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Abstract

By providing additional opportunities for coalescence within families, the presence of 

consanguineous unions in a population reduces coalescence times relative to non-consanguineous 

populations. First-cousin consanguinity can take one of six forms differing in the configuration 

of sexes in the pedigree of the male and female cousins who join in a consanguineous union: 

patrilateral parallel, patrilateral cross, matrilateral parallel, matrilateral cross, bilateral parallel, and 

bilateral cross. Considering populations with each of the six types of first-cousin consanguinity 

individually and a population with a mixture of the four unilateral types, we examine coalescent 

models of consanguinity. We previously computed, for first-cousin consanguinity models, the 

mean coalescence time for X-chromosomal loci and the limiting distribution of coalescence 

times for autosomal loci. Here, we use the separation-of-time-scales approach to obtain the 

limiting distribution of coalescence times for X-chromosomal loci. This limiting distribution 

has an instantaneous coalescence probability that depends on the probability that a union 

is consanguineous; lineages that do not coalesce instantaneously coalesce according to an 

exponential distribution. We study the effects on the coalescence time distribution of the type 

of first-cousin consanguinity, showing that patrilateral-parallel and patrilateral-cross consanguinity 

have no effect on X-chromosomal coalescence time distributions and that matrilateral-parallel 

consanguinity decreases coalescence times to a greater extent than does matrilateral-cross 

consanguinity.

1 Introduction

The phenomenon of consanguinity, in which unions occur between closely related 

individuals, is a form of population structure that can dramatically affect properties 

of genetic variation (Crow and Kimura, 1970; Jacquard, 1974). By increasing the 

probability that deleterious recessive variants appear in homozygous form compared to the 

* dcotter1@stanford.edu . 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review 
of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered 
which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Theor Popul Biol. Author manuscript; available in PMC 2023 October 01.

Published in final edited form as:
Theor Popul Biol. 2022 October ; 147: 1–15. doi:10.1016/j.tpb.2022.07.002.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



corresponding probability in a population in which it is absent, consanguinity contributes 

to the incidence of recessive disease (Bittles, 2001; Woods et al., 2006); recent studies 

suggest that it contributes to incidence of complex disease as well (Bittles and Black, 

2010; Yengo et al., 2017; Ceballos et al., 2018; Johnson et al., 2018; Clark et al., 
2019). Consanguinity is common in human populations, with some populations promoting 

consanguineous marriages as a cultural preference (Bittles, 2012; Romeo and Bittles, 2014; 

Sahoo et al., 2021).

The offspring of a consanguineous union are expected to possess large portions of their 

genomes shared between their two genomic copies, owing to the fact that an identical 

genomic segment can be inherited along both their maternal and paternal lines. For the 

loci contained in such segments, the two copies coalesce at a common ancestor relatively 

few generations in the past. At other locations, neither copy or only one copy traces to 

a recent shared ancestor, so that coalescence occurs only much farther back in the past. 

Indeed, empirical genetic studies have identified multiple populations in which individuals 

carry long homozygous segments that indicate recent coalescence of the two genomic copies 

and that are attributable in large part to consanguinity practices (McQuillan et al., 2008; 

Pemberton et al., 2012; Ceballos et al., 2018)

In typical coalescent-based models that investigate coalescence times for sets of lineages, 

diploid organisms are approximated by pairs of haploids independently drawn from a 

population (Hein et al., 2005; Wakeley, 2009). This modeling choice is unsuited to the 

study of consanguineous families, in which the two lineages in an individual can be highly 

dependent. Hence, explicitly diploid coalescent models have been devised for the study of 

coalescence in a setting of consanguinity. The earliest studies focused on selfing in plants 

(Pollak, 1987; Nordborg and Donnelly, 1997; Nordborg and Krone, 2002), an extreme form 

of “consanguinity” in which both parents of a diploid offspring are the same individual. 

Campbell (2015) extended diploid coalescent models to consider a monogamous mating 

model with sibling mating, computing mean coalescence times under the model. This 

approach was then extended by Severson et al. (2019) to consider mean coalescence times in 

a diploid model with nth-cousin mating, for arbitrary values of n and for superpositions of 

multiple levels of nth-cousin mating.

In an extension of the work of Severson et al. (2019), Severson et al. (2021) advanced 

beyond mean coalescence times to derive a full limiting distribution of coalescence times 

under superposition models of autosomal consanguinity, considering the limit as the 

population size grows large. A limitation of the work of Severson et al. (2019) and Severson 

et al. (2021), however, is that it does not distinguish between males and females in the 

mating model; all individuals are exchangeable. Hence, it cannot accommodate the variety 

of scenarios in which differences between males and females are salient. We have recently 

extended the method of Severson et al. (2019) to distinguish between males and females, 

evaluating mean coalescence times in a two-sex model, with a goal of evaluating the effect 

that consanguinity has on X-chromosomal coalescence times specifically (Cotter et al., 
2021).
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Here, we use the advance from Severson et al. (2021) to compute the full distribution 

of coalescence times under a diploid, two-sex consanguinity model (Cotter et al., 2021). 

Seeking to derive distributions of X-chromosomal coalescence times, we consider each of 

the six types of first-cousin consanguinity and a model that includes all four unilateral types 

in a single population. For each model, we evaluate the distribution of coalescence times for 

two lineages sampled from the same individual and for two lineages sampled from members 

of different mating pairs.

2 Methods

We adapt the models of Severson et al. (2019, 2021) and Cotter et al. (2021). We consider 

a constant-sized population of N diploid mating pairs. Individuals are sex-specific, the 

X chromosome is considered, and specified forms of consanguinity are allowed. Using a 

Markov chain, we track lineage pairs back in time until they coalesce.

To analyze the large-N limit of the model, we make use of the separation-of-time-scales 

approach introduced by Möhle (1998). This approach was used by Severson et al. (2021) 

to obtain the limiting distribution of coalescence times under their autosomal diploid model 

of consanguinity. In the approach from Möhle (1998), the limiting distribution of a Markov 

process with transition matrix ΠN is obtained by writing

ΠN = A + 1
N B . (1)

Here, A describes “fast” transitions that have nontrivial probability in a single generation, 

and B describes “slow” transitions that have very small probabilities in a single generation. 

As N → ∞, the fast transitions occur instantaneously, and the fast process can be described 

by an equilibrium distribution

P = lim
r ∞

Ar . (2)

Rescaling t in units of N generations, as N → ∞, ΠN converges to a continuous-time process

Π(t) = lim
N ∞

ΠN
Nt = PetG . (3)

The rate matrix G satisfies G = PBP. Under Möhle’s theorem, the process converges to a 

continuous-time process with an instantaneous jump at time 0 that corresponds to the “fast” 

transitions.

As Severson et al. (2021) did with autosomal models, we apply the separation-of-time-scales 

approach to our models of consanguinity on the X chromosome (Cotter et al., 2021). We 

begin with the sib mating case and then consider each of the four types of unilateral 

first-cousin mating, the two cases of bilateral first-cousin mating, and a mixture of all four 

unilateral types in one model.
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3 Results

3.1 Sibling mating

We consider N monogamous male–female mating pairs, a fraction c0 of which are sib 

mating pairs. Pairs of X-chromosomal lineages can be in one of six states (Figure 1): two 

lineages have already coalesced (state 0); two lineages are in a female (state 1); two lineages 

are in opposite individuals of a mating pair (state 2); two lineages are in two individuals 

in different mating pairs, where the two individuals are two males (state 3), a male and a 

female (state 4), or two females (state 5). Note that for the X chromosome, there is no state 

for two lineages in a male, as males contain only one X chromosome. We track the state of 

the process backward in time until it reaches the most recent common ancestor for a pair of 

lineages (that is, until state 0 is reached). We denote by Tf, U, Vmm, Vmf, and Vff the random 

coalescence time for pairs of lineages in states 1, 2, 3, 4, and 5, respectively.

If two lineages are in state 0 (coalesced), they remain in state 0 with probability 1; this 

state is absorbing. If two lineages are in a female (state 1), in the previous generation they 

must have been in separate individuals in a mating pair (state 2) with probability 1. If two 

lineages are in separate individuals in a mating pair (state 2), the pair is a sib mating pair 

with probability c0. Given that the pair is a sib mating pair, the lineages transition to state 

0 with probability 1
4 , state 1 with probability 1

4 , and state 2 with probability 1
2 . If the two 

lineages are not in a sib mating pair, an event with probability 1−c0, then they transition to 

states 4 and 5 with equal probability 1
2 .

For each of the states 3–5, because we pick parental mating pairs with replacement from 

the previous generation, the probability is 1
N  that the same mating pair is chosen. Thus, if 

two lineages are in state 3, and the pair are siblings (an event with probability 1
N ), then the 

lineages transition to state 0 or state 1, each with probability 1
2 . If the two lineages in state 

3 do not have the same parental pair (probability 1 − 1
N ), then they must transition to state 5 

with probability 1. For state 4, if the two lineages are in siblings (probability 1
N ), then they 

transition to state 0 with probability 1
4 , state 1 with probability 1

4 , and state 2 with probability 

1
2 . If the lineages are not from siblings (probability 1 − 1

N ), then they transition to state 4 or 

5, each with probability 1
2 . Finally, two lineages in state 5, conditional on being in siblings 

(probability 1
N ), reach state 0 with probability 3

8 , state 1 with probability 1
8 , and state 2 

with probability 1
2 . Conditional on not being in siblings (probability 1 − 1

N ), the lineages 

transition to state 3 with probability 1
4 , state 4 with probability 1

2 , and state 5 with probability 

1
4 .

Combining these transition probabilities, we can write the transition matrix as
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(4)

We can decompose ΠN (Eq. 4) into its fast and slow transitions, as in Eq. 1:

A =

1 0 0 0 0 0
0 0 1 0 0 0
c0
4

c0
4

c0
2 0 1 − c0

2
1 − c0

2
0 0 0 0 0 1

0 0 0 0 1
2

1
2

0 0 0 1
4

1
2

1
4

, B =

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1
2

1
2 0 0 0 −1

1
4

1
4

1
2 0 − 1

2 − 1
2

3
8

1
8

1
2 − 1

4 − 1
2 − 1

4

. (5)

We first find the equilibrium distribution of the “fast” process, obtained by iterating 

transition matrix A. This calculation appears in Appendix A, producing

P = lim
r ∞

Ar =

1 0 0 0 0 0
c0

4 − 3c0
0 0 1

9
4 − 4c0
4 − 3c0

4
9

4 − 4c0
4 − 3c0

4
9

4 − 4c0
4 − 3c0

c0
4 − 3c0

0 0 1
9

4 − 4c0
4 − 3c0

4
9

4 − 4c0
4 − 3c0

4
9

4 − 4c0
4 − 3c0

0 0 0 1
9

4
9

4
9

0 0 0 1
9

4
9

4
9

0 0 0 1
9

4
9

4
9

. (6)

We then compute G = PBP and solve for the limiting process Π(t) using Eq. 3, obtaining 

the matrix exponential, etG, as in Appendix B. Converting t back into units of N generations, 

this gives
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Π(t) = PetG =

1 0 0 0 0 0

1 − 1 − c0
1 − 3

4c0
e− t

3N
1 −

c0
4

1 − 3
4c0

0 0 1
9 ⋅ 1 − c0

1 − 3
4c0

e− t
3N

1 −
c0
4

1 − 3
4c0

4
9 ⋅ 1 − c0

1 − 3
4c0

e− t
3N

1 −
c0
4

1 − 3
4c0

4
9 ⋅ 1 − c0

1 − 3
4c0

e− t
3N

1 −
c0
4

1 − 3
4c0

1 − 1 − c0
1 − 3

4c0
e− t

3N
1 −

c0
4

1 − 3
4c0

0 0 1
9 ⋅ 1 − c0

1 − 3
4c0

e− t
3N

1 −
c0
4

1 − 3
4c0

4
9 ⋅ 1 − c0

1 − 3
4c0

e− t
3N

1 −
c0
4

1 − 3
4c0

4
9 ⋅ 1 − c0

1 − 3
4c0

e− t
3N

1 −
c0
4

1 − 3
4c0

1 − e− t
3N

1 −
c0
4

1 − 3
4c0

0 0 1
9 ⋅ e− t

3N
1 −

c0
4

1 − 3
4c0

4
9 ⋅ e− t

3N
1 −

c0
4

1 − 3
4c0

4
9 ⋅ e− t

3N
1 −

c0
4

1 − 3
4c0

1 − e− t
3N

1 −
c0
4

1 − 3
4c0

0 0 1
9 ⋅ e− t

3N
1 −

c0
4

1 − 3
4c0

4
9 ⋅ e− t

3N
1 −

c0
4

1 − 3
4c0

4
9 ⋅ e− t

3N
1 −

c0
4

1 − 3
4c0

1 − e− t
3N

1 −
c0
4

1 − 3
4c0

0 0 1
9 ⋅ e− t

3N
1 −

c0
4

1 − 3
4c0

4
9 ⋅ e− t

3N
1 −

c0
4

1 − 3
4c0

4
9 ⋅ e− t

3N
1 −

c0
4

1 − 3
4c0

.

(7)

The first column of the matrix Π(t) represents the cumulative probability of coalescence in 

time less than or equal to t generations. States 1 and 2 have the same cumulative distribution, 

representing the coalescence time for two lineages within a female (note that state 2, two 

lineages in the two individuals in a mating pair, is always reached from state 1 after one 

step). States 3–5 have the same cumulative distribution, representing the coalescence time 

for two lineages in two distinct individuals. The cumulative distributions are
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FTf(t) = FU(t) = 1 − 1 − c0
1 − 3

4c0
e− t

3N
1 −

c0
4

1 − 3
4c0

, (8)

FV mm(t) = FV mf(t) = FV ff(t) = 1 − e− t
3N

1 −
c0
4

1 − 3
4c0

. (9)

Computing the expectations of these distributions, recalling that for X > 0, 

E[X] = ∫0
∞ 1 − FX(x) dx, we find

E Tf = E[U] = 3N 1 − c0
1 − 1

4c0
, (10)

E V mm = E V mf = E V ff = 3N
1 − 3

4c0

1 − 1
4c0

. (11)

where Eqs. 10 and 11 are the same as Eqs. 25 and 26 from Cotter et al. (2021), obtained by 

first-step analysis.

Eqs. 8 and 9 are plotted in Figure 2. In the figure, we observe that the cumulative 

probability of coalescence increases with the consanguinity probability c0. For c0 = 

0, E Tf = E V mf = 3N, the mean coalescence time for a haploid population with 3N 

chromosomes (the number of X chromosomes in our scenario). For c0 > 0, E Tf < E V mf
due to the probability of consanguinity whenever the two lineages are already in the same 

mating pair.

3.2 First cousins

We next consider first-cousin consanguinity on the X chromosome. We separately calculate 

the limiting distributions of coalescence times for each of the four types of first-cousin 

consanguinity: patrilateral parallel, a union of a male with his father’s brother’s daughter; 

patrilateral cross, a union of a male with his father’s sister’s daughter; matrilateral parallel, a 

union of a male with his mother’s sister’s daughter; and matrilateral cross, a union of a male 

with his mother’s brother’s daughter.

For each of these four types of first-cousin consanguinity, two lineages have seven possible 

states. State 0 is an absorbing state representing coalescence. State 1 is two lineages in a 

female. States 3–5 represent, as in the sibling case, two lineages that are in two individuals 

in different mating pairs, where the two individuals are two males (state 3), a male and a 

female (state 4), or two females (state 5).
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Next, for pairs of lineages from the two individuals in a mating pair, we follow the model 

of a superposition of multiple mating levels from Severson et al. (2021), taking a special 

case of this approach. Under the superposition model, each state 2i, 0 ≤ i ≤ n, represents 

an ancestral state for two lineages from a mating pair. These ancestral states can be viewed 

as “holding states” that keep track of ancestral lineages of a mating pair in order to allow 

all possible ith-cousin levels of consanguinity up to nth cousins. As we restrict attention to 

first-cousin mating, we need only states 20 and 21 from Severson et al. (2021).

State 20 represents two lineages in the two individuals in a mating pair. State 21 represents 

two lineages in two individuals ancestral to the two individuals in a mating pair. Because, 

unlike Severson et al. (2021), we disallow sib mating, two lineages in state 20 cannot 

coalesce (state 0), they cannot transition to the same individual (state 1), nor can they 

transition to two individuals in a mating pair (state 20). Hence, lineages in 20 must transition 

to 21 (Figures 3 and 4).

In the absence of consanguinity, two lineages in state 21 can transition only to states 3, 4, 

and 5 (Figure 3). With first-cousin consanguinity present (Figure 4), two lineages in state 21 

can also coalesce (state 0) or transition to two lineages in the same female (state 1) or to two 

lineages in opposite individuals in a mating pair (state 20).

The transition matrix depends on the type of first-cousin consanguinity permitted. 

However, the type of consanguinity only affects transitions from state 21. For all types of 

consanguinity, state 0 is an absorbing state. State 1, two lineages in the same female, always 

transitions to state 20 because the two lineages must come from opposite individuals of the 

same mating pair. Because of the constraints we have placed on the process, state 20 always 

transitions to state 21. Finally, the transition probabilities from states 3, 4, and 5 follow the 

same pattern as given in the transition matrix in Eq. 4 (with state 20 in place of state 2).

Below, we consider each of the four different types of first-cousin mating, two cases of 

bilateral first-cousin mating, and a mixture of the four unilateral types. In each case, we 

define the transitions that the process makes from state 21, and we obtain the limiting 

distributions of coalescence times.

3.2.1 Patrilateral parallel—In patrilateral parallel first-cousin consanguinity, a union 

occurs between a male and his father’s brother’s daughter. There is no way for the X-

chromosomal lineages in the first-cousin mating pair to have originated from the shared 

grandparental pair because X chromosomes are never transmitted from fathers to sons. 

Hence, irrespective of the fraction c1 in the population, lineages in state 21 can only 

transition to states 3, 4, and 5.

In state 21, one X chromosome in one of the parental pairs is always in a female (the parent 

of the male in state 20). The probability is then 1
2  that this X chromosome is in a male 

one generation ancestral to 21 and 1
2  that it is in a female. The other X chromosome in 

state 21, located in a parent of the female in state 20, can be in a male or female, with 

equal probability. Hence, one generation ancestral to 21, this X chromosome is in a female 
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with probability 3
4  and in a male with probability 1

4 . We can multiply probabilities for the 

two separate X chromosomes to obtain transition probabilities from state 21. In particular, 

the two lineages will be in two separate males one generation previously (state 3) with 

probability 1
8 . They will be in a male and a female (state 4) with probability 1

2 . They will be 

in two separate females (state 5) with probability 3
8 .

The transition matrix is:

(12)

As with the sibling case, we can decompose the transitions into “fast” and “slow” transitions 

(Eq. 1):

A =

1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

0 0 0 0 1
8

1
2

3
8

0 0 0 0 0 0 1

0 0 0 0 0 1
2

1
2

0 0 0 0 1
4

1
2

1
4

, B =

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1
2

1
2 0 0 0 0 −1

1
4

1
4

1
2 0 0 − 1

2 − 1
2

3
8

1
8

1
2 0 − 1

4 − 1
2 − 1

4

. (13)

We next solve for the limiting distribution of the fast transition matrix A using the method of 

Appendix A,
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P = lim
r ∞

Ar =

1 0 0 0 0 0 0

0 0 0 0 1
9

4
9

4
9

0 0 0 0 1
9

4
9

4
9

0 0 0 0 1
9

4
9

4
9

0 0 0 0 1
9

4
9

4
9

0 0 0 0 1
9

4
9

4
9

0 0 0 0 1
9

4
9

4
9

. (14)

Recalling G = PBP, we solve for the limit Π(t) as in the sibling mating case, using Eq. 3, 

calculating the matrix exponential, etG, as in Appendix B. We then convert t back into units 

of generations N. This step gives

Π(t) = PetG =

1 0 0 0 0 0 0

1 − e− t
3N 0 0 0 1

9e− t
3N

4
9e− t

3N
4
9e− t

3N

1 − e− t
3N 0 0 0 1

9e− t
3N

4
9e− t

3N
4
9e− t

3N

1 − e− t
3N 0 0 0 1

9e− t
3N

4
9e− t

3N
4
9e− t

3N

1 − e− t
3N 0 0 0 1

9e− t
3N

4
9e− t

3N
4
9e− t

3N

1 − e− t
3N 0 0 0 1

9e− t
3N

4
9e− t

3N
4
9e− t

3N

1 − e− t
3N 0 0 0 1

9e− t
3N

4
9e− t

3N
4
9e− t

3N

. (15)

Here, examining the first column of the matrix in Eq. 15—representing transitions to 

coalescence—we can see that two lineages within an individual (state 1), within a mating 

pair (state 20), or in two separate mating pairs (states 3, 4, and 5) have equal coalescence 

times. In fact, as coalescence times are unaffected by patrilateral-parallel first-cousin 

consanguinity, they accord with the coalescence time distribution for a population of size 3N 
haploid individuals. Using the same random variables from the sibling case (where U now 

represents 20), we can extract the cumulative distribution functions of coalescence times 

from the first column of the matrix Π(t):

FTf(t) = FU(t) = 1 − e− t
3N , (16)
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FV mm(t) = FV mf(t) = FV ff(t) = 1 − e− t
3N . (17)

For each of the five random random variables, the time to coalescence for two lineages 

is distributed as an exponential random variable with rate 1/(3N). The mean of these 

distributions—the reciprocal of the coalescence rate—is 3N, matching the limiting means 

obtained by first-step analysis in Eqs. 28–32 of Cotter et al. (2021).

3.2.2 Patrilateral cross—For the patrilateral-cross case, a union occurs between a 

male and his father’s sister’s daughter. As with the parallel case, there is no way for the 

X-chromosomal lineages in the first-cousin mating pair to have originated from a shared 

ancestor. We obtain the exact same transition probabilities from state 21 and the same 

transition matrix (Eq. 12). The coalescence times for the patrilateral-cross case are the same 

as in the patrilateral-parallel case.

3.2.3 Matrilateral parallel—In the matrilateral parallel case, a union occurs between a 

male and his mother’s sister’s daughter. With probability c1/2, two lineages in state 21 trace 

back to the shared grandparental pair. The lineages in state 21 coalesce with probability 3
8

(state 0), they are in the shared grandmother with probability 1
8  (state 1), and they are in 

opposite individuals of the grandparental mating pair with probability 1
2  (state 20).

With probability c1/2, two lineages in state 21 do not trace back to the shared grandparental 

pair. Conditional on not tracing to this pair, they are in a male and a female (state 4) or two 

females (state 5), each with probability 1
2 . Finally, with probability 1 − c1, the two lineages 

are not ancestral to a consanguineous mating pair; they then follow the same pattern as in the 

patrilateral-parallel case. Combining the cases gives the transition matrix,

(18)

As before, we decompose this matrix into “fast” and “slow” transitions (Eq. 1):
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A =

1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

3c1
16

c1
16

c1
4 0 1

8 − c1
8

1
2 − c1

4
3
8 − c1

8
0 0 0 0 0 0 1

0 0 0 0 0 1
2

1
2

0 0 0 0 1
4

1
2

1
4

, B =

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1
2

1
2 0 0 0 0 −1

1
4

1
4

1
2 0 0 − 1

2 − 1
2

3
8

1
8

1
2 0 − 1

4 − 1
2 − 1

4

. (19)

We next solve for the limiting distribution of the fast matrix A using the method of 

Appendix A:

P = lim
r ∞

Ar =

1 0 0 0 0 0 0
3c1

16 − 5c1
0 0 0 1

9
16 − 8c1
16 − 5c1

4
9

16 − 8c1
16 − 5c1

4
9

16 − 8c1
16 − 5c1

3c1
16 − 5c1

0 0 0 1
9

16 − 8c1
16 − 5c1

4
9

16 − 8c1
16 − 5c1

4
9

16 − 8c1
16 − 5c1

3c1
16 − 5c1

0 0 0 1
9

16 − 8c1
16 − 5c1

4
9

16 − 8c1
16 − 5c1

4
9

16 − 8c1
16 − 5c1

0 0 0 0 1
9

4
9

4
9

0 0 0 0 1
9

4
9

4
9

0 0 0 0 1
9

4
9

4
9

. (20)

Finally, recalling G = PBP, we solve for the matrix exponential etG using the method of 

Appendix B. We then solve for the continuous-time process Π(t) via Eq. 3, converting t back 

to units of N generations:
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Π(t) = PetG =

1 0 0 0 0 0 0

1 −
1 − c1

2
1 − 5

16c1
e− t

3N
1 +

c1
16

1 − 5
16c1

0 0 0 1
9 ⋅

1 − c1
2

1 − 5
16c1

e− t
3N

1 +
c1
16

1 − 5
16c1

4
9 ⋅

1 − c1
2

1 − 5
16c1

e− t
3N

1 +
c1
16

1 − 5
16c1

4
9 ⋅

1 − c1
2

1 − 5
16c1

e− t
3N

1 +
c1
16

1 − 5
16c1

1 −
1 − c1

2
1 − 5

16c1
e− t

3N
1 +

c1
16

1 − 5
16c1

0 0 0 1
9 ⋅

1 − c1
2

1 − 5
16c1

e− t
3N

1 +
c1
16

1 − 5
16c1

4
9 ⋅

1 − c1
2

1 − 5
16c1

e− t
3N

1 +
c1
16

1 − 5
16c1

4
9 ⋅

1 − c1
2

1 − 5
16c1

e− t
3N

1 +
c1
16

1 − 5
16c1

1 −
1 − c1

2
1 − 5

16c1
e− t

3N
1 +

c1
16

1 − 5
16c1

0 0 0 1
9 ⋅

1 − c1
2

1 − 5
16c1

e− t
3N

1 +
c1
16

1 − 5
16c1

4
9 ⋅

1 − c1
2

1 − 5
16c1

e− t
3N

1 +
c1
16

1 − 5
16c1

4
9 ⋅

1 − c1
2

1 − 5
16c1

e− t
3N

1 +
c1
16

1 − 5
16c1

1 − e− t
3N

1 +
c1
16

1 − 5
16c1

0 0 0 1
9e− t

3N
1 +

c1
16

1 − 5
16c1

4
9e− t

3N
1 +

c1
16

1 − 5
16c1

4
9e− t

3N
1 +

c1
16

1 − 5
16c1

1 − e− t
3N

1 +
c1
16

1 − 5
16c1

0 0 0 1
9e− t

3N
1 +

c1
16

1 − 5
16c1

4
9e− t

3N
1 +

c1
16

1 − 5
16c1

4
9e− t

3N
1 +

c1
16

1 − 5
16c1

1 − e− t
3N

1 +
c1
16

1 − 5
16c1

0 0 0 1
9e− t

3N
1 +

c1
16

1 − 5
16c1

4
9e− t

3N
1 +

c1
16

1 − 5
16c1

4
9e− t

3N
1 +

c1
16

1 − 5
16c1

.

(21)

We are concerned with transitions from each of the various states to coalescence (state 0). 

The first column of Π(t) gives the limiting cumulative distribution functions for the time to 

the most recent common ancestor for two lineages within an individual (state 1) and two 

lineages between individuals (states 3, 4 and 5):
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FTf(t) = FU(t) = 1 −
1 − c1

2
1 − 5

16c1
e− t

3N
1 +

c1
16

1 − 5
16c1

, (22)

FV mm(t) = FV mf(t) = FV ff(t) = 1 − e− t
3N

1 +
c1
16

1 − 5
16c1

. (23)

To compute expectations, recalling that for X > 0, E[X] = ∫0
∞ 1 − FX(x) dx, we find

E Tf = E[U] = 3N
1 − c1

2

1 + c1
16

, (24)

E V mm = E V mf = E V ff = 3N
1 − 5

16c1

1 + c1
16

. (25)

Eqs. 24 and 25 are the same as Eqs. 39 and 40 from Cotter et al. (2021). Eqs. 22 and 23 are 

plotted in Figure 5.

3.2.4 Matrilateral cross—In the matrilateral-cross case, a union occurs between a male 

and his mother’s brother’s daughter. This case is similar to the matrilateral-parallel case. 

With probability c1/2, two lineages in state 21 trace to the shared grandparental pair. They 

coalesce with probability 1
4  (state 0), they are in the shared grandmother with probability 

1
4  (state 1), and they are in opposite individuals of the grandparental mating pair with 

probability 1
2  (state 20).

With probability c1/2, two lineages in state 21 do not trace to the shared grandparental pair. 

Conditional on the lineages not both tracing to the shared grandparental pair, they are in two 

males (state 3), a male and a female (state 4) or two females (state 5), with probabilities 1
4 , 

1
2 , and 1

4 , respectively. Finally, with probability 1 − c1, two lineages are not ancestral to a 

consanguineous mating pair. In this case, they follow the same pattern as enumerated for the 

patrilateral-parallel case. The transition matrix is
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(26)

We separate the “fast” and “slow” transitions as before (Eq. 1):

A =

1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
c1
8

c1
8

c1
4 0 1

8
1
2 − c1

4
3
8 − c1

4
0 0 0 0 0 0 1

0 0 0 0 0 1
2

1
2

0 0 0 0 1
4

1
2

1
4

, B =

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1
2

1
2 0 0 0 0 −1

1
4

1
4

1
2 0 0 − 1

2 − 1
2

3
8

1
8

1
2 0 − 1

4 − 1
2 − 1

4

. (27)

Using the method of Appendix A, we solve for the stationary distribution of the “fast” 

process:

P = lim
r ∞

Ar =

1 0 0 0 0 0 0
c1

8 − 3c1
0 0 0 1

9
8 − 4c1
8 − 3c1

4
9

8 − 4c1
8 − 3c1

4
9

8 − 4c1
8 − 3c1

c1
8 − 3c1

0 0 0 1
9

8 − 4c1
8 − 3c1

4
9

8 − 4c1
8 − 3c1

4
9

8 − 4c1
8 − 3c1

c1
8 − 3c1

0 0 0 1
9

8 − 4c1
8 − 3c1

4
9

8 − 4c1
8 − 3c1

4
9

8 − 4c1
8 − 3c1

0 0 0 0 1
9

4
9

4
9

0 0 0 0 1
9

4
9

4
9

0 0 0 0 1
9

4
9

4
9

. (28)

As before, using G = PBP, we calculate the matrix exponential, etG, using the method of 

Appendix B. We then obtain Π(t) from Eq. 3, converting t back to units of N generations:
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Π(t) = PetG =

1 0 0 0 0 0 0

1 −
1 − c1

2
1 − 3

8c1
e− t

3N
1 −

c1
8

1 − 3
8c1

0 0 0 1
9 ⋅

1 − c1
2

1 − 3
8c1

e− t
3N

1 −
c1
8

1 − 3
8c1

4
9 ⋅

1 − c1
2

1 − 3
8c1

e− t
3N

1 −
c1
8

1 − 3
8c1

4
9 ⋅

1 − c1
2

1 − 3
8c1

e− t
3N

1 −
c1
8

1 − 3
8c1

1 −
1 − c1

2
1 − 3

8c1
e− t

3N
1 −

c1
8

1 − 3
8c1

0 0 0 1
9 ⋅

1 − c1
2

1 − 3
8c1

e− t
3N

1 −
c1
8

1 − 3
8c1

4
9 ⋅

1 − c1
2

1 − 3
8c1

e− t
3N

1 −
c1
8

1 − 3
8c1

4
9 ⋅

1 − c1
2

1 − 3
8c1

e− t
3N

1 −
c1
8

1 − 3
8c1

1 −
1 − c1

2
1 − 3

8c1
e− t

3N
1 −

c1
8

1 − 3
8c1

0 0 0 1
9 ⋅

1 − c1
2

1 − 3
8c1

e− t
3N

1 −
c1
8

1 − 3
8c1

4
9 ⋅

1 − c1
2

1 − 3
8c1

e− t
3N

1 −
c1
8

1 − 3
8c1

4
9 ⋅

1 − c1
2

1 − 3
8c1

e− t
3N

1 −
c1
8

1 − 3
8c1

1 − e− t
3N

1 −
c1
8

1 − 3
8c1

0 0 0 1
9e− t

3N
1 −

c1
8

1 − 3
8c1

4
9e− t

3N
1 −

c1
8

1 − 3
8c1

4
9e− t

3N
1 −

c1
8

1 − 3
8c1

1 − e− t
3N

1 −
c1
8

1 − 3
8c1

0 0 0 1
9e− t

3N
1 −

c1
8

1 − 3
8c1

4
9e− t

3N
1 −

c1
8

1 − 3
8c1

4
9e− t

3N
1 −

c1
8

1 − 3
8c1

1 − e− t
3N

1 −
c1
8

1 − 3
8c1

0 0 0 1
9e− t

3N
1 −

c1
8

1 − 3
8c1

4
9e− t

3N
1 −

c1
8

1 − 3
8c1

4
9e− t

3N
1 −

c1
8

1 − 3
8c1

.

(29)

We extract the cumulative distribution functions from the first column of the matrix, finding
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FTf(t) = FU(t) = 1 −
1 − c1

2
1 − 3

8c1
e− t

3N
1 −

c1
8

1 − 3
8c1

, (30)

FV mm(t) = FV mf(t) = FV ff(t) = 1 − e− t
3N

1 −
c1
8

1 − 3
8c1

. (31)

Solving for the expectations of these distributions, recalling that for X > 0, 

E[X] = ∫0
∞ 1 − FX(x) dx, we find

E Tf = E[U] = 3N
1 − c1

2

1 − c1
8

, , (32)

E V mm = E V mf = E V ff = 3N
1 − 3

8c1

1 − c1
8

. (33)

Eqs. 32 and 33 are the same as Eqs. 47 and 48 from Cotter et al. (2021). Eqs. 30 and 31 are 

plotted in Figure 6.

3.2.5 Bilateral parallel—Having considered the four possible types of first-cousin 

consanguinity, we can also consider the two bilateral cases, in which a mating pair are 

cousins through both sets of grandparents. In bilateral-parallel first-cousin consanguinity, 

a union occurs between a male and a female who is both his mother’s sister’s daughter 

and his father’s brother’s daughter. We can consider this case to be a combination of the 

matrilateral-parallel case and the patrilateral-parallel case. In state 21, when the two lineages 

are ancestral to a bilateral-parallel mating pair, the male’s lineage must transition through 

his mother because he cannot inherit an X chromosome from his father. Because there is 

no way for the lineages to transition through the patrilateral-parallel grandparental pair, the 

transitions in state 21 follow from the transitions for a matrilateral-parallel pair only. In the 

case of bilateral-parallel first-cousin consanguinity, the transition matrix thus has the form 

given for matrilateral-parallel first-cousin consanguinity in Eq. 18. The bilateral-parallel 

case then also shares the same cumulative distribution functions given in Eqs. 22 and 23.

3.2.6 Bilateral cross—Bilateral-cross first-cousin consanguinity occurs when a male 

shares a union with a female who is both his father’s sister’s daughter and his mother’s 

brother’s daughter. This case can be considered to be a combination of matrilateral-cross and 

patrilateral-cross first-cousin consanguinity. The ancestral lineages cannot travel through the 

patrilateral-cross pair, and the transitions follow those for matrilateral-cross consanguinity. 

The transition matrix (Eq. 26) and cumulative distribution functions (Eqs. 30 and 31) follow 

similarly.
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3.2.7 Mixture of first-cousin mating types—We next examine a population that 

possesses a mixture of all four unilateral first-cousin mating types. To determine the 

transition matrix, it suffices to determine the transition probabilities from state 21.

Recall that two lineages in state 21 are in two individuals ancestral to a mating pair 

that might or might not be consanguineous. With probability cpp, this mating pair is a 

patrilateral-parallel first-cousin pair, with probability cpc it is a patrilateral-cross first-cousin 

pair, with probability cmp it is a matrilateral-parallel first-cousin pair, and with probability 

cmc it is a matrilateral-cross first-cousin pair. If the mating pair is a first-cousin pair of a 

particular one of the four types, then transitions out of state 21 will match those derived for 

the associated case.

We can view the transition probabilities out of state 21 as a weighted combination of 

the transitions that each of these first-cousin cases makes when considered on its own. 

For example, in the case of coalescence (transition to state 0), two lineages in state 21 

coalesce with probability 3
16  for a matrilateral-parallel first-cousin pair (rate cmp) and 1

8  for 

a matrilateral-cross first-cousin pair (rate cmc). Because patrilateral-parallel and patrilateral-

cross consanguinity do not affect transitions from state 21, corresponding rates cpp and cpc 

do not influence the transition probability to state 0. Combining all four cases, the transition 

probability from state 21 to state 0 is 3
16cmp + 1

8cmc. For transitions from state 21 to states 0, 

1, and 20, the probabilities are obtained by summing corresponding terms in the matrices for 

the various types of unilateral first-cousin mating (Eqs. 12, 18, and 26).

For the transitions from state 21 to states 3, 4, and 5 (two lineages between individuals), 

consanguinity acts to reduce the probabilities. The probabilities in the case of patrilateral 

parallel consanguinity (Eq. 12) represent a null effect of no consanguinity. The cmp and cmc 

terms (Eqs. 18 and 26) reduce the probabilities of transitioning to states 3, 4, and 5 (while 

inflating the 0, 1, and 20 transitions). For state 3, for example, the null transition probability 

is 1
8 . Matrilateral-parallel consanguinity reduces this transition probability by cmp/8, giving 

a combined transition probability of 1
8 − cmp/8; matrilateral-cross consanguinity has no effect 

on this transition.

We proceed similarly to combine the remaining transition probabilities from the four 

unilateral first-cousin mating types to produce the transitions for state 21. The transition 

matrix is

(34)
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Matrices A and B follow from Eq. 1 and take the same form as those given for the 

matrilateral cases with state 21 in matrix A (Eqs. 19 and 27), now adopting the new 

combinations of transition probabilities. We solve for the stationary distribution of the “fast” 

transitions using the method of Appendix A:
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P = lim
r ∞

Ar =

1 0 0 0 0 0 0
3
16cmp + cmc

8
1 − 5

16cmp − 3
8cmc

0 0 0 1
9

1 − cmp
2 − cmc

2
1 − 5

16cmp − 3
8cmc

4
9

1 − cmp
2 − cmc

2
1 − 5

16cmp − 3
8cmc

4
9

1 − cmp
2 − cmc

2
1 − 5

16cmp − 3
8cmc

3
16cmp + cmc

8
1 − 5

16cmp − 3
8cmc

0 0 0 1
9

1 − cmp
2 − cmc

2
1 − 5

16cmp − 3
8cmc

4
9

1 − cmp
2 − cmc

2
1 − 5

16cmp − 3
8cmc

4
9

1 − cmp
2 − cmc

2
1 − 5

16cmp − 3
8cmc

3
16cmp + cmc

8
1 − 5

16cmp − 3
8cmc

0 0 0 1
9

1 − cmp
2 − cmc

2
1 − 5

16cmp − 3
8cmc

4
9

1 − cmp
2 − cmc

2
1 − 5

16cmp − 3
8cmc

4
9

1 − cmp
2 − cmc

2
1 − 5

16cmp − 3
8cmc

0 0 0 0 1
9

4
9

4
9

0 0 0 0 1
9

4
9

4
9

0 0 0 0 1
9

4
9

4
9

.

(35)
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Once again, using G = PBP, we obtain the matrix exponential, etG, using the method of 

Appendix B. We then compute Π(t) with Eq. 3, converting t back into units of N generations. 

The resulting matrix is structured in such a way that we can write:

Π(t) = PetG =

1 0 0 0 0 0 0

1 − RE 0 0 0 1
9RE 4

9RE 4
9RE

1 − RE 0 0 0 1
9RE 4

9RE 4
9RE

1 − RE 0 0 0 1
9RE 4

9RE 4
9RE

1 − E 0 0 0 1
9E 4

9E 4
9E

1 − E 0 0 0 1
9E 4

9E 4
9E

1 − E 0 0 0 1
9E 4

9E 4
9E

, (36)

where

R =
1 −

cmp
2 −

cmc
2

1 − 5
16cmp − 3

8cmc
,

E = e− t
3N

1 +
cmp
16 −

cmc
8

1 − 5
16cmp − 3

8cmc
.

In the matrix in Eq. 36, the first column represents transitions to coalescence. We extract 

from this column the cumulative distribution functions for time to coalescence for two 

lineages within an individual (state 1) and two lineages between individuals (states 3, 4, and 

5):

FTf(t) = FU(t) = 1 −
1 − cmp

2 − cmc
2

1 − 5
16cmp − 3

8cmc
e− t

3N
1 +

cmp
16 −

cmc
8

1 − 5
16cmp − 3

8cmc
, (37)

FV mm(t) = FV mf(t) = FV ff(t) = 1 − e− t
3N

1 +
cmp
16 −

cmc
8

1 − 5
16cmp − 3

8cmc
. (38)

For the expectations of these distributions, recalling that for X > 0, E[X] = ∫0
∞ 1 − FX(x) dx, 

we have
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E Tf = E[U] = 3N
1 − cmp

2 − cmc
2

1 + cmp
16 − cmc

8

, (39)

E V mm = E V mf = E V ff = 3N
1 − 5

16cmp − 3
8cmc

1 + cmp
16 − cmc

8

. (40)

3.3 Comparisons

3.3.1 Limiting distribution versus exact distribution—Under the mixture model, 

to see how well the limiting distribution of coalescence times approximates the exact 

distribution, we perform simulations. In particular, for fixed values of the number of mating 

pairs N and rates of matrilateral-parallel (cmp) and matrilateral-cross (cmc) first-cousin 

mating, we simulate 10,000 realizations of the Markov chain in Eq. 34 to produce an 

empirical cumulative distribution function (CDF) of coalescence times for lineage pairs 

within and between individuals. This procedure amounts to simulating a distribution of the 

time to the most recent common ancestor (the time it takes to hit state 0) starting in either 

state 1 (within an individual) or state 4 (between individuals).

Figure 7 plots the simulated empirical CDFs alongside the limiting CDFs presented in Eqs. 

37 and 38. Conducting these simulations for different values of the number of mating pairs 

N, we see that the limiting cumulative distribution functions tend to be slightly inflated 

compared to those simulated from the Markov chain; the limiting CDF tends to reach a 

specified probability before it is reached in the simulation. This effect is most visible for the 

smallest value of N, N = 10; as N increases, the limiting distribution functions (Eqs. 37 and 

38) closely approximate the simulated, empirical distributions.

3.3.2 X chromosome versus autosomes—Each of the limiting distributions for 

coalescence times for lineages from separate mating pairs, both for single types of first-

cousin consanguinity and for a superposition of multiple types, possesses a particular 

structure: an exponential CDF whose rate is the product of the population size and a 

reduction by a factor that accounts for consanguinity. We now examine these limiting CDFs 

for the X chromosome in relation to corresponding CDFs for autosomes. The autosomal 

coalescence time distributions under first-cousin consanguinity are obtained in Appendix 

C as a special case of the nth cousin mating model of Severson et al. (2019). Here, we 

calculate the ratio of the expected time to coalescence for the X chromosome (Eqs. 39 and 

40) and for autosomes (Eqs. C4 and C5) within and between individuals, respectively, as we 

vary rates of matrilateral and patrilateral consanguinity (Figure 8).

We first consider the ratio of expected coalescence times on the X chromosome relative 

to the autosomes for pairs of lineages within individuals (Eq. 39/Eq. C4) as a function of 

patrilateral (cpp+cpc) and matrilateral-parallel (cmp) consanguinity (Figure 8A). Because the 

expected coalescence time for two lineages on the X chromosome is a function of 3N and 
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the corresponding autosomal mean depends on 4N, in the absence of consanguinity, the 

null value of the ratio is 3
4 . The ratio achieves its minimum value of 8

17 , with a stronger 

effect of consanguinity in reducing X-chromosomal coalescence times relative to autosomal 

coalescence times, when we set cmp to 1. It achieves its maximum value of 1, increasing 

X-chromosomal coalescence times compared to autosomal coalescence times, when instead 

we set cpp + cpc to 1 (Figure 8A).

For the X:A ratio of between-individual expected coalescence times (Eq. 40/Eq. C5) as a 

function of patrilateral (cpp+cpc) and matrilateral-parallel (cmp) consanguinity (Figure 8B), 

the minimum and maximum values differ less than for the within-individual case. The 

minimum exceeds 8
17 , equaling 132

221 , and is again reached at cmp = 1. The maximum is less 

than 1, equaling 12
13 , and is reached at cpp+cpc = 1. The minimum and maximum are less 

extreme than in the within-individual case, as consanguinity has less of an effect on reducing 

the expected coalescence times in the between-individual case, both for the X chromosome 

and for the autosomes.

We next examine the X:A coalescence time ratio within individuals (Eq. 39/Eq. C4) as a 

function of patrilateral (cpp +cpc) and matrilateral-cross (cmc) consanguinity (Figure 8C). 

The minimal ratio is slightly larger than in the matrilateral-parallel case, equaling 4
7  at cmc 

= 1. The maximum occurs at 1, the same value as the corresponding case with matrilateral-

parallel in place of matrilateral-cross consanguinity, when cpp+cpc = 1. The slightly reduced 

range of values (i.e., the greater minimum) traces to the fact that the effect of matrilateral-

cross consanguinity on X-chromosomal coalescence times is slightly weaker, producing a 

weaker reduction in coalescence times, than that of matrilateral-parallel consanguinity.

Finally, we analyze the X:A coalescence time ratio between individuals (Eq. 40/Eq. C5) as 

a function of patrilateral (cpp + cpc) and matrilateral-cross (cmc) consanguinity (Figure 8D). 

The minimum occurs at cmc = 1, equaling 60
91 . As in the corresponding matrilateral-parallel 

case, the maximum, achieved at cpp + cpc = 1, is 12
13 . As was seen within individuals, the 

range of permissible values is reduced relative to the matrilateral-parallel case, owing again 

to the weaker effect of matrilateral-cross consanguinity on X-chromosomal coalescence 

times.

4 Discussion

Extending our previous work on mean coalescence times on the X-chromosome in a 

consanguinity model, we have derived large-N limiting distributions for within-individual 

and between-individual X-chromosomal coalescence times under various types of first-

cousin consanguinity. For between-individual coalescence times, each limiting distribution 

is exponential with a rate equal to the product of the number of X chromosomes and 

a reduction factor due to consanguinity (Eqs. 17, 23, and 31). Limiting distributions of 

within-individual coalescence times each have a point mass corresponding to instantaneous 

coalescence, and conditional on not coalescing instantaneously, are exponential (Eqs. 16, 22, 
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and 30). These patterns also hold for limiting distributions of pairwise coalescence times 

for a model with a mixture of types of first-cousin consanguinity (Eqs. 37 and 38); in 

simulations, the limiting distributions under this superposition agree with exact distributions 

from the Markov chain (Eq. 34, Figure 7).

Our limiting distribution results can inform comparisons of the X chromosome with 

autosomes. The four types of first-cousin consanguinity have identical effects on the 

autosomes but vary in their effect on the X chromosome. Hence, a comparison of 

coalescence time distributions for the X chromosome and autosomes can be informative 

about features of consanguinity. Our results (Eqs. 37 and 38) directly show the effect of 

different rates and types of consanguinity on the distribution of X-chromosomal coalescence 

times. For example, increasing matrilateral-parallel and matrilateral-cross consanguinity 

decreases the ratio of X and autosomal mean coalescence times; increasing patrilateral-

parallel and patrilateral-cross first-cousin consanguinity increases this ratio (Figure 8).

The results can be viewed in the setting of the idea of coalescent effective size (Nordborg 

and Krone, 2002; Sjödin et al., 2005). As in other instances of the use of the separation-of-

time-scales technique, the X-chromosomal consanguinity model behaves like a standard 

coalescent model, but with an altered effective size. Indeed, the model combines two 

phenomena for which the separation-of-time-scales approach has been separately used—

consanguinity (Nordborg and Donnelly, 1997; Severson et al., 2021) and a distinction 

between autosomes and the X chromosome (Ramachandran et al., 2008). We have shown 

that even when combining multiple phenomena, the separation-of-time-scales approach 

can distill complicated demographic features into a standard coalescent with a rescaled 

coalescent effective size. Indeed, each of our consanguinity models both for the autosomes 

and for the X chromosome has a coalescent effective size that is a function of the number 

of chromosomes in the model (4N or 3N) and the rate and type of consanguinity in the 

population.

Consanguinity and other preferences for mate choice vary across human populations, often 

depending on cultural norms for certain types of consanguinity over others (Bittles, 2012). 

Because we have found that the different types of first-cousin consanguinity generate 

an observable effect on X chromosomal coalescence times, it is possible that features 

of coalescence times can be compared across populations to assess signatures of the 

different types of consanguinity. Such assessments can potentially capitalize on the inverse 

relationship between coalescence times and genomic sharing (Palamara et al., 2012; Carmi 

et al., 2014; Browning and Browning, 2015) to use genomic sharing patterns to uncover 

features of consanguinity (Arciero et al., 2021).

We note that in our coalescent model, the consanguinity parameters are constant over a 

long-term. In human populations, features of consanguinity might change relatively rapidly, 

so that in data applications, it might not be appropriate to assume consanguinity parameters 

that persist over a large number of generations. If the relative ordering of the different types 

of consanguinity does not change, however, we expect that the model would continue to be 

informative.
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In applications in which the model is sensible, a potential limitation is that exact rates of a 

given type of consanguinity might not be possible to infer from X-chromosomal data. For 

example, the effects of the matrilateral-cross first-cousin consanguinity parameter on the 

X-chromosomal coalescence times distributions are relatively small (Figure 6), so that given 

the difficulty in precisely estimating the coalescence times from data, the parameter might 

not be identifiable. By jointly considering X-chromosomal and autosomal data (Figure 8), 

however, more information will be available to conduct parameter inference.

Another limitation of our approach is that in formulating our model, we have disregarded 

higher-order consanguinity. While we have explicitly modeled first-cousin mating pairs, we 

have ignored the possibility that a pair has more distant consanguinity that is not captured in 

the model. It may be possible, however, to allow for such possibilities by incorporating into 

the nth cousin framework of Severson et al. (2021) sex-specific varieties of consanguinity at 

different levels of relationship.
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Appendix A: Stationary distribution of the fast transition matrix

In this appendix, we solve for the stationary distribution of the “fast” transition matrix A in 

the case of sib mating on the X chromosome. The same approach is also applied in the main 

text to obtain the stationary distribution of the fast transition matrix in other models.

First, we permute the states to rewrite matrix A in a canonical form. The matrix A in Eq. 

5 has one absorbing state (state 0) and a closed communication class C1 = {3, 4, 5}. We 

rearrange the matrix to take the form

D = C 0
R Q , (A1)

listing the recurrent states before the transient states. Thus, square matrix C includes 

transitions between recurrent states (i.e., absorbing states and closed communication 

classes), and square matrix Q includes transitions between transient states. Matrix R 
includes transitions from the transient states to the recurrent states. For matrix A in Eq. 

5, the recurrent states are state 0 (absorbing) and states 3, 4, and 5 (closed communication 

class C1). The transient states are states 1 and 2. Permuting the matrix A to order the states 

0, 3, 4, 5, 1, 2, we write
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We treat the closed communication class C1 as a single absorbing state because any 

transitions made into C1 transition infinitely often among the states it contains. We rewrite 

the transition matrix for the resulting Markov chain by collapsing the columns and rows 

corresponding to the states in C1. A* becomes

Matrix A** now has the form in Eq. A1, with 2 × 2 submatrices and C as the identity 

matrix.

Given a matrix in canonical form (Eq. A1 where C is the identity), the stationary distribution 

is given by

lim
r ∞

Dr = I 0
NR 0 ,

where N is the fundamental matrix N = (I − Q)−1 and I is the identity matrix (Kemeny and 

Snell, 1983, 3.3.7). The matrix NR defines for each pair consisting of a transient state and a 

recurrent state, the probability that from the transient state, the process reaches the recurrent 

state. For matrix A**, we have

P * * = lim
r ∞

A * * r =

1 0 0 0
0 1 0 0
c0

4 − 3c0
4 − 4c0
4 − 3c0

0 0

c0
4 − 3c0

4 − 4c0
4 − 3c0

0 0

.

To recover the stationary distribution of A*, we expand the absorbing state for the closed 

communication class C1, replacing it with the stationary distribution for the irreducible 3×3 

Cotter et al. Page 26

Theor Popul Biol. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



matrix associated with the class. We then weight the transient transition probabilities in NR 
by this stationary distribution.

In other words, NR now gives, for each pair consisting of a transient and a recurrent state, 

the probability of the associated transition. Expanding the absorbing state for the closed 

communication class C1, we get

P* = lim
r ∞

A* r =

1 0 0 0 0 0

0 1
9

4
9

4
9 0 0

0 1
9

4
9

4
9 0 0

0 1
9

4
9

4
9 0 0

c0
4 − 3c0

1
9

4 − 4c0
4 − 3c0

4
9

4 − 4c0
4 − 3c0

4
9

4 − 4c0
4 − 3c0

0 0

c0
4 − 3c0

1
9

4 − 4c0
4 − 3c0

4
9

4 − 4c0
4 − 3c0

4
9

4 − 4c0
4 − 3c0

0 0

.

Finally, we permute P* to recover P (Eq. 6).

Appendix B: The matrix exponential etG

In this appendix, we obtain the matrix exponential, etG, which is needed in calculating the 

large-N limit, Π(t) = PetG. The computations in this appendix are specific to sib mating on 

the X chromosome, but the same method can be applied to obtain the matrix exponential in 

the other models.

We first obtain the generator matrix from Eqs. 5 and 6:
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G = PBP =

0 0 0 0 0 0
4 − 4c0 4 − c0

3 4 − 3c0
2 0 0 1

9 ⋅ 4 − 4c0 4 − c0
3 4 − 3c0

2
4
9 ⋅ 4 − 4c0 4 − c0

3 4 − 3c0
2

4
9 ⋅ 4 − 4c0 4 − c0

3 4 − 3c0
2

4 − 4c0 4 − c0
3 4 − 3c0

2 0 0 1
9 ⋅ 4 − 4c0 4 − c0

3 4 − 3c0
2

4
9 ⋅ 4 − 4c0 4 − c0

3 4 − 3c0
2

4
9 ⋅ 4 − 4c0 4 − c0

3 4 − 3c0
2

4 − c0
3 4 − 3c0

0 0 1
9 ⋅ 4 − c0

3 4 − 3c0
4
9 ⋅ 4 − c0

3 4 − 3c0
4
9 ⋅ 4 − c0

3 4 − 3c0
4 − c0

3 4 − 3c0
0 0 1

9 ⋅ 4 − c0
3 4 − 3c0

4
9 ⋅ 4 − c0

3 4 − 3c0
4
9 ⋅ 4 − c0

3 4 − 3c0
4 − c0

3 4 − 3c0
0 0 1

9 ⋅ 4 − c0
3 4 − 3c0

4
9 ⋅ 4 − c0

3 4 − 3c0
4
9 ⋅ 4 − c0

3 4 − 3c0

.

(B1)

The generator matrix, G, has nonzero entries in the columns for state 0 and states 3, 4, and 5. 

It has the property

G2 = − G
4 − c0

3 4 − 3c0
.

For the constant k = −(4 − c0)/[3(4 − 3c0)], we can then recursively write

Gn = kn − 1G, (B2)

The matrix exponential, etG = ∑i = 0
∞ tiGi/i!, then equals
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etG = I + k−1G ∑
i = 1

∞ tiki
i!

= I − k−1 1 − ekt G .

Converting t into units of N generations and multiplying by P (Eq. 6), we obtain PetG as in 

Eq. 7.

For each model studied, for the associated generator matrix G, the corresponding quantity k 
that satisfies Eq. B2 appears in Table B1.

Appendix C: Limiting distribution of autosomal coalescence times for first-

cousin mating

Equation 46 of Severson et al. (2021) gives a limiting distribution of autosomal coalescence 

times for a model with a superposition of levels of cousin mating, up to nth cousins. In order 

to recover first-cousin mating on the autosomes to compare to our X-chromosomal results, 

we use the special case of this nth cousin model, where the rate of sibling mating c0 is 0 

and the rate of first-cousin mating is c1, stopping at first cousins. This special case produces 

the following transition matrix, where state 0 is still coalescence, state 1 is two lineages in 

an individual, state 20 is two lineages in opposite individuals of a mating pair, state 21 is 

two lineages in two individuals one generation ancestral to a mating pair, and state 3 is two 

lineages in two individuals in different mating pairs:

(C1)

Note here that there is no need to use a two-sex model, as for autosomes, states referring to 

two males, a male and a female, and two females simply collapse into the combined state 3. 

No new information is gained for the autosomes when separating these states. Using Eq. 1, 

we split the transition matrix into fast and slow processes:

A =

1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
c1
16

c1
16

c1
8 0 1 −

c1
4

0 0 0 0 1

, B =

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1
4

1
4

1
2 0 −1

.
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We solve for the stationary distribution of the fast matrix using the method in Appendix A 

(simpler here by a single absorbing state for two lineages between individuals rather than a 

closed communication class):

P = lim
r ∞

Ar =

1 0 0 0 0
c1

16 − 3c1
0 0 0

16 − 4c1
16 − 3c1

c1
16 − 3c1

0 0 0
16 − 4c1
16 − 3c1

c1
16 − 3c1

0 0 0
16 − 4c1
16 − 3c1

0 0 0 0 1

.

Using G = PBP, we obtain the matrix exponential etG using the method of Appendix B. We 

then compute Π(t) via Eq. 3, converting t back into units of N generations:

Π(t) = PetG =

1 0 0 0 0

1 −
1 −

c1
4

1 − 3
16c1

e− t
4N

1
1 − 3

16c1
0 0 0

1 −
c1
4

1 − 3
16c1

e− t
4N

1
1 − 3

16c1

1 −
1 −

c1
4

1 − 3
16c1

e− t
4N

1
1 − 3

16c1
0 0 0

1 −
c1
4

1 − 3
16c1

e− t
4N

1
1 − 3

16c1

1 −
1 −

c1
4

1 − 3
16c1

e− t
4N

1
1 − 3

16c1
0 0 0

1 −
c1
4

1 − 3
16c1

e− t
4N

1
1 − 3

16c1

1 − e− t
4N

1
1 − 3

16c1
0 0 0 e− t

4N
1

1 − 3
16c1

.

We extract from the first column of this matrix the cumulative distribution functions for two 

lineages starting in state 1 (within an individual) and state 3 (between individuals):

FT(t) = FU(t) = 1 −
1 − c1

4
1 − 3

16c1
e− t

4N
1

1 − 3
16c1 , (C2)

FV (t) = 1 − e− t
4N

1
1 − 3

16c1 . (C3)

Severson et al. (2021) showed that the limiting distribution for nth cousin mating is given by 

their Eqs. 47 and 48:

FT(t) = FU(t) = 1 − 1 − 4c
1 − 3ce− t

4N
1

1 − 3c ,
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FV (t) = 1 − e− t
4N

1
1 − 3c .

In the special case where we only have first-cousin mating, we replace their c term with 

c1/16 and recover Eqs. C2 and C3, respectively.

For the expectations of these distributions, by E[X] = ∫0
∞ 1 − FX(x) dx for X > 0, we find

E[T] = E[U] = 4N 1 − c1
4 , (C4)

E[V ] = 4N 1 − 3
16c1 . (C5)

Eqs. C4 and C5, obtained from the limiting distribution, accord with the large-N limit of 

Eqs. 8 and 10 from Severson et al. (2019), in which they were calculated via first-step 

analysis.
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Figure 1: 
Five states for two lineages. Males are squares; females are circles. State 1: within a female 

(blue). State 2: in two individuals in a mating pair (green). State 3: in two males in different 

mating pairs (yellow). State 4: in a male and a female in different mating pairs (orange). 

State 5: in two females in different mating pairs (purple).
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Figure 2: 
Cumulative distributions of coalescence times as functions of the number of generations t 
and the fraction of sib mating pairs c0. (A) Coalescence time within individuals, P(Tf ≤ t), 
Eq. 8. (B) Coalescence time between individuals, P(Vmf ≤ t), Eq. 9.

Cotter et al. Page 34

Theor Popul Biol. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
Example pedigree illustrating transitions from state 20 in the absence of consanguinity. 

Considering a pair of lineages in a mating pair, depicted in blue, the process always 

immediately transitions to the holding state 21 one generation in the past. From state 21, 

the lineages transition to two separate mating pairs, and hence, to states 3, 4, or 5.
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Figure 4: 
Example pedigree illustrating transitions from state 20 in the presence of first-cousin 

consanguinity. Considering a pair of lineages in a mating pair, depicted in blue, the process 

always immediately transitions to the holding state 21. From state 21, the lineages can 

potentially transition to any of states 0, 1, 20, 3, 4, or 5, depending on the type of first-cousin 

consanguinity. Matrilateral-cross consanguinity is depicted.
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Figure 5: 
Cumulative distributions of coalescence times as functions of the number of generations 

t and the fraction of matrilateral-parallel mating pairs c1. (A) Coalescence time within 

individuals, P(Tf ≤ t), Eq. 22. (B) Coalescence time between individuals, P(Vmf ≤ t), Eq. 23.
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Figure 6: 
Cumulative distributions of coalescence times as functions of the number of generations 

t and the fraction of matrilateral-cross mating pairs c1. (A) Coalescence time within 

individuals, P(Tf ≤ t), Eq. 30. (B) Coalescence time between individuals, P(Vmf ≤ t), Eq. 31.
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Figure 7: 
Cumulative distribution functions (CDFs) of coalescence times in a model with a mixture of 

types of consanguinity. The Markov chain is given in Eq. 34; we consider the case of cmp = 

0.2 and cmc = 0.2 with each of three values for the number of mating pairs N. Dashed lines 

represent the limiting CDFs in Eqs. 37 and 38, and solid lines represent the simulated CDFs 

from 10,000 observations of the first-cousin mixture model (as described by the Markov 

chain in Eq. 34).
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Figure 8: 
Ratios of X-chromosomal and autosomal mean coalescence times. Each point represents a 

ratio of coalescence times for a specified mixture of two types of consanguinity, depicted on 

the x and y axes. (A) Within individuals, matrilateral parallel and patrilateral consanguinity 

(Eq. 39/Eq. C4). (B) Between individuals, matrilateral parallel and patrilateral consanguinity 

(Eq. 40/Eq. C5). (C) Within individuals, matrilateral cross and patrilateral consanguinity 

(Eq. 39/Eq. C4). (D) Between individuals, matrilateral cross and patrilateral consanguinity 

(Eq. 40/Eq. C5). In each panel, the minimal ratio is indicated (obtained by setting 

matrilateral consanguinity to 1 and patrilateral consanguinity to 0), as is the maximum 

(obtained by setting matrilateral consanguinity to 0 and patrilateral consanguinity to 1). The 

value 3
4  occurs with no consanguinity, located at the origin in each panel. Values greater 

than 3
4  appear in blue, indicating combinations of parameter values that bring expected X 

chromosomal coalescence times closer to expected autosomal coalescence times. Values that 

reduce X chromosomal coalescence times to a greater extent than on autosomes, thereby 

shifting the ratio less than 3
4 , appear in red. Contour lines divide [ 8

17 , 1] into equal-sized 

intervals.
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Table B1:

Constants used in matrix exponentiation for consanguinity models.

Type of consanguineous mating Chromosome Section Quantity k satisfying Gn = kn−1G for generator matrix G (Eq. B2)

Sibling X 3.1 −
4 − c0

3 4 − 3c0
Patrilateral-parallel first-cousin X 3.2.1 − 1

3
Patrilateral-cross first-cousin X 3.2.2 − 1

3
Matrilateral-parallel first-cousin X 3.2.3 −

16 + c1
3 16 − 5c1

Matrilateral-cross first-cousin X 3.2.4 −
8 − c1

3 8 − 3c1
Bilateral-parallel first-cousin X 3.2.5 −

16 + c1
3 16 − 5c1

Bilateral-cross first-cousin X 3.2.6 −
8 − c1

3 8 − 3c1
Superposition of unilateral first-cousin X 3.2.7 −

16 + cmp − 2cmc
3 16 − 5cmp − 6cmc

First-cousin Autosomes Appendix C − 4
16 − 3c1

Note that cmp and cmc in Section 3.2.7 have the same meaning as c1 in Sections 3.2.3 and 3.2.4, respectively.
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