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Abstract

By providing additional opportunities for coalescence within families, the presence of
consanguineous unions in a population reduces coalescence times relative to hon-consanguineous
populations. First-cousin consanguinity can take one of six forms differing in the configuration

of sexes in the pedigree of the male and female cousins who join in a consanguineous union:
patrilateral parallel, patrilateral cross, matrilateral parallel, matrilateral cross, bilateral parallel, and
bilateral cross. Considering populations with each of the six types of first-cousin consanguinity
individually and a population with a mixture of the four unilateral types, we examine coalescent
models of consanguinity. We previously computed, for first-cousin consanguinity models, the
mean coalescence time for X-chromosomal loci and the limiting distribution of coalescence

times for autosomal loci. Here, we use the separation-of-time-scales approach to obtain the
limiting distribution of coalescence times for X-chromosomal loci. This limiting distribution

has an instantaneous coalescence probability that depends on the probability that a union

is consanguineous; lineages that do not coalesce instantaneously coalesce according to an
exponential distribution. We study the effects on the coalescence time distribution of the type

of first-cousin consanguinity, showing that patrilateral-parallel and patrilateral-cross consanguinity
have no effect on X-chromosomal coalescence time distributions and that matrilateral-parallel
consanguinity decreases coalescence times to a greater extent than does matrilateral-cross
consanguinity.

1 Introduction

The phenomenon of consanguinity, in which unions occur between closely related
individuals, is a form of population structure that can dramatically affect properties

of genetic variation (Crow and Kimura, 1970; Jacquard, 1974). By increasing the
probability that deleterious recessive variants appear in homozygous form compared to the
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corresponding probability in a population in which it is absent, consanguinity contributes
to the incidence of recessive disease (Bittles, 2001; Woods et a/., 2006); recent studies
suggest that it contributes to incidence of complex disease as well (Bittles and Black,

2010; Yengo et al., 2017; Ceballos et al., 2018; Johnson et al., 2018; Clark et al.,

2019). Consanguinity is common in human populations, with some populations promoting
consanguineous marriages as a cultural preference (Bittles, 2012; Romeo and Bittles, 2014;
Sahoo et al., 2021).

The offspring of a consanguineous union are expected to possess large portions of their
genomes shared between their two genomic copies, owing to the fact that an identical
genomic segment can be inherited along both their maternal and paternal lines. For the

loci contained in such segments, the two copies coalesce at a common ancestor relatively
few generations in the past. At other locations, neither copy or only one copy traces to

a recent shared ancestor, so that coalescence occurs only much farther back in the past.
Indeed, empirical genetic studies have identified multiple populations in which individuals
carry long homozygous segments that indicate recent coalescence of the two genomic copies
and that are attributable in large part to consanguinity practices (McQuillan et al., 2008;
Pemberton et al., 2012; Ceballos et al., 2018)

In typical coalescent-based models that investigate coalescence times for sets of lineages,
diploid organisms are approximated by pairs of haploids independently drawn from a
population (Hein et al., 2005; Wakeley, 2009). This modeling choice is unsuited to the
study of consanguineous families, in which the two lineages in an individual can be highly
dependent. Hence, explicitly diploid coalescent models have been devised for the study of
coalescence in a setting of consanguinity. The earliest studies focused on selfing in plants
(Pollak, 1987; Nordborg and Donnelly, 1997; Nordborg and Krone, 2002), an extreme form
of “consanguinity” in which both parents of a diploid offspring are the same individual.
Campbell (2015) extended diploid coalescent models to consider a monogamous mating
model with sibling mating, computing mean coalescence times under the model. This
approach was then extended by Severson et al. (2019) to consider mean coalescence times in
a diploid model with mth-cousin mating, for arbitrary values of nand for superpositions of
multiple levels of nth-cousin mating.

In an extension of the work of Severson et al. (2019), Severson et a/l. (2021) advanced
beyond mean coalescence times to derive a full limiting distribution of coalescence times
under superposition models of autosomal consanguinity, considering the limit as the
population size grows large. A limitation of the work of Severson et a/. (2019) and Severson
et al. (2021), however, is that it does not distinguish between males and females in the
mating model; all individuals are exchangeable. Hence, it cannot accommodate the variety
of scenarios in which differences between males and females are salient. We have recently
extended the method of Severson et al. (2019) to distinguish between males and females,
evaluating mean coalescence times in a two-sex model, with a goal of evaluating the effect
that consanguinity has on X-chromosomal coalescence times specifically (Cotter et al.,
2021).
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Here, we use the advance from Severson et al. (2021) to compute the full distribution

of coalescence times under a diploid, two-sex consanguinity model (Cotter et a/., 2021).
Seeking to derive distributions of X-chromosomal coalescence times, we consider each of
the six types of first-cousin consanguinity and a model that includes all four unilateral types
in a single population. For each model, we evaluate the distribution of coalescence times for
two lineages sampled from the same individual and for two lineages sampled from members
of different mating pairs.

2 Methods

We adapt the models of Severson et al. (2019, 2021) and Cotter et al. (2021). We consider
a constant-sized population of A/diploid mating pairs. Individuals are sex-specific, the

X chromosome is considered, and specified forms of consanguinity are allowed. Using a
Markov chain, we track lineage pairs back in time until they coalesce.

To analyze the large-Vlimit of the model, we make use of the separation-of-time-scales
approach introduced by Mdhle (1998). This approach was used by Severson et al. (2021)
to obtain the limiting distribution of coalescence times under their autosomal diploid model
of consanguinity. In the approach from Mohle (1998), the limiting distribution of a Markov
process with transition matrix IT, is obtained by writing

1
HN—A-l—NB. 1)

Here, A describes “fast” transitions that have nontrivial probability in a single generation,
and B describes “slow” transitions that have very small probabilities in a single generation.
As N — o0, the fast transitions occur instantaneously, and the fast process can be described
by an equilibrium distribution

P= lim Ar. (2)

r— oo

Rescaling #in units of A/generations, as N/ — 00, IT,, converges to a continuous-time process

) = Nlim ()N = Pe'G . )

— 00

The rate matrix G satisfies G = PBP. Under Md&hle’s theorem, the process converges to a
continuous-time process with an instantaneous jump at time O that corresponds to the “fast”
transitions.

As Severson et al. (2021) did with autosomal models, we apply the separation-of-time-scales
approach to our models of consanguinity on the X chromosome (Cotter ef al., 2021). We
begin with the sib mating case and then consider each of the four types of unilateral
first-cousin mating, the two cases of bilateral first-cousin mating, and a mixture of all four
unilateral types in one model.
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3 Results

3.1 Sibling mating

We consider &/ monogamous male—female mating pairs, a fraction ¢ of which are sib
mating pairs. Pairs of X-chromosomal lineages can be in one of six states (Figure 1): two
lineages have already coalesced (state 0); two lineages are in a female (state 1); two lineages
are in opposite individuals of a mating pair (state 2); two lineages are in two individuals

in different mating pairs, where the two individuals are two males (state 3), a male and a
female (state 4), or two females (state 5). Note that for the X chromosome, there is no state
for two lineages in a male, as males contain only one X chromosome. We track the state of
the process backward in time until it reaches the most recent common ancestor for a pair of
lineages (that is, until state 0 is reached). We denote by 7z U, Vim Vs and Vigethe random
coalescence time for pairs of lineages in states 1, 2, 3, 4, and 5, respectively.

If two lineages are in state O (coalesced), they remain in state O with probability 1; this
state is absorbing. If two lineages are in a female (state 1), in the previous generation they
must have been in separate individuals in a mating pair (state 2) with probability 1. If two
lineages are in separate individuals in a mating pair (state 2), the pair is a sib mating pair
with probability ¢;. Given that the pair is a sib mating pair, the lineages transition to state

0 with probability 1, state 1 with probability 7, and state 2 with probability 1. If the two

lineages are not in a sib mating pair, an event with probability 1-¢,, then they transition to
states 4 and 5 with equal probability %

For each of the states 3-5, because we pick parental mating pairs with replacement from
the previous generation, the probability is % that the same mating pair is chosen. Thus, if

two lineages are in state 3, and the pair are siblings (an event with probability %), then the
lineages transition to state O or state 1, each with probability % If the two lineages in state

3 do not have the same parental pair (probability 1 — %), then they must transition to state 5
with probability 1. For state 4, if the two lineages are in siblings (probability %), then they
transition to state 0 with probability %, state 1 with probability %, and state 2 with probability
%. If the lineages are not from siblings (probability 1 — %), then they transition to state 4 or
5, each with probability % Finally, two lineages in state 5, conditional on being in siblings
(probability %), reach state 0 with probability % state 1 with probability % and state 2

with probability % Conditional on not being in siblings (probability 1 — %), the lineages
transition to state 3 with probability %, state 4 with probability % and state 5 with probability
1

g

Combining these transition probabilities, we can write the transition matrix as
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We can decompose I (Eq. 4) into its fast and slow transitions, as in Eq. 1:
1 000 O 0 000 0 O O
0010 O 0 000 0 O O
C_O@@()I—COI—CO 000 0 O O
4 4 2 2 2 11 00 0 |
A=l0 000 0 1 | B=[22 e ©)
1 1 111 1 1
0000 7 3 772 0 272
1 1 1 311 1 1 1
0007 3 3 8§82 7 271
We first find the equilibrium distribution of the “fast” process, obtained by iterating
transition matrix A. This calculation appears in Appendix A, producing
1 00 0 0 0
[¢1) 00 1 4—460 4 4—460 4 4—400
4 -3¢ 9{4 =3¢y| 914 —3¢cy) 914 -3¢
[¢)) 00 1 4—460 4 4—400 4 4—4(30
4 -3¢ 914 —3¢y) 914 =3¢y) 94 -3¢
P= lim A" = (©)
1 4 4
e 0 00 3 9 9
1 4 4
0 00 3 3 3
1 4 4
0 00 3 3 3

We then compute G = PBP and solve for the limiting process I1(#) using Eq. 3, obtaining
the matrix exponential, &, as in Appendix B. Converting ¢back into units of A generations,
this gives
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The first column of the matrix I1(#) represents the cumulative probability of coalescence in
time less than or equal to #generations. States 1 and 2 have the same cumulative distribution,
representing the coalescence time for two lineages withina female (note that state 2, two
lineages in the two individuals in a mating pair, is always reached from state 1 after one
step). States 3-5 have the same cumulative distribution, representing the coalescence time
for two lineages in two distinct individuals. The cumulative distributions are
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Computing the expectations of these distributions, recalling that for X> 0,
E[X]= [;°[1 = Fx(x)]dx, we find

1-—
E[T,] = ElU] = 3N( 2 ] (10)

I—ZCO

E[Vium) = E[Vimg| =E[V 7] =3N

(1)

where Egs. 10 and 11 are the same as Eqs. 25 and 26 from Cotter ef a/. (2021), obtained by
first-step analysis.

Eqgs. 8 and 9 are plotted in Figure 2. In the figure, we observe that the cumulative
probability of coalescence increases with the consanguinity probability ¢;. For ¢y =

0, E[Tf| = E[Vms] = 3N, the mean coalescence time for a haploid population with 3V
chromosomes (the number of X chromosomes in our scenario). For ¢y > 0, E[Tf| < E[V ¢

due to the probability of consanguinity whenever the two lineages are already in the same
mating pair.

3.2 First cousins

We next consider first-cousin consanguinity on the X chromosome. We separately calculate
the limiting distributions of coalescence times for each of the four types of first-cousin
consanguinity: patrilateral parallel, a union of a male with his father’s brother’s daughter;
patrilateral cross, a union of a male with his father’s sister’s daughter; matrilateral parallel, a
union of a male with his mother’s sister’s daughter; and matrilateral cross, a union of a male
with his mother’s brother’s daughter.

For each of these four types of first-cousin consanguinity, two lineages have seven possible
states. State 0 is an absorbing state representing coalescence. State 1 is two lineages in a
female. States 3-5 represent, as in the sibling case, two lineages that are in two individuals
in different mating pairs, where the two individuals are two males (state 3), a male and a
female (state 4), or two females (state 5).
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Next, for pairs of lineages from the two individuals in a mating pair, we follow the model
of a superposition of multiple mating levels from Severson et al. (2021), taking a special
case of this approach. Under the superposition model, each state 2, 0 < /< n, represents
an ancestral state for two lineages from a mating pair. These ancestral states can be viewed
as “holding states” that keep track of ancestral lineages of a mating pair in order to allow
all possible ith-cousin levels of consanguinity up to /th cousins. As we restrict attention to
first-cousin mating, we need only states 2 and 2; from Severson et al. (2021).

State 2( represents two lineages in the two individuals in a mating pair. State 2, represents
two lineages in two individuals ancestral to the two individuals in a mating pair. Because,
unlike Severson et al. (2021), we disallow sib mating, two lineages in state 2 cannot
coalesce (state 0), they cannot transition to the same individual (state 1), nor can they
transition to two individuals in a mating pair (state 2g). Hence, lineages in 2p must transition
to 241 (Figures 3 and 4).

In the absence of consanguinity, two lineages in state 21 can transition only to states 3, 4,
and 5 (Figure 3). With first-cousin consanguinity present (Figure 4), two lineages in state 2;
can also coalesce (state 0) or transition to two lineages in the same female (state 1) or to two
lineages in opposite individuals in a mating pair (state 2g).

The transition matrix depends on the type of first-cousin consanguinity permitted.

However, the type of consanguinity only affects transitions from state 2;. For all types of
consanguinity, state 0 is an absorbing state. State 1, two lineages in the same female, always
transitions to state 2 because the two lineages must come from opposite individuals of the
same mating pair. Because of the constraints we have placed on the process, state 2 always
transitions to state 24. Finally, the transition probabilities from states 3, 4, and 5 follow the
same pattern as given in the transition matrix in Eq. 4 (with state 2 in place of state 2).

Below, we consider each of the four different types of first-cousin mating, two cases of
bilateral first-cousin mating, and a mixture of the four unilateral types. In each case, we
define the transitions that the process makes from state 21, and we obtain the limiting
distributions of coalescence times.

3.2.1 Patrilateral parallel—In patrilateral parallel first-cousin consanguinity, a union
occurs between a male and his father’s brother’s daughter. There is no way for the X-
chromosomal lineages in the first-cousin mating pair to have originated from the shared
grandparental pair because X chromosomes are never transmitted from fathers to sons.
Hence, irrespective of the fraction ¢; in the population, lineages in state 2; can only
transition to states 3, 4, and 5.

In state 24, one X chromosome in one of the parental pairs is always in a female (the parent
of the male in state 2). The probability is then % that this X chromosome is in a male

one generation ancestral to 2, and % that it is in a female. The other X chromosome in

state 24, located in a parent of the female in state 2, can be in a male or female, with
equal probability. Hence, one generation ancestral to 24, this X chromosome is in a female

Theor Popul Biol. Author manuscript; available in PMC 2023 October 01.
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with probability % and in a male with probability %. We can multiply probabilities for the

two separate X chromosomes to obtain transition probabilities from state 2. In particular,
the two lineages will be in two separate males one generation previously (state 3) with

probability % They will be in a male and a female (state 4) with probability % They will be

in two separate females (state 5) with probability %

The transition matrix is:

0 1 2 2 3 4 5
o /1 0 0 0 0 0 0
Llo o 1 0 0 0 0
200 0 0 1 0 0 0
y=2]0 0 0 0 ¢ ; g
3 |5 s 0 0 0 0 1-4
4| & oy 0 0 E bx
AC A TR e

(12)

As with the sibling case, we can decompose the transitions into “fast” and “slow” transitions

(Eq. 1):
1000000 0000 0 O O
0010000 0000 0 O O
0001000O0 0000 0 O O
00o0oll3 00000 0 0
Ao 828 p_|11 -

000000 1| 55000 0 —1}

11 111 1 1
0000075 77290 373

111 311 1 1 1
00007757 §82° 772737

We next solve for the limiting distribution of the fast transition matrix A using the method of
Appendix A,
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P= lim A" =

Recalling G = PBP, we solve for the limit TI(2) as in the sibling mating case, using Eq. 3,
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(14)

calculating the matrix exponential, €€, as in Appendix B. We then convert ¢back into units
of generations A. This step gives

I1(r) = Pe'G =

Here, examining the first column of the matrix in Eq. 15—representing transitions to
coalescence—we can see that two lineages within an individual (state 1), within a mating
pair (state 2g), or in two separate mating pairs (states 3, 4, and 5) have equal coalescence
times. In fact, as coalescence times are unaffected by patrilateral-parallel first-cousin

1
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1 —-e"3N
t
1 —-e3N
t
1-e 3N
t
1—-e" 3N

000

000

000

000

000

000

000

1

9¢ 3N ¢

1

9¢ 3N ¢

le_i
9 3N

1

9¢ 3N g¢

le_i
9 3N

1

9¢ 3N g¢

t

4

4

4

4

4

4

9¢

9¢

t

3N

3N

3N

3N

3N

3N

(15)

consanguinity, they accord with the coalescence time distribution for a population of size 3NV
haploid individuals. Using the same random variables from the sibling case (where U now

represents 2y), we can extract the cumulative distribution functions of coalescence times

from the first column of the matrix T1(2):

1
Frt) = Fy(t = 1 - ¢73w,
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t
Fy,.) = Fy, f(t) = Fy / f(t) =1-e"3N. (17)

For each of the five random random variables, the time to coalescence for two lineages

is distributed as an exponential random variable with rate 1A3/\). The mean of these
distributions—the reciprocal of the coalescence rate—is 3/, matching the limiting means
obtained by first-step analysis in Eqgs. 28-32 of Cotter et al. (2021).

3.2.2 Patrilateral cross—For the patrilateral-cross case, a union occurs between a
male and his father’s sister’s daughter. As with the parallel case, there is no way for the
X-chromosomal lineages in the first-cousin mating pair to have originated from a shared
ancestor. We obtain the exact same transition probabilities from state 2; and the same
transition matrix (Eq. 12). The coalescence times for the patrilateral-cross case are the same
as in the patrilateral-parallel case.

3.2.3 Matrilateral parallel—In the matrilateral parallel case, a union occurs between a
male and his mother’s sister’s daughter. With probability ¢;/2, two lineages in state 2, trace

back to the shared grandparental pair. The lineages in state 2; coalesce with probability %
(state 0), they are in the shared grandmother with probability % (state 1), and they are in

opposite individuals of the grandparental mating pair with probability % (state 2g).

With probability ¢;/2, two lineages in state 21 do not trace back to the shared grandparental
pair. Conditional on not tracing to this pair, they are in a male and a female (state 4) or two

females (state 5), each with probability % Finally, with probability 1 — ¢, the two lineages

are not ancestral to a consanguineous mating pair; they then follow the same pattern as in the
patrilateral-parallel case. Combining the cases gives the transition matrix,

0 12 2 3 4 5
0o /1 0 0 0 0 0 0
110 0 1 0 0 0 0
%[0 0 0o 1 o0 0 0
Iv=2 5 % ¢ 0 5-% -9 5§-%
3|k s 0 0o o0 0 1 .%
4 | & & 3w 0 0 o R
5 - SO U i 1—4 1—-L o

(18)

As before, we decompose this matrix into “fast” and “slow” transitions (Eq. 1):
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1 000 0 0 0 00000 0 0

0 010 0 0 0 00000 0 0

0 001 0 0 0 00000 0 0

30101010101101301 00000 O O
16 16 4 "8 8 2 48 8 11

0 000 0 0 1 77000 0 -1

1 1 111 11

0000 0 5 3 722°0 33

1 1 1 311, 1 1 1

0000 7 5 7 §32°"772°71

We next solve for the limiting distribution of the fast matrix A using the method of

Appendix A:
1 000 0 0 0
3¢y 000 1(16 —8c;\ 4(16 —8cy\ 4(16 — 8¢y
16 — 5¢; 9116 = 5¢;) 9116 —=5¢;) 9116 = 5¢;
3¢ 000 1{16 —8c;\ 4(16 — 8¢\ 4(16 — 8¢
16 — 5¢ 9116 = 5¢;) 9116 —=5¢;) 9116 — 5¢;
) , 3¢y 000 1(16 —8c;\ 4(16 —8cy\ 4(16 — 8¢y
P=rlimooA =116 = 5¢; 9(16=5¢;) 9|16 = 5¢;) 9|16 = 5¢; (20)
1 4 4
0 000 3 3 3
1 4 4
0 000 3 3 3
1 4 4
0 000 3 3 3

Finally, recalling G = PBP, we solve for the matrix exponential &€ using the method of
Appendix B. We then solve for the continuous-time process I1(# via Eq. 3, converting ¢back
to units of A/ generations:
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] 16 1t 16 4 ] 16 4 1] 16
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L 16 1t 16 4 _ 1 16 4 1 16
I-e 3N1—ic 000 5@ 3Nl—ic §€ 3 l—ic 58 3'Nl—ic
16°1 161 161 16°1

We are concerned with transitions from each of the various states to coalescence (state 0).
The first column of TI(#) gives the limiting cumulative distribution functions for the time to
the most recent common ancestor for two lineages within an individual (state 1) and two
lineages between individuals (states 3, 4 and 5):
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c1 ‘1
1_7 p 1+1—6
Fr = Fy(®)=1-——5—€e3N| 5 | @2
I—ECI Ecl
cl
|16 (23)
By = Fy, () = Fy () = 1 —e73N 3]

, (24)

5
l—EC‘l

E[Vim) = E[Vis| = E[V 7] = 3N (25)

‘]
16

Eqgs. 24 and 25 are the same as Eqgs. 39 and 40 from Cotter et a/. (2021). Egs. 22 and 23 are
plotted in Figure 5.

3.2.4 Matrilateral cross—In the matrilateral-cross case, a union occurs between a male
and his mother’s brother’s daughter. This case is similar to the matrilateral-parallel case.
With probability ¢;/2, two lineages in state 21 trace to the shared grandparental pair. They

coalesce with probability % (state 0), they are in the shared grandmother with probability
% (state 1), and they are in opposite individuals of the grandparental mating pair with
probability % (state 2g).

With probability ¢;/2, two lineages in state 21 do not trace to the shared grandparental pair.
Conditional on the lineages not both tracing to the shared grandparental pair, they are in two

males (state 3), a male and a female (state 4) or two females (state 5), with probabilities %,

%, and %, respectively. Finally, with probability 1 - ¢, two lineages are not ancestral to a

consanguineous mating pair. In this case, they follow the same pattern as enumerated for the
patrilateral-parallel case. The transition matrix is
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0 1 2 2 3 1 5

0 1 0 0 0 0 0 0

1 0 0 1 0 0 0 0

20 0 0 0 1 0 0 0

- sz O 1 2 c 1 1 . 3 c
Mv=2(% ¢ ¢ 0 § 3-% §-9%
3|k &% 0 0 o0 0 1-%

s | A& L & o0 o i 132

5 \3 1 1 g l=x 1-% -5

v 8N 8N 3N 1 P 1

(26)
We separate the “fast” and “slow” transitions as before (Eq. 1):
10000 O 0 00000 O O
00 100 O 0 00000 O O
00 010 0 0 0000 O O O
610101011 g3 ¢ 00000 O O
8 8 4 82 48 4 11
A= , B=[1 2 —_11- 27)
00000 0 1 72000 0 -1
1 1 111 1 1
00000 3 3 77200 373
1 1 1 311 1 1 1
00007 37 3 §32°77727%
Using the method of Appendix A, we solve for the stationary distribution of the “fast”
process:
1 000 0 0 0
cl 0004 8 —4c1\ 4(8—4c1\ 4(8—4c
8 -3¢, 9 8—3c;) 98 —=3¢;] 918 =3¢
(4] 000 1 8 — 46‘1 4 8 — 461 4 8 — 401
8 —3¢c; §8—3c1 918 -3¢;) 9|8 -3¢
) , Cl 0004 8—4c\ 4(8—4c1\ 4(8 -4
P=r1imooA =18=3¢ 9 8—3c;] 918=3¢;) 98=3¢/]|" (28)
1 4 4
0 000 9 9 )
1 4 4
0 000 9 9 )
1 4 4
0 000 9 9 )

As before, using G = PBP, we calculate the matrix exponential, &, using the method of
Appendix B. We then obtain TI(#) from Eq. 3, converting ¢back to units of A/ generations:
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(29)

We extract the cumulative distribution functions from the first column of the matrix, finding
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‘1 1= —
F SR L R (30)
T)=Fy@®)=1- e 3N 3|
S _icl 1—§c1
8

L 3D
Fme(t)=Fme(t)=Ffo(t)= 1—e 3N 3 .

Solving for the expectations of these distributions, recalling that for X> 0,
E[X]= [;°[1 = Fx(x)]dx, we find

1 - —
2
E[Ts] = E[U] =3N al (32)
8
1- %Cl
ELV il = E[Vins] = E[V 7] = 3N — )
%

Egs. 32 and 33 are the same as Eqs. 47 and 48 from Cotter et a/. (2021). Egs. 30 and 31 are
plotted in Figure 6.

3.2.5 Bilateral parallel—Having considered the four possible types of first-cousin
consanguinity, we can also consider the two bilateral cases, in which a mating pair are
cousins through both sets of grandparents. In bilateral-parallel first-cousin consanguinity,
a union occurs between a male and a female who is both his mother’s sister’s daughter

and his father’s brother’s daughter. We can consider this case to be a combination of the
matrilateral-parallel case and the patrilateral-parallel case. In state 2;, when the two lineages
are ancestral to a bilateral-parallel mating pair, the male’s lineage must transition through
his mother because he cannot inherit an X chromosome from his father. Because there is
no way for the lineages to transition through the patrilateral-parallel grandparental pair, the
transitions in state 2, follow from the transitions for a matrilateral-parallel pair only. In the
case of bilateral-parallel first-cousin consanguinity, the transition matrix thus has the form
given for matrilateral-parallel first-cousin consanguinity in Eqg. 18. The bilateral-parallel
case then also shares the same cumulative distribution functions given in Egs. 22 and 23.

3.2.6 Bilateral cross—Bilateral-cross first-cousin consanguinity occurs when a male
shares a union with a female who is both his father’s sister’s daughter and his mother’s
brother’s daughter. This case can be considered to be a combination of matrilateral-cross and
patrilateral-cross first-cousin consanguinity. The ancestral lineages cannot travel through the
patrilateral-cross pair, and the transitions follow those for matrilateral-cross consanguinity.
The transition matrix (Eq. 26) and cumulative distribution functions (Egs. 30 and 31) follow
similarly.
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3.2.7 Mixture of first-cousin mating types—\We next examine a population that
possesses a mixture of all four unilateral first-cousin mating types. To determine the
transition matrix, it suffices to determine the transition probabilities from state 2;.

Recall that two lineages in state 24 are in two individuals ancestral to a mating pair

that might or might not be consanguineous. With probability ¢, this mating pair is a
patrilateral-parallel first-cousin pair, with probability ¢, it is a patrilateral-cross first-cousin
pair, with probability ¢, it is a matrilateral-parallel first-cousin pair, and with probability
Cmc it is a matrilateral-cross first-cousin pair. If the mating pair is a first-cousin pair of a
particular one of the four types, then transitions out of state 24 will match those derived for
the associated case.

We can view the transition probabilities out of state 2; as a weighted combination of
the transitions that each of these first-cousin cases makes when considered on its own.
For example, in the case of coalescence (transition to state 0), two lineages in state 2

coalesce with probability % for a matrilateral-parallel first-cousin pair (rate ¢, and % for
a matrilateral-cross first-cousin pair (rate ¢,,.). Because patrilateral-parallel and patrilateral-

cross consanguinity do not affect transitions from state 2, corresponding rates ¢,pand c,e
do not influence the transition probability to state 0. Combining all four cases, the transition

probability from state 2, to state 0 is %cm p+ %cmc. For transitions from state 2, to states 0,

1, and 2, the probabilities are obtained by summing corresponding terms in the matrices for
the various types of unilateral first-cousin mating (Egs. 12, 18, and 26).

For the transitions from state 21 to states 3, 4, and 5 (two lineages between individuals),
consanguinity acts to reduce the probabilities. The probabilities in the case of patrilateral
parallel consanguinity (Eg. 12) represent a null effect of no consanguinity. The ¢;;pand ¢ppe
terms (Eqgs. 18 and 26) reduce the probabilities of transitioning to states 3, 4, and 5 (while
inflating the 0, 1, and 2 transitions). For state 3, for example, the null transition probability

is % Matrilateral-parallel consanguinity reduces this transition probability by ¢,,,8, giving

a combined transition probability of é — ¢mp/8; matrilateral-cross consanguinity has no effect

on this transition.

We proceed similarly to combine the remaining transition probabilities from the four
unilateral first-cousin mating types to produce the transitions for state 2;. The transition
matrix is

1 1] [l 1 [} ] 1] [i]
0 0 1] 1 0 [} (1]

(34)
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Matrices A and B follow from Eq. 1 and take the same form as those given for the
matrilateral cases with state 2; in matrix A (Egs. 19 and 27), now adopting the new
combinations of transition probabilities. We solve for the stationary distribution of the “fast”
transitions using the method of Appendix A:
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1

3 Cme
16w T
1 5 3
~ 16%mp — gCme

3 Cmce
16w T
5 3
L = JgCmp = FCme
3 Sme
16 T
5
1- Ecmp - §Cmc

0

000

000

000

000

000

000

000

o= o=

\O| —
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0 0 0
| fmp _ Cme 1 fmp _ Cme _fmp _ Cfme
2 2 4 2 2 4 2 2
5 3 9 5 3 9 5 3
1 T6Smp — gCme 1 16Smp — gCme 1 16Cmp — gCme
_fmp _ Cme _ fmp _ Cme _ fmp _ Cme
2 2 |4 2 2 | 4 2 2
5 3 9 5 3 9 5 3
1 Ecmp §Cmc 1 Ecmp §Cmc 1 Ecmp §Cmc
_ Smp _ Cme _ fmp _ Cme _ fmp _ me
2 2 | 4 2 2 | 4 2 2
5 3 9 5 3 9 5 3
1 ﬁcmp §cmc 1- ﬁcmp - §cmc 1 Ecmp §cmc
1 4 4
9 9 9
1 4 4
9 9 9
1 4 4
9 9 9
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Once again, using G = PBP, we obtain the matrix exponential, &, using the method of
Appendix B. We then compute TI(#) with Eq. 3, converting ¢back into units of A/ generations.
The resulting matrix is structured in such a way that we can write:

I 000 O 0 0

1 4 4
1—REOOO§RE§RE§RE
1 4 4
1—REOOO§RE§RE§RE
l—REOOOlREiREiRE
I1(r) = Pe'G = 9 9 977, (36)
1 4 4
1-FE 000 §E §E §E
1 4 4
1-FE 000 §E §E §E
1 4 4
1-FE 000 §E §E §E
where
l_cmp_cmc
R= 2 2
_1—56 —ic
16mp ~ gme
‘mp  Cmc
i 1t T ®

In the matrix in Eq. 36, the first column represents transitions to coalescence. We extract
from this column the cumulative distribution functions for time to coalescence for two
lineages withinan individual (state 1) and two lineages between individuals (states 3, 4, and

5):
@ ¢ Cmp  Cmc
i P I
Fr ) =Fy)=1-—>—2 3N "5 3| )

~ 16mp ~ gfmc

mp  Cmc
o (38)

Fvn® = By O = By =T=e3n) o5 23 )

For the expectations of these distributions, recalling that for X> 0, E[X] = f0°°[1 — Fx(x)]dx,

we have
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_ Smp _ Cme
2 2
E[7] = B = 3N ——2 | @)
It95 -3
l—ic — =C
16 mp  g-mc
EV mm] = E[Vims| = E[Vsf] = 3N T op e (40)
16~ 8

3.3 Comparisons

3.3.1 Limiting distribution versus exact distribution—Under the mixture model,
to see how well the limiting distribution of coalescence times approximates the exact
distribution, we perform simulations. In particular, for fixed values of the number of mating
pairs NVand rates of matrilateral-parallel (¢;;p) and matrilateral-cross (cy;) first-cousin
mating, we simulate 10,000 realizations of the Markov chain in Eq. 34 to produce an
empirical cumulative distribution function (CDF) of coalescence times for lineage pairs
withinand between individuals. This procedure amounts to simulating a distribution of the
time to the most recent common ancestor (the time it takes to hit state 0) starting in either
state 1 (within an individual) or state 4 (between individuals).

Figure 7 plots the simulated empirical CDFs alongside the limiting CDFs presented in Egs.
37 and 38. Conducting these simulations for different values of the number of mating pairs
N, we see that the limiting cumulative distribution functions tend to be slightly inflated
compared to those simulated from the Markov chain; the limiting CDF tends to reach a
specified probability before it is reached in the simulation. This effect is most visible for the
smallest value of N, V= 10; as NV increases, the limiting distribution functions (Egs. 37 and
38) closely approximate the simulated, empirical distributions.

3.3.2 X chromosome versus autosomes—~Each of the limiting distributions for
coalescence times for lineages from separate mating pairs, both for single types of first-
cousin consanguinity and for a superposition of multiple types, possesses a particular
structure: an exponential CDF whose rate is the product of the population size and a
reduction by a factor that accounts for consanguinity. We now examine these limiting CDFs
for the X chromosome in relation to corresponding CDFs for autosomes. The autosomal
coalescence time distributions under first-cousin consanguinity are obtained in Appendix

C as a special case of the rth cousin mating model of Severson et a/. (2019). Here, we
calculate the ratio of the expected time to coalescence for the X chromosome (Egs. 39 and
40) and for autosomes (Egs. C4 and C5) within and between individuals, respectively, as we
vary rates of matrilateral and patrilateral consanguinity (Figure 8).

We first consider the ratio of expected coalescence times on the X chromosome relative

to the autosomes for pairs of lineages within individuals (Eq. 39/Eq. C4) as a function of
patrilateral (cpy+cpc) and matrilateral-parallel (cp) consanguinity (Figure 8A). Because the
expected coalescence time for two lineages on the X chromosome is a function of 3A/and
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the corresponding autosomal mean depends on 4, in the absence of consanguinity, the
8
ﬁl

effect of consanguinity in reducing X-chromosomal coalescence times relative to autosomal
coalescence times, when we set ¢, to 1. It achieves its maximum value of 1, increasing
X-chromosomal coalescence times compared to autosomal coalescence times, when instead
we set ¢pp + Cpeto 1 (Figure 8A).

null value of the ratio is %. The ratio achieves its minimum value of -, with a stronger

For the X:A ratio of between-individual expected coalescence times (Eq. 40/Eq. C5) as a
function of patrilateral (¢,,*c,c) and matrilateral-parallel (¢;,) consanguinity (Figure 8B),
the minimum and maximum values differ less than for the within-individual case. The

minimum exceeds % equaling % and is again reached at ¢;;p = 1. The maximum is less

than 1, equaling % and is reached at Cp;+Cpe = 1. The minimum and maximum are less

extreme than in the within-individual case, as consanguinity has less of an effect on reducing
the expected coalescence times in the between-individual case, both for the X chromosome
and for the autosomes.

We next examine the X:A coalescence time ratio within individuals (Eq. 39/Eq. C4) as a
function of patrilateral (¢, +¢p0) and matrilateral-cross (cc) consanguinity (Figure 8C).

The minimal ratio is slightly larger than in the matrilateral-parallel case, equaling ; at Ce

= 1. The maximum occurs at 1, the same value as the corresponding case with matrilateral-
parallel in place of matrilateral-cross consanguinity, when ¢y,;+c, = 1. The slightly reduced
range of values (i.e., the greater minimum) traces to the fact that the effect of matrilateral-
cross consanguinity on X-chromosomal coalescence times is slightly weaker, producing a
weaker reduction in coalescence times, than that of matrilateral-parallel consanguinity.

Finally, we analyze the X:A coalescence time ratio between individuals (Eg. 40/Eq. C5) as
a function of patrilateral (¢, + ¢pc) and matrilateral-cross (c,c) consanguinity (Figure 8D).

The minimum occurs at ¢, = 1, equaling g—?. As in the corresponding matrilateral-parallel

case, the maximum, achieved at ¢y, + Cpe= 1, is % As was seen within individuals, the

range of permissible values is reduced relative to the matrilateral-parallel case, owing again
to the weaker effect of matrilateral-cross consanguinity on X-chromosomal coalescence
times.

4 Discussion

Extending our previous work on mean coalescence times on the X-chromosome in a
consanguinity model, we have derived large- V limiting distributions for within-individual
and between-individual X-chromosomal coalescence times under various types of first-
cousin consanguinity. For between-individual coalescence times, each limiting distribution
is exponential with a rate equal to the product of the number of X chromosomes and

a reduction factor due to consanguinity (Egs. 17, 23, and 31). Limiting distributions of
within-individual coalescence times each have a point mass corresponding to instantaneous
coalescence, and conditional on not coalescing instantaneously, are exponential (Egs. 16, 22,
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and 30). These patterns also hold for limiting distributions of pairwise coalescence times
for a model with a mixture of types of first-cousin consanguinity (Egs. 37 and 38); in
simulations, the limiting distributions under this superposition agree with exact distributions
from the Markov chain (Eq. 34, Figure 7).

Our limiting distribution results can inform comparisons of the X chromosome with
autosomes. The four types of first-cousin consanguinity have identical effects on the
autosomes but vary in their effect on the X chromosome. Hence, a comparison of
coalescence time distributions for the X chromosome and autosomes can be informative
about features of consanguinity. Our results (Egs. 37 and 38) directly show the effect of
different rates and types of consanguinity on the distribution of X-chromosomal coalescence
times. For example, increasing matrilateral-parallel and matrilateral-cross consanguinity
decreases the ratio of X and autosomal mean coalescence times; increasing patrilateral-
parallel and patrilateral-cross first-cousin consanguinity increases this ratio (Figure 8).

The results can be viewed in the setting of the idea of coalescent effective size (Nordborg
and Krone, 2002; Sjodin et al., 2005). As in other instances of the use of the separation-of-
time-scales technique, the X-chromosomal consanguinity model behaves like a standard
coalescent model, but with an altered effective size. Indeed, the model combines two
phenomena for which the separation-of-time-scales approach has been separately used—
consanguinity (Nordborg and Donnelly, 1997; Severson et al., 2021) and a distinction
between autosomes and the X chromosome (Ramachandran et a/., 2008). We have shown
that even when combining multiple phenomena, the separation-of-time-scales approach
can distill complicated demographic features into a standard coalescent with a rescaled
coalescent effective size. Indeed, each of our consanguinity models both for the autosomes
and for the X chromosome has a coalescent effective size that is a function of the number
of chromosomes in the model (4 or 3A) and the rate and type of consanguinity in the
population.

Consanguinity and other preferences for mate choice vary across human populations, often
depending on cultural norms for certain types of consanguinity over others (Bittles, 2012).
Because we have found that the different types of first-cousin consanguinity generate

an observable effect on X chromosomal coalescence times, it is possible that features

of coalescence times can be compared across populations to assess signatures of the
different types of consanguinity. Such assessments can potentially capitalize on the inverse
relationship between coalescence times and genomic sharing (Palamara et a/., 2012; Carmi
et al, 2014; Browning and Browning, 2015) to use genomic sharing patterns to uncover
features of consanguinity (Arciero et al., 2021).

We note that in our coalescent model, the consanguinity parameters are constant over a
long-term. In human populations, features of consanguinity might change relatively rapidly,
so that in data applications, it might not be appropriate to assume consanguinity parameters
that persist over a large number of generations. If the relative ordering of the different types
of consanguinity does not change, however, we expect that the model would continue to be
informative.
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In applications in which the model is sensible, a potential limitation is that exact rates of a
given type of consanguinity might not be possible to infer from X-chromosomal data. For
example, the effects of the matrilateral-cross first-cousin consanguinity parameter on the
X-chromosomal coalescence times distributions are relatively small (Figure 6), so that given
the difficulty in precisely estimating the coalescence times from data, the parameter might
not be identifiable. By jointly considering X-chromosomal and autosomal data (Figure 8),
however, more information will be available to conduct parameter inference.

Another limitation of our approach is that in formulating our model, we have disregarded
higher-order consanguinity. While we have explicitly modeled first-cousin mating pairs, we
have ignored the possibility that a pair has more distant consanguinity that is not captured in
the model. It may be possible, however, to allow for such possibilities by incorporating into
the rth cousin framework of Severson et al. (2021) sex-specific varieties of consanguinity at
different levels of relationship.
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Appendix A: Stationary distribution of the fast transition matrix

In this appendix, we solve for the stationary distribution of the “fast” transition matrix A in
the case of sib mating on the X chromosome. The same approach is also applied in the main
text to obtain the stationary distribution of the fast transition matrix in other models.

First, we permute the states to rewrite matrix A in a canonical form. The matrix A in Eq.
5 has one absorbing state (state 0) and a closed communication class C; = {3, 4, 5}. We
rearrange the matrix to take the form

Cco
D= ; (A1)
ol

listing the recurrent states before the transient states. Thus, square matrix C includes
transitions between recurrent states (i.e., absorbing states and closed communication
classes), and square matrix Q includes transitions between transient states. Matrix R
includes transitions from the transient states to the recurrent states. For matrix A in Eq.

5, the recurrent states are state 0 (absorbing) and states 3, 4, and 5 (closed communication
class Cy). The transient states are states 1 and 2. Permuting the matrix A to order the states
0,3,4,5,1, 2, we write
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[ 0 0 0 o o)
0 0 0 1 0 O
1 1
| 20 3 3 [0 ®
1 1 1
o 1 1 1o o
0 0 0 0 0 1
co 1—cgp 1—co Co Co
G 0 =55 S| B

We treat the closed communication class Cj as a single absorbing state because any
transitions made into C; transition infinitely often among the states it contains. We rewrite
the transition matrix for the resulting Markov chain by collapsing the columns and rows
corresponding to the states in C;. A* becomes

1 0 0 0

0 1 0 0
A*)#:

0 0 0 1

2 1|2 %

Matrix A** now has the form in Eq. A1, with 2 x 2 submatrices and C as the identity
matrix.

Given a matrix in canonical form (Eq. A1 where C is the identity), the stationary distribution
is given by

X r ( I 0]
Iim D = 5
F— 00 NR 0

where Nis the fundamental matrix N = (I - Q)™ and 1 is the identity matrix (Kemeny and
Snell, 1983, 3.3.7). The matrix NR defines for each pair consisting of a transient state and a
recurrent state, the probability that from the transient state, the process reaches the recurrent
state. For matrix A**, we have

1 0 00
0 1 00
g 4-4c
— i eV o |—
Prot=dim (A %) =735 T3¢ 0 °
r— o
¢ 4 — 4¢
0 000
4—-3cy 4-3c

To recover the stationary distribution of A*, we expand the absorbing state for the closed
communication class Cy, replacing it with the stationary distribution for the irreducible 3x3
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matrix associated with the class. We then weight the transient transition probabilities in NR
by this stationary distribution.

In other words, NR now gives, for each pair consisting of a transient and a recurrent state,
the probability of the associated transition. Expanding the absorbing state for the closed
communication class C;, we get

1 0 0 0 00
1 4 4
0 9 9 9 00
1 4 4
0 9 9 9 00
P+= lim (A% =| o 1 4 4 9ol
r— oo 9 9 9
0 1(4—4co) 4(4—4c0\ 4(4—4c 00
4-3cq 9\4-3cg) 9\4-3¢y| 9|4 -3¢
0 1(4—4co) 4(4—4c0\ 4(4 -4
4-3cq 9\4-3cg) 9\4-3¢y] 9|4 -3¢ 00

Finally, we permute P* to recover P (Eq. 6).

Appendix B: The matrix exponential et¢

In this appendix, we obtain the matrix exponential, &, which is needed in calculating the
large-V limit, TI(#) = Pe’S. The computations in this appendix are specific to sib mating on
the X chromosome, but the same method can be applied to obtain the matrix exponential in
the other models.

We first obtain the generator matrix from Egs. 5 and 6:
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G =PBP =

0 00 0 0 0
(4 — dco)(4 — cp) 00 L. (4—4c)d—c) 4 (4—4c)(4—cp) 4 (4—4c)4—c)
3(4 - 3¢p)’ 34-3¢)? 0 3@d-3¢) 9 3(4-3cq)

(4 = dco)(4 — co) 0oL, (4—4c)4—c) 4 (4—4c)(4—cp) 4 (4—4c)4 - )

Nell

3(4 — 3¢p)’ 9 3@d-3¢) 9 314-3¢)P 9 3(d-3q)
_4-q 00 1 _4-cq 4 4-q 4 4-q (B1)
3(4 - 3¢)) 9 30 -3 9 3(@ - 3c) 9 30 - 3q)
4w Lo _4-a 4 _4-aq 44—
3(@ = 3¢)) 9 3(@ = 3q) 9 3(@ = 3q) 9 3@ =3q)
Ao gy L _4-a 4. _4-a 4 _4-a
3(4 - 3¢)) 9 3(@ -3 9 3(@ - 3c) 9 30 - 3q)

The generator matrix, G, has nonzero entries in the columns for state 0 and states 3, 4, and 5.
It has the property

G- —G[%}.

For the constant A= —(4 — ¢y)43(4 — 3¢y)], we can then recursively write
G"=k""'G, (82

The matrix exponential, ¢/G = Y% ,+G'/i!, then equals
p i=0 q

Theor Popul Biol. Author manuscript; available in PMC 2023 October 01.



1duosnue Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Cotter et al.

Page 29

(o]

G =14 7! Z
= (1 —e )

Converting tinto units of /generations and multiplying by P (Eq. 6), we obtain P&’ as in

Eq. 7.

For each model studied, for the associated generator matrix G, the corresponding quantity &
that satisfies Eq. B2 appears in Table B1.

Appendix C: Limiting distribution of autosomal coalescence times for first-

cousin mating

Equation 46 of Severson et al. (2021) gives a limiting distribution of autosomal coalescence
times for a model with a superposition of levels of cousin mating, up to sth cousins. In order
to recover first-cousin mating on the autosomes to compare to our X-chromosomal results,
we use the special case of this sth cousin model, where the rate of sibling mating ¢ is 0

and the rate of first-cousin mating is ¢y, stopping at first cousins. This special case produces
the following transition matrix, where state 0 is still coalescence, state 1 is two lineages in
an individual, state 2 is two lineages in opposite individuals of a mating pair, state 2 is
two lineages in two individuals one generation ancestral to a mating pair, and state 3 is two
lineages in two individuals in different mating pairs:

0 1 2 2 3
0 1 0 0 0 0
1 0 1 0 0
On=2| 0 0 0 1 0
2|8 % % 0 1-%
3 \ix v 8¢ 0 1—-%

€y

Note here that there is no need to use a two-sex model, as for autosomes, states referring to

two males, a male and a female, and two females simply collapse into the combined state 3.
No new information is gained for the autosomes when separating these states. Using Eq. 1,

we split the transition matrix into fast and slow processes:

1 0 00 O 0000 O
00 10 O 0000 O

A:0001 0 ,B:OOOOO.
2220 _a 0000 O
16 16 8 4 1i10—1
0 0 00 1 4472
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We solve for the stationary distribution of the fast matrix using the method in Appendix A
(simpler here by a single absorbing state for two lineages between individuals rather than a
closed communication class):

1 000 0

c1 16 —4cy
16 — 3¢y 000 16 — 3¢y

P= lim A" 4 gooota
= m = .
F— o0 16 — 3¢y 16 — 3¢y

1 16 —4c
16 — 3¢y 000 16 — 3¢y

0 000 1

Using G = PBP, we obtain the matrix exponential &€ using the method of Appendix B. We
then compute TI(#) via Eq. 3, converting ¢back into units of A/generations:

1 000 0
1 c1
e L -7 _ !
1- e AN 3 |000 e 4N 3
l—ic 1_EC1 l—ic I—ECI
16°1 16°1
cf c1
1- t 1 I—T t 1
l-———¢ 4N 3 000 ——=—e 4N 3
@) = PG — 3 1—=—c 3 1———¢
1 6¢l 16 1 ! 16
1 c1
-z _tf 1 - 1
1- e 4N 3 000 e 4N 3
-2 T -3 1161
161 161
t 1 1] 1
I-¢ 4N\ 3 000 cTAN||[_ 3
~ 164 ~ 16

We extract from the first column of this matrix the cumulative distribution functions for two
lineages starting in state 1 (within an individual) and state 3 (between individuals):

1—% A S S
FT(I)=Fu(t)=1—1—3€ 4N1_%Cl, (C2)
— i
. r (C3)
Fy(h)=1-¢ 4N||_3 |.
~ 