m1), Oscar
(Mm00558665_m1), DC-Stamp (Mm04209236_m1),
Atp6v0d2 (Mm01222963_m1), Oc-Stamp (Mm00512445_m1),
and NFATc1 (Mm00479445_m1). To measure Hem1 expres-
sion, the SYBR assay kit was used (Applied Biosystems).
Briefly, 1 μl cDNA was mixed with 7.5 μl SYBR Green PCR
Master Mix and 0.2 μl of primers. Samples were then added
into 6.30 μl of water (for a total volume of 15 μl). Quantitative
PCR conditions were as follows: 95 �C for 10 min, 40 cycles of
95 �C for 15 s and 60 �C for 1 min, 95 �C for 15 min, 60 �C for
60 min, and 95 �C for 15 min. All reactions were run in
triplicate, and target gene expression was calculated by
normalizing to the housekeeping gene ribosomal protein S2
(Mm00475528_m1) or hypoxanthine phosphoribosyltransfer-
ase (forward: 50-AGCAGTACAGCCCCAAAATGGTTA-30

and reverse: 50-TCAAGGGCATATCCAACAACAAAC-3)
with the ΔCt method (52).
Western blot analysis

Cells were lysed with a buffer containing 20 mM Tris–HCl,
150 mM NaCl, 1% Triton X-100, protease inhibitor mixture,
and phosphatase inhibitor cocktail (Sigma–Aldrich). After
incubation on ice for 30 min, the cell lysates were centrifuged
at 13,200 rpm for 15 min at 4 �C. Protein concentrations of cell
lysate samples were determined with the DC Protein Assay kit
(Bio-Rad). The extracted proteins (40 μg per sample) were
separated electrophoretically on 8 to 10% SDS-PAGE gels and
then transferred onto polyvinylidene difluoride membranes.
The membranes were blocked in 5% fat-free milk/Tris-buff-
ered saline for 90 min and incubated with each primary anti-
body, followed by secondary antibodies conjugated to
horseradish peroxidase. Monoclonal antibodies against
NFATc1 (Santa Cruz Biotechnology; catalog no.: sc-7294, 1/
500 dilution), CrkL (Cell Signaling Technology; catalog no.:
3182, 1/1000 dilution), p-Erk (Santa Cruz Biotechnology;
catalog no.: sc-7383, 1/500 dilution), Erk (Santa Cruz
Biotechnology; catalog no.: sc-94, 1/500 dilution), p-Jnk (Cell
Signaling; catalog no.: 9255, 1/1000 dilution), Jnk (Santa Cruz
Biotechnology; catalog no.: sc-1648, 1/500 dilution), p-p38
(Cell Signaling; catalog no.: 9215, 1/1000 dilution), p-IκB (Cell
Signaling, catalog no.: 9246, 1/1000 dilution), p-Akt (Cell
Signaling; catalog no.: 4058, 1/1000 dilution), and β-actin
(Santa Cruz Biotechnology, catalog no.: sc-81178, 1/2000
dilution) were used to detect their corresponding protein
levels. Also, we used polyclonal antibodies for Hem1 (Novus
Biologicals; catalog no.: NBP2-13643, 1/1000 dilution), c-Fos
(Santa Cruz Biotechnology; catalog no.: sc-7202, 1/500 dilu-
tion), p38 (Cell Signaling; catalog no.: 9212, 1/1000 dilution),
IκB (Santa Cruz Biotechnology; catalog no.: sc-847, 1/500
dilution), Akt (Cell Signaling; catalog no.: 9272, 1/1000 dilu-
tion), and p-CrkL (Cell Signaling Technology; catalog no.:
3181, 1/1000 dilution) to analyze their protein levels. Band
intensities in the autoradiograms were quantified with a Ver-
saDoc imaging system (Bio-Rad). All Western blot analyses
were performed at least two times using bone marrow mac-
rophages pooled from 3 to 4 mice from each group.
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Actin ring staining

Bone marrow macrophages were cultured in 6-well plates
with 30 ng ml−1 M-CSF and 30 ng ml−1 RANKL to form os-
teoclasts. The cells were fixed with 4% paraformaldehyde in
PBS for 15 min and blocked in 1% BSA in PBS for 1 h. Actin
fibers and nuclei were stained with phalloidin–rhodamine
conjugate (Invitrogen) and 40,6-diamidino-2-phenylindole
(Vector Laboratories), respectively. The stained cells were
viewed and photographed with an Axioplan research micro-
scope (Carl Zeiss, Inc) equipped with a 100-W mercury light
source. Images were captured with a Dage CCD100 integrating
camera (Dage-MTI) and a Flashpoint 128 capture board (In-
tegral Technologies). The captured images were processed
with Image Pro Plus software (Media Cybernetics).
Statistical analyses

All in vitro assays were repeated at least once. The data were
analyzed by ANOVA or Student’s t test (independent samples,
two-sided) with GraphPad Prism 9 from GraphPad Software,
after determining that the data were normally distributed and
exhibited equivalent variances. In the event that ANOVA
justified post hoc comparisons between group means, these
were conducted with Tukey’s multiple-comparisons test.
Study approval

The Institutional Animal Care and Use Committees of the
University of Arkansas for Medical Sciences and the Central
Arkansas Veterans Healthcare System reviewed and approved
all studies involving mice.
Data availability

All the data indicated in this study are available upon
request by contract from the corresponding author.
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