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A B S T R A C T   

The performance of an automated commercial CRISPR/Cas based technology was evaluated and 
compared with routine RT-PCR testing to diagnose COVID-19. Suspected and discharged COVID- 
19 cases were included and tested with CRISPR-based SARS-CoV-2 test and RT-PCR assay using 
throat swab and sputum specimens. The diagnostic yield was calculated and compared using the 
McNemar test. A total of 437 patients were included for analysis, including COVID-19 (n = 171), 
discharged cases (n = 155), and others (n = 111). For the diagnosis of COVID-19, the CRISPR- 
SARS-CoV-2 test had a sensitivity and specificity of 98.2% (168/171) and 100.0% (266/266), 
respectively; the RT-PCR test had a sensitivity and specificity of 100.0% (171/171) and 100.0% 
(266/266), respectively. No significant difference was found in the sensitivity of CRISPR-SARS- 
CoV-2 and RT-PCR. In conclusion, the CRISPR-SARS-CoV-2 test had a comparable performance 
with RT-PCR and showed several advantages, such as short assay time, low cost, and no 
requirement for expensive equipment.   

1. Introduction 

Through December 2021, there were 620 million cases of Coronavirus disease (COVID-19) and 6.5 million deaths reported 
worldwide (https://covid19.who.int/accessed on Oct 16, 2022). Although vaccines are already available, the emergence and rapid 
transmission of new variants threaten attempts to protect against COVID-19 [1]. In addition, the efficiency of approved drugs (such as 
molnupiravir) remains to be elucidated [2]. These challenges serve as obstacles to the management of COVID-19. Thus, early diagnosis 
is helpful for timely interventions and improving health outcomes [3–5]. 

The host response produces biomarkers that can be used to identify individuals infected with severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) [6,7]. For that purpose, assays detecting specific SARS-CoV-2 antigens and antibodies have been 
developed and are recommended to detect COVID-19 cases with symptom initiation and high viral load [8]. However, several dis
advantages of these assays should be noted. For example, the standardization of performing such tests is required to improve diagnostic 
performance; the performance of antigen testing is highly related to viral load, with a low to modest sensitivity compared to reference 
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Table 1 
Primers for the CRISPR-based SARS-CoV-2 test.   

Upstream primer (5′-3′) Downstream primer (5′-3′) CRISPR RNA (5′-3′) ssDNA 

N N–F: ATGGAAGTCACACCTTCGGGAACGTGGTTG N-R: GGCTCTGTTGGTGGGAATGTTTTGTATGCG SARS-CoV2-N-CRISPR RNA: 
UAAUUUCUACUAAGUGUAGAUAAAGAUCAAGUCAUUUUGCUGAA 

TTATT 

RNP Rnase P–F: 
GATCCGCAATAACTCAGCCATCCACATCCG 

Rnase P-R: 
CCCACCAAGAGACAATTACCCCCACCCTCA 

Rnase P- CRISPR RNA: AUUUCUACUAAGUGUAGAUAAUUACUUGGGUGUGACCCUGAA  
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nucleic acid amplification testing (NAAT) methods [9]. Serological assays for COVID-19 have similar obstacles in diagnostic perfor
mance. In addition, the cross-reactivity caused by vaccination presents another concern [10]. Therefore, further diagnostic devel
opment is required to improve testing sensitivity and specificity [11]. 

As the infectious agent for COVID-19, SARS-CoV-2 is an RNA virus, and thus all available RNA detection tools are applicable to 
detect the virus. Currently, RT-PCR or NAAT tools remain the first diagnostic methods for SARS-CoV-2 infection [9]. As screening tests, 
RT-PCR and RT-LAMP have an overall pooled sensitivity of 0.96 (0.93–0.98) and 0.92 (0.85–0.96), respectively [12]. However, 
false-positive results should be taken into consideration [12–14]. 

Recently, the clustered regularly interspaced short palindromic repeats (CRISPR) system has been introduced in the diagnosis of 

Fig. 1. Schematics showing the principles of RT-PCR, RPA, and CRISPR/Cas12a detection systems. The commercial SARS-CoV-2 kit (BioGerm, 
Shanghai, China) is designed based on RPA and CRISPR. (A) RT-PCR: N gene target was amplified and evaluated using real-time Taqman PCR. (B) 
RPA: At 42 ◦C, RNA was first reverse transcribed to cDNA using reverse transcriptase. Recombinase proteins form complexes with each primer, 
which scan cDNA for homologous sequences. DNA polymerase uses designed primers to transcribe the complementary strand of cDNA and forms a 
double-stranded DNA (dsDNA) template. The recombinase/primer complex binds to dsDNA and promotes strand displacement by the primer at the 
cognate site, and single stranded binding proteins stabilize the displaced DNA chain. The recombinase disassembles and a strand displacing DNA 
polymerase binds to the 3′-end of the primers, which elongates the primer. The exponential amplification is then achieved by cyclic repetition of this 
process. (C) Detector assay: The target sequence is amplified by the RPA reaction, followed by mixing with the CRISPR/LbCas12a reagents for 
cleavage. LbCas12a utilizes the crRNA as guides to bind cognate DNA sequences. LbCas12a is then activated for on-target DNA cleavage (cis 
cleavage) and non-target single-stranded DNA cleavage (trans/collateral cleavage). The reported signal-stranded DNA (ssDNA) includes a 
fluorophore-quencher pair, and the cleavage events will free the fluorophore from its quencher, in effect activating fluorescence that can 
be measured. 
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infectious diseases, such as tuberculosis [15], metapneumovirus [16], and malaria [17]. Such assays employ the trans cleavage activity 
of a Cas12/gRNA complex bound to an amplicon recognition sequence to cleave and derepress a quenched fluorescent oligonucleotide 
reporter that is present at a high concentration. Compared to PCR-based tests, CRISPR-associated proteins (Cas) diagnostic tests can be 
performed at physiological temperature (even room temperature), offer comparable sensitivity and specificity, can outperform PCR 
tests, do not require sophisticated equipment or well-established labs, and are less costly [18]. Therefore, the introduction of 
CRISPR-Cas could significantly impact the field of molecular diagnostics [19]. Indeed, there is a demand for rapid, accurate, and 
sensitive tests for COVID-19 diagnosis. Previously, several CRISPR methods have been developed for COVID-19 diagnosis. For 
example, the FnCas9 Editor Linked Uniform Detection Assay (FELUDA) was reported by Azhar et al., with a sensitivity of 100% and 
specificity of 97% [20]. Similar CRISPR methods has been developed and evaluated by Fasching et al. [21], Mahas et al. [22], and Liu 
et al. [23]. CRISPR-based assays can also detect single-copy targets [24] and distinguish targets with single base differences [25] to 
permit sensitive and accurate mapping of SARS-CoV-2 RNA changes in respiratory and non-respiratory samples. For example, a 
FnCas9-based CRISPR diagnostic was developed for rapid and accurate detection of major SARS-CoV-2 variants [26], and a 
CRISPR-Cas12a-empowered electrochemical biosensor was evaluated for rapid and ultrasensitive detection of the SARS-CoV-2 Delta 
variant [27]. 

In this prospective study, we aimed to assess the usefulness of an automated commercial CRISPR based technology for COVID-19 
diagnosis. For a more comprehensive evaluation, routine methods, such as RT-PCR, were also performed and included for a direct 
comparison among cases with suspected COVID-19. 

2. Materials and methods 

The study protocol was approved by the Ethical Committee of Shanghai Public Health Clinical Center (No. 2021-E011-02) and 
Heilongjiang Center for Disease Control and Prevention (No. Hei-CDC 2020-09). All methods were carried out in accordance with 
relevant guidelines and regulations. Written informed consent was waived due to anonymous data collection, and samples were 
collected for routine activities. 

2.1. Subjects 

Cases with suspected COVID-19 between February 2021 and April 2021 were included and evaluated for further analysis. As a 
study group, COVID-19 cases were diagnosed clinically based on an exposure history of COVID-19 and corresponding symptoms of 
COVID-19 infection, or confirmed with NAAT, following the guideline issued by the Chinese National Health Commission [28]. The 
control group included cases with an alternative diagnosis or those discharged after two rounds of consecutively negative COVID-19 
RT-PCR results [28]. 

2.2. Specimen collection 

Throat swab and sputum specimens were either collected and sent for SARS-CoV-2 assays immediately, stored at 4 ◦C for 24 h and 
− 70 ◦C for longer storage periods, or stored at − 80 for analysis on the next day. Briefly, throat swab sampling was performed as 
follows: a swab (1) was inserted, reaching the posterior pharynx and tonsillar areas; (2) rotated against the tonsillar pillars and 
posterior oropharynx; and (3) placed into the transport tube and closed. Sputum collection was guided by a trained healthcare pro
fessional, and deep cough sputum was collected in a sterile container. 

2.3. Principle 

The CRISPR-based SARS-CoV-2 (CRISPR-SARS-CoV-2, BioGerm, Shanghai, China) test was performed using an automated system 
(BG-Nova-X8, BioGerm, Shanghai, China) and designed based on reverse transcription recombinase polymerase amplification (RT- 
RPA) and CRISPR Cas12a (orthologs from Lachnospiraceae bacterium; Tolo Biotech, Shanghai, China; hereinafter referred to as 
“LbCas12a”) -mediated detection (limit of detection, 800 copies/ml). The primers are listed in Table 1. The system consisted of an 
instrument (BG-Nova-X8) and disposable tubes that fully integrated RNA extraction, gene amplification, CRISPR reaction, and 
detection (Fig. 1A− C). The user simply added the sample to the tube and placed it in the apparatus. A result was provided 30 min later. 
The CRISPR-SARS-CoV-2 test was performed according to the manufacture’s instructions. In parallel, samples were also tested using a 
RT-PCR kit (limit of detection, 500 copies/ml) purchased from BioGerm (Shanghai, China), which detects the ORF1ab gene and the N 
gene. The kit has a presion of <5%, and no significant influential evidence or cross reaction was observed for within-run, between-run, 
within-day, between-day, inter-class, intra-class, within lab, and between-lab precision parameters (more details listed in the in
structions). In addition, the assay performance was validated using a SARS-CoV-2 certified reference material (GBW(E)091099, Na
tional Reference Material, China NMPA). 

RNA extraction: RNA extraction was carried out using superparamagnetic particles [29] adapted for automation on the platform. 
Briefly, samples were mixed with magnetic particles and ethanol, and the RNA was then captured by the particles [30]. Subsequently, 
the particles were immobilized on a magnet. After washing twice with 80% ethanol, the captured nucleic acids were eluted in 10 mM 
Tris, pH 7. 
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2.4. CRISPR-SARS-CoV-2 test 

The mixture containing the sample, forward, and reverse primers targeting the SARS-CoV-2 N gene and human RNase P, mag
nesium acetate, and RPA was incubated together. RNA was reverse transcribed into cDNA, and cDNA was then amplified using PCR. 
The amplification product was then added to the CRISPR reaction mix consisting of CRISPR RNA (crRNA), LbCas12a, and the ssDNA 
reporter. Finally, the fluorescence signal was recorded and analyzed. According to the manufacturer’s instruction, if the RNase P gene 
and N gene targets were detected, the specimen was considered positive. If the RNase P gene targets were positive and no amplification 
of the N gene target was found, the specimen was considered negative. Otherwise, an amplication control failure was obsvered and a 
repeated amplification or specimen collection was required for further analysis. 

2.5. Statistical analysis 

Sensitivity was calculated as the proportion of CRISPR-SARS-CoV-2-positive cases among the study group. Specificity was calcu
lated as the proportion of CRISPR-SARS-CoV-2-negative cases among the control group. The McNemar test was used to compare the 
sensitivity of detection of SARS-CoV-2. Data analysis was performed using SPSS version 16.0 software. Statistical significance was 
indicated by a P-value less than 0.05. 

3. Results 

3.1. Baseline characteristics 

Only one case was excluded due to death during hospitalization and a total of 437 patients were included for final analysis. Of them, 
258 cases were male (59.0%). The mean age was 30.0 ± 20.6 years old. Among the 437 patients, 171 patients were diagnosed as 
COVID-19 positive, 151 patients recovered and met the discharge criteria, and the remaining 115 cases had an alternative disease 
(Fig. 2), including pneumonia (n = 13), bronchitis (n = 59), upper respiratory tract infection (n = 28), tonsillitis (n = 5), asthmatic 
bronchitis (n = 5), herpetic angina (n = 2), laryngitis (n = 1), acute gastroenteritis (n = 1), and unknown cause of fever (n = 1). The 
171 COVID-19 cases were further classified as asymptotic (n = 25), mild (n = 45), moderate (n = 100), and severe (n = 1). In addition 

Fig. 2. Flow chart of eligible and included patients for analysis.  
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to throat swab, sputum speciments were collected from 54 patients. 

3.2. Diagnostic performance 

For the CRISPR-SARS-CoV-2 test, the sensitivity and specificity for the diagnosis of COVID-19 were 98.2% (95% CI: 95.0–99.4%; 
168/171) and 100.0% (95% CI: 98.6–100.0%; 266/266) (Table 2). In addition, all discharged patients were CRISPR-SARS-CoV-2- 
negative. 

For the RT-PCR test, the mean CT value was 31.8 ± 4.3 among RT-PCR(+) cases. The sensitivity and specificity for the diagnosis of 
COVID-19 were 100.0% (95% CI: 97.8–100.0%; 171/171) and 100.0% (95% CI: 98.6–100.0%, 266/266). 

Statistical analysis showed that there was no significant difference in the sensitivity of CRISPR-SARS-CoV-2 and RT-PCR for the 
diagnosis of COVID-19. 

3.3. Discordance 

Only three cases were reported with a discordant result, all of which were CRISPR-SARS-CoV-2-negative and RT-PCR-positive. This 
may be explained by the low abundance of N gene levels. Two sequential RT-PCR tests for the same individual had only one positive 
result for the N gene; another two cases were confirmed with positive results for the ORF1ab gene, without evidence of the N gene. 

4. Discussion 

Several effector proteins were introduced into the CRISPR system, such as type II (Cas9), typeV (Cas14, Cas12a, and Cas12b), and 
type VI (Cas13a and Cas13 b). In this study, a commercial CRISPR-SARS-CoV-2 test, which was designed using CRISPR LbCas12a, was 
evaluated. We found that the kit had equal sensitivity compared to the routine RT-PCR for the diagnosis of COVID-19. To the best of our 
knowledge, this is the first report investigating a commercial CRISPR based PCR test for SARS-CoV-2 infection. Compared with the 
routine RT-PCR, this CRISPR method has several advantages, such as low cost, rapid results, and no expensive equipment requirement. 

Recent progress in CRISPR research has opened up a new area for NAAT-based pathogen detection [19]. This method for detection 
of infectious agents has been developed and widely evaluated. Compared with routine PCR methods, CRISPR has several advantages, 
such as a short turn round time, low cost, easy-to-use, and no requirement of expensive equipment [16,31,32]. For example, 
CRISPR-Cas12a technology was evaluated in the diagnosis of human papillomavirus, and the data suggested that this tool could 
achieve results within 35 min with a low detection limit [33]. An integrated assay including RT-RPA and CRISPR Cas12a-mediated 
detection was evaluated in the diagnosis of HIV-1 infection, showing a sensitivity of 98.95% and specificity of 100%, respectively 
[34]. Similarly, this combination showed a high sensitivity (93.75%) and specificity (90.63%) for the detection of Yersinia pestis, as 
reported by You et al. [35]. Jiang et al. evaluated CRISPR-group B Streptococcus (GBS) for the detection of GBS [36]. They demon
strated that the method has a relatively good sensitivity (94.5%), while PCR has a relatively low sensitivity (90.9%) [36]. In addition, 
this method offered a shorter turnaround time and lower instrument demands than routine PCR-based assays [36]. 

The global COVID-19 pandemic has escalated the interest in using CRISPR tools for COVID-19 diagnosis. Many CRISPR-based PCR 
assays have been constructed for the detection of SARS-CoV-2. Several types of CRISPR methods were summarized in a prior review 
article. The assays described included CRISPR-Cas13a enzyme-, CRISPR-Cas12a enzyme-, and CRISPR-Cas12 b enzyme-mediated DNA 
detection, all-in-one dual CRISPR-Cas12a assay, and enhanced analysis of nucleic acids with crRNA extensions [37]. However, these 
tools remain as basic milestones at the developmental statge and very few have been used in clinical settings [38]. Compared to 
PCR-based methods, CRISPR/Cas-based SARS-CoV-2 assays are very promising due to several characteristics: rapidity, simplicity, and 
higher sensitivity and specificity [39]. For example, Ooi et al. developed an engineered AsCas12a enzyme based on CRISPR. Their test 
exhibits a specificity and positive predictive value of 100% and required less time (within 30 min) to obtain restuls [40]. Li et al. 
published an enhanced strip method based on CRISPR, which was used to visualize the results directly and was 100% concordant with 
the RT-PCR method [41]. Finally, Hou et al. reported a 100% sensitivity for the diagnostic performance of ‘CRISPR-nCoV’ for 
SARS-CoV-2 detection [42]. 

The role of multiple regions of the SARS-CoV-2 genome has been discussed in CRISPR methods. For instance, Ali et al. designed 
primers targeting N and E genes [43] and found that among the positive samples with qPCR, the N gene assay had a positivity of 86%, 
and the E gene had a positivity of 38%. Multiple primers targeting several regions of ORF1ab were designed by Lucia et al. and 
achieved a good detection limit of 10 copies/μL [44]. In our study, although only the N gene was included for analysis, the diagnostic 

Table 2 
Results of CRISPR-SARS-CoV-2 and RT-PCR tests (throat swab and sputum) among patients with COVID-19.    

CRISPR-SARS-CoV-2 test Total   

+ −

RT-PCR test + 168a 3b 171  
− 0 0 0 

Total 168 3 171  

a Including sputum (n = 52). 
b Including sputum (n = 2). 
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performance of the CRISP-SARS-CoV-2 test had equal sensitivity compared to routine RT-PCR targeting ORF1ab and N genes together. 
This finding is consistent with a recent meta-analysis that showed that the one target gene method had a high sensitivity of 0.99 (95% 
CI: 0.93–1.00) and specificity of 1.00 (95% CI: 0.98–1.00) [45]. 

As previously reported, it is a challenge to detect an extremely low target DNA (lower than 10 nM) using the CRISPR method within 
less than 1 h [46,47]. Therefore, amplification methods, such as PCR [48,49], LAMP [50], and RPA, have been integrated into 
CRISPR-based detection systems [19] to enhance its sensitivity. An additional RT step is also required for RNA targets, such as 
SARS-CoV-2. RT-RPA and RT-LAMP were primarily adopted as the amplification technique for the SARS-CoV-2 nucleic acid, and the 
corresponding performance showed no significant difference [45]. In our study, RPA was included in the CRISP-SARS-CoV-2 detection 
system. 

Except for the sample preparation time, the operational time for the SARS-CoV-2 RT-PCR assay is approximately 2 h [51]. By 
comparison, the turnaround time of all Cas12-based studies is reported to be less than 1 h (after excluding sample preparation time). In 
our study, the CRISPR- SARS-CoV-2 only required approximately 30 min. Hence, this system is rapid compared with routine PCR 
methods. SARS-CoV-2 assays usually need to be conducted under biological safety level conditions by trained professionals. However, 
the BG-Nova-X8 platform includes all essential materials for detection, without any need for special laboratory equipment, highly 
trained personnel, or additional procedures during the test. Therefore, it is cost-effective for both mass production and administration 
and could decrease human error during needle insertion, improving test reliability. 

This study has several limitations that should be noted. First, the dynamic changes of the CRISPR SARS-CoV2 assay could not be 
monitored, and no additional information is provided for the comparison of critical values between CRISPR (fluorescence intensity) 
and RT-PCR (ct value) methods. Second, only confirmed cases (RT-PCR positive) were included for analysis, which may have increased 
the diagnostic yield of the CRISPR SARS-CoV2 assay. Third, although no significant difference was found for the comparison of CRISPR 
and RT-PCR methods, RT-PCR outperformed the CRISPR method with regards to detection limit. Thus, caution should be paid when 
interpreting our results. 

In conclusion, an RPA coupled with CRISPR-LbCas12a has been commercially introduced for SARS-CoV-2 detection. Our data 
suggest that the CRISPR-SARS-CoV-2 test has a comparable sensitivity with routine RT-PCR assays, as well as has several merits, such 
as short assay time, low cost, and no requirement of expensive equipment. In addition, this method provides a valuable reference for 
the subsequent development of CRISPR technology. 
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