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Abstract

Purpose: Myocardial perfusion imaging (MPI) using single-photon emission computed 

tomography (SPECT) is widely applied for the diagnosis of cardiovascular diseases. In clinical 

practice, the long scanning procedures and acquisition time might induce patient anxiety and 

discomfort, motion artifacts, and misalignments between SPECT and computed tomography (CT). 

Reducing the number of projection angles provides a solution that results in a shorter scanning 

time. However, fewer projection angles might cause lower reconstruction accuracy, higher noise 

level, and reconstruction artifacts due to reduced angular sampling. We developed a deep-learning-

based approach for high-quality SPECT image reconstruction using sparsely-sampled projections.

Methods: We proposed a novel deep-learning-based dual-domain sinogram synthesis (DuDoSS) 

method to recover full-view projections from sparsely-sampled projections of cardiac SPECT. 

DuDoSS utilized the SPECT images predicted in the image domain as guidance to generate 

synthetic full-view projections in the sinogram domain. The synthetic projections were then 

reconstructed into non-attenuation-corrected (NAC) and attenuation-corrected (AC) SPECT 

images for voxel-wise and segment-wise quantitative evaluations in terms of normalized mean 

square error (NMSE) and absolute percent error (APE). Previous deep-learning-based approaches 

including direct sinogram generation (Direct Sino2Sino) and direct image prediction (Direct 

Img2Img) were tested in this study for comparison. The dataset used in this study included a total 

of 500 anonymized clinical stress-state MPI studies acquired on a GE NM/CT 850 scanner with 60 

projection angles following the injection of 99mTc-tetrofosmin.
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Results: Our proposed DuDoSS generated more consistent synthetic projections and SPECT 

images with the ground truth than other approaches. The average voxel-wise NMSE between the 

synthetic projections by DuDoSS and the ground-truth full-view projections was 2.08 ± 0.81%, 

as compared to 2.21 ± 0.86% (p < 0.001) by Direct Sino2Sino. The averaged voxel-wise NMSE 

between the AC SPECT images by DuDoSS and the ground-truth AC SPECT images was 1.63 

± 0.72%, as compared to 1.84 ± 0.79% (p < 0.001) by Direct Sino2Sino and 1.90 ± 0.66% (p < 

0.001) by Direct Img2Img. The averaged segment-wise APE between the AC SPECT images by 

DuDoSS and the ground-truth AC SPECT images was 3.87 ± 3.23%, as compared to 3.95 ± 3.21% 

(p = 0.023) by Direct Img2Img and 4.46 ± 3.58% (p < 0.001) by Direct Sino2Sino.

Conclusions: Our proposed DuDoSS is feasible to generate accurate synthetic full-view 

projections from sparsely-sampled projections for cardiac SPECT. The synthetic projections and 

reconstructed SPECT images generated from DuDoSS are more consistent with the ground-truth 

full-view projections and SPECT images than other approaches. DuDoSS can potentially enable 

fast data acquisition of cardiac SPECT.
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1. INTRODUCTION

Myocardial perfusion imaging (MPI) using single-photon emission computed tomography 

(SPECT) is the most widely performed nuclear cardiology exam that allows sensitive 

detection, localization, and risk stratification of ischemic heart disease.1–3 In clinical 

practice, cardiac SPECT imaging using rotational scanners generally involves detectors 

rotating around the chest in a step-and-shoot protocol to acquire the projection data. The 

long scanning procedures and acquisition time present challenges that hinder efficient and 

accurate clinical exams. First, patients undergoing complex imaging examinations such as 

hybrid SPECT-CT might experience anxiety and discomfort due to the long scanning time.4 

This will increase the likelihood of noncompliance during the imaging procedures, leading 

to suboptimal scans and inaccurate reports.5, 6 Second, body motion during a long scanning 

time might cause motion artifacts and further affect the diagnostic accuracy.7–9 Voluntary 

or involuntary body motions during the data acquisition procedure might cause significant 

displacements of hearts or other organs, which will cause misregistration of projection data. 

Excessive movements may require repeated scans with additional radiation exposure to 

patients. Third, SPECT and CT images are acquired sequentially and the displacements of 

the patient body during the long acquisition time might lead to misalignment of SPECT and 

CT scans, thus creating attenuation correction artifacts.10–12 Last, SPECT imaging in a large 

volume clinical lab requires efficiency of imaging.13, 14 Therefore, shorter imaging times 

could increase the patient throughput in a busy lab.

Reducing the number of projection angles provides a solution that results in a shorter 

scanning time. However, fewer projection angles can lead to lower reconstruction accuracy, 

higher noise level, and severe artifacts due to the reduced angular sampling.15–17 Thus, 

compensating the image quality degradation under the premise of sparsely-sampled 

projections is an important topic to investigate. Sparse-view image reconstruction is a 
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widely explored application in CT.18, 19 The evolving deep learning techniques has provided 

solutions to this important topic in CT.20–24 However, the sparse-view sinogram recovery or 

sinogram inpainting in PET and SPECT is still under explored. Prior conventional works in 

sinogram inpainting and synthesis of PET and SPECT included sparse presentation-based 

methods that applied dictionary learning for sparse representation and data recovery of PET 

sinogram,25–27 compressive sensing-based methods based on wavelet-domain total variation 

minimization to recover missing data in PET acquisition,28 and model-based reconstruction 

methods that combined the estimation maximization algorithm with mixed region and 

voxel image representation,29 etc. For deep-learning-based methods, U-Net30 was applied 

to inpaint the missing data in the sinogram of whole-body PET in a previous study.31 The 

experiment was implemented in the sinogram domain, in which the defective sinogram was 

input to U-Net to predict the intact sinogram. In another study, ResNet32 was applied to 

generate synthesis projections from half-time or sparse-view sampled projections of cardiac 

SPECT, which was implemented in sinogram domain.33 Another study implemented the 

PET sinogram recovery in either sinogram domain or image domain, in which the defective 

sinogram or the PET image was input to U-Net to predict the complete sinogram or image.34 

A novel deep learning framework LU-Net combining Long Short-Term Memory network 

(LSTM)35 and U-Net was proposed for the sparse-view SPECT sinogram synthesis.36 Due 

to the embedded LSTM modules, the LU-Net has a larger receptive field since it can exploit 

the projection data in both neighboring and distant view angles.

A recent method named convolutional U-Net-shaped synthetic intermediate projections 

(CUSIP) generated synthetic projections (120 angles) from sparsely-sampled projections 

(30 angles) for 177Lu SPECT images.37 In CUSIP, three separate neural networks were 

independently trained to predict three sets of 30 intermediate projections, which were then 

combined with the input sparsely-sampled projections to generate the predicted full-view 

projections (120 angles). However, this method predicted each set of projections separately, 

which did not incorporate the 3D spatial information of image volumes into neural networks.

The aforementioned deep learning methods were implemented in either image or sinogram 

domain, and none of them has combined the information of both image and sinogram 

domains for the sparse-view sinogram recovery of PET or SPECT. The dual-domain strategy 

has widely used in many fields of medical imaging including reconstruction,38, 39 CT metal 

artifact reduction,40, 41 segmentation,42, 43 image synthesis,44, 45 etc., but it has not been 

investigated in the sparse-view sinogram recovery of PET or SPECT yet. In this study, 

we proposed a deep-learning-based Dual-Domain Sinogram Synthesis (DuDoSS) method 

to predict the synthetic full-view projections from sparsely-sampled projections of cardiac 

SPECT.

2. MATERIALS AND METHODS

2.1 Study datasets

The dataset used in this study included a total of 500 anonymized clinical stress SPECT MPI 

studies acquired on a GE NM/CT 850 scanner with 60 projection angles. The projection 

data were acquired using a step-and-shoot protocol over 360 degrees with a parallel head (H-

mode) configuration. The patient studies were anonymized and exported from the clinical 
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PACS using the AI Accelerator (Visage Imaging, Inc., San Diego, CA). One-day stress-only 

low-dose protocol was used with the mean administered dose of 15 mCi 99mTc-tetrofosmin. 

Among the 500 patient studies, 250, 100, 150 were used for training, validation, and 

testing, respectively. The patient information including gender, age, height, weight, and BMI 

distribution are listed in Table 1.

Clinical imaging with the GE NM/CT 850 involves full-view projections with a dimension 

of 64×64×60 and a voxel size of 6.8×6.8×6.8 mm3 acquired in a photopeak window (126.5 

– 154.5 keV). The CT-derived attenuation maps were all manually checked and registered 

with SPECT images by technologists at Yale Nuclear Cardiology Clinic using GE’s ACQC 

package.

2.2 Image preprocessing and reconstructions

To reduce the number of projection angles, the 60 angles were evenly divided into four 

sparsely-sampled sub-datasets. Each sub-dataset with a dimension of 64×64×15 consisted of 

15 projections. The four sub-datasets were formed by selecting every first, second, third, and 

fourth projections of the full-view 60 projections, which were labeled as Angles 1, 2, 3, and 

4. In the CUSIP approach,37 Angle 1 was used as the input to three individual U-Nets with 

different trainable parameters to predict Angles 2, 3, and 4 independently. In our DuDoSS 

approach, the input Angle 1 was zero-padded into the dimension of 64×64×60 and then used 

as the input to the networks.

The sparsely-sampled (64×64×15) or full-view (64×64×60) projections were reconstructed 

into SPECT images (64×64×64) using Maximum-Likelihood Expectation-Maximization 

(MLEM, 120 iterations, no scatter correction) and Butterworth filter (cutoff frequency = 

0.37 cm−1, order = 7). Non-attenuation-corrected (NAC) and AC SPECT images were 

reconstructed without or with the incorporation of the CT-derived attenuation maps, 

respectively.

Analyzing the specific regions of interest (ROI) is quite important for medical imaging. 

However, in cardiac SPECT, the tracer distributions outside the cardiac regions, especially at 

the abdomen, are sometimes extremely high, which might affect the quantitative evaluations 

of hearts. Thus, we cropped 32 slices out of the original 64 slices along the z axis of the 

full-view projections, to include the cardiac regions and exclude the background signals. The 

size of the full-view projections was cropped from 64×64×60 into 64×32×60. Similarly, the 

size of the SPECT images was cropped from 64×64×64 into 64×64×32. In our experiment, 

we utilized the cropped projections and images for the network training, testing, and 

quantitative evaluations, to reduce the effect of the background signals.

2.3 Overview of DuDoSS

Figure 1 shows the diagram of our proposed DuDoSS approach. The general principle 

was utilizing the predicted full-view images as guidance to generate the synthetic full-

view projections. The overall workflow included image-domain prediction using an image-

domain networks ImgNet, domain transitions using a forward-projection operator, and 

sinogram-domain generation using a sinogram-domain networks SinoNet.
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First, the zero-padded sparsely-sampled projections Ssparse were reconstructed into a 

sparsely-reconstructed image Xsparse using MLEM. In the image domain, Xsparse was input 

to ImgNet to generate the predicted full-view image Xfull−pred, formulated as:

Xfull−pred = fImg(Xsparse), (1)

where fImg denoted the image prediction using ImgNet. L1 loss is a robust mean-based 

measurement that does not over-penalize significant errors nor tolerate subtle errors. Thus, 

to optimize ImgNet, we employed L1 loss to minimize the difference between Xfull−pred and 

Xfull which was reconstructed using the ground-truth full-view projections, formulated as:

ℒImg = Xfull−pred − Xfull 1, (2)

where ℒImg denoted the image-domain loss. Then, the predicted Xfull−pred was forward-

projected to generate the prior full-view projections Sprior, formulated as:

Sprior = P Xfull−pred , (3)

where  referred to the forward-projection operator. Sprior was utilized as a prior estimate 

of the ground-truth full-view projections Sfull. Then, Angle 1 of Sprior was replaced by the 

ground-truth acquired Angle 1 in a combination module to further improve the accuracy of 

the projections, formulated as:

Sprior−combine = Ssparse + Smask ∗ Sprior, (4)

where * denoted the element-wise multiplications. Sprior−combine referred to the combined 

projections. Smask was a binary mask with value 0 in Angle 1 and value 1 at Angles 2, 3, and 

4.

Next, in the sinogram domain, Sprior−combine was input to SinoNet to generate the synthetic 

full-view projections Spred, formulated as:

Spred = fSino Sprior−combine , (5)

where fSino referred to the sinogram generation using SinoNet. Finally, Angle 1 of Spred was 

replaced by the ground-truth acquired Angle 1 in a combination module to further improve 

the accuracy of the synthetic projections, formulated as:

Spred−combine = Ssparse + Smask ∗ Spred . (6)

To optimize SinoNet, we employed L1 loss to minimize the difference between Spred−combine 

and the ground-truth full-few projections Sfull, formulated as

ℒSino = Spred−combine − Sfull 1, (7)

where ℒSino denoted the sinogram-domain loss.
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In our study, we jointly trained the ImgNet and SinoNet in an end-to-end manner and the 

total objective loss function is formulated as

ℒTotal = ℒImg + ℒSino . (8)

In this workflow, both ImgNet and SinoNet were Dual-Squeeze-and-Excitation Residual 

Dense Network (DuRDN) which was proposed in one of our previous works and showed 

superior performance than U-Net in some image transformation tasks.46 DuRDN was built 

using Residual Dense Blocks (RDB) and Dual Squeeze-and-Excitation (DuSE) self-attention 

modules. RDB effectively extract the image information using densely-connected structures 

and global residual connections. DuSE encouraged the networks to recalibrate both channel-

wise and spatial features such that more accurate and relevant feature maps can be learned.

2.4 Experiments

In our experiment, the original full-view projections and the SPECT images reconstructed 

using the original full-view projections were considered as the ground truth. The CUSIP 

approach was tested as the benchmark in this study, labeled as CUSIP. Alternatively, we 

implemented another CUSIP by replacing the U-Net by DuRDN, which was labeled as 

CUSIP-DuRDN.

We tested two additional ablation study groups, labeled as Direct Sino2Sino and Direct 

Img2Img. The detailed schematics of Direct Sino2Sino and Direct Img2Img are presented 

in Section 1 of Supplementary Materials. The Direct Sino2Sino was implemented only in 

the sinogram domain. The zero-padded sparse-view projections Ssparse were input to the 

SinoNet to predict the synthetic full-view projections Spred, with the ground-truth full-view 

projections Sfull as targets. Then, Angle 1 of Spred was replaced by ground-truth Angle 1 to 

produce Spred−combine for the reconstruction of the predicted full-view SPECT image. Direct 

Img2Img was implemented only in the image domain, without any intermediate step of 

synthetic projections. The SPECT image Xsparse reconstructed using Ssparse was input to the 

ImgNet to directly generate the predicted full-view image Xfull−pred, with the ground-truth 

full-view image Xfull as targets.

2.5 Network training

All the hyperparameters including learning rates, learning rate decay rates, batch sizes, 

have been optimized to maximize the performance for each testing group after repeated 

experiments. To maintain the spatial integrity of the sinogram, we did not implement patch-

based strategies and the entire image volumes were used as input and output in this study.

In the CUSIP, CUSIP-DuRDN, and Direct Sino2Sino group, U-Net or DuRDN were trained 

for 600 epochs with a learning rate of 5×10−4, a batch size of 4, and an Adam optimizer 

(exponential decay rates β1 = 0.5, β2 = 0.999). A learning rate decay policy with a step size 

of 1 and a decay rate of 0.99 was employed to avoid overfitting.47 In the Direct Img2Img 

group, the learning rate was 5×10−4, and other hyperparameters were the same as above. In 

our proposed DuDoSS, the learning rates of ImgNet and SinoNet were 1×10−5 and 1×10−4 

respectively. The other parameters were the same as above.
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The numbers of trainable parameters in CUSIP, CUSIP-DuRDN, Direct Sino2Sino, Direct 

Img2Img, and DuDoSS were respectively about 2 m, 2.5 m, 2.5 m, 2.5 m, and 5 m (m: 

million). DuDoSS contained the most trainable parameters because it had two end-to-end 

connected networks. The consumed memories during the training process of CUSIP, CUSIP-

DuRDN, Direct Sino2Sino, Direct Img2Img, and DuDoSS were about 3 GB, 4 GB, 7 GB, 

7.5 GB, and 12 GB (GB: gigabytes). Under the same hardware support of the NVIDIA 

Quadro RTX 8000 graphic card, the training time of CUSIP was about 4 hours for each 

angle and 12 hours in total, and the training time of CUSIP-DuRDN was about 7 hours 

for each angle and 21 hours in total. The total training time of Direct Sino2Sino, Direct 

Img2Img, and DuDoSS were 9 hours, 10 hours, and 16 hours, respectively. CUSIP-DuRDN 

group consumed the longest training time to converge. For every testing group, the testing 

time of each case was shorter than 0.1 second, which was a reasonable inference time for 

clinical practice.

2.6 Voxel-wise quantitative evaluations

The voxel-wise quantitative evaluation metrics used in this study included normalized 

mean square error (NMSE), normalized mean absolute error (NMAE), structural similarity 

(SSIM),48 and peak signal-to-noise ratio (PSNR). NMSE, NMAE, PSNR are defined as:

NMSE =
∑i = 1

N Xi − Y i
2

∑i = 1
N Y i

2 , (9)

NMAE =
∑i = 1

N Xi − Y i

∑i = 1
N Y i

, (10)

PSNR = 10 × log10
Max Y 2

∑i = 1
N Xi − Y i

2 , (11)

where Xi and Yi are the ith voxels of the predicted image and ground-truth image. N is the 

total number of voxels of the image volume. Max(Y) is the maximum voxel value of the 

ground-truth image. SSIM is defined as:

SSIM X, Y = 2μY μX + C1 2σY X + C2
μY

2 + μX
2 + C1 σY

2 + σX
2 + C2

, (12)

where C1 = (K1 × R)2 and C2 = (K2 × R)2 are constants to stabilize the ratios. R stands for 

dynamic range of pixel values. Usually, we set K1 = 0.01 and K2 = 0.03. μX and μY are the 

means of Y and X. σY
2  and σX

2  are the variances of Y and X. σYX is the covariance of Y and 

X.

The calculation of NMSE/NMAE/PSNR/SSIM should be restricted within the region 

containing the patient heart to eliminate the influence of background signals or artifacts. 

Thus, we generated binary image masks by thresholding to restrict quantitative evaluations 
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within the voxels of the patient heart. Then, we applied forward projection of the binary 

image masks to generate the binary sinogram masks that restrict the quantitative evaluations 

within the cardiac sinogram regions. The images or sinograms were element-wise multiplied 

with the binary image or sinogram masks before the quantitative evaluations using NMSE/

NMAE/PSNR/SSIM. The sample binary masks for quantitative evaluations of images and 

sinograms are provided in Section 2 of Supplementary Materials.

The synthetic projections were compared with the ground-truth full-view projections. The 

SPECT images reconstructed with the synthetic projections are compared with the images 

reconstructed with the ground-truth full-view projections. Both AC and NAC SPECT images 

were involved in the voxel-wise quantitative evaluations.

2.7. Segment-wise quantitative evaluations

To specifically quantify the myocardial perfusion intensities, standard 17-segment polar 

maps were generated for qualitative and quantitative evaluations of the NAC and AC SPECT 

images.49 The mean values of segments were measured using the Carimas Software50 for 

computing the segment-wise absolute percent error (APE) and percent error (PE) defined as:

APE = 100% × ∑i = 1
17 Predi − ACi / 17 × ACi , (13)

PE = 100% × ∑i = 1
17 Predi − ACi / 17 × ACi , (14)

where Predi and ACi represent the mean values of the ith segment in the polar maps of the 

predicted and ground-truth SPECT images.

2.8 Statistical analysis

For statistical analysis, two-tailed paired t-tests with a significance level of 0.05 was 

performed based on the above quantification metrics between two testing groups. P-values 

lower than 0.05 represented a significant difference of the quantification metrics between the 

two testing groups.

3. RESULTS

3.1 Synthetic projections

Figure 2 shows representative synthetic full-view projections. It can be observed that CUSIP 

and CUSIP-DuRDN under-estimated the intensities of the synthetic projections. Based 

on error maps of the synthetic projections, Direct Sino2Sino generated more consistent 

synthetic projections than the above two groups. DuDoSS provided the most consistent 

projections compared with the ground-truth full-view projections. Table 2 lists the voxel-

wise quantitative evaluations of the synthetic projections in terms of NMSE, NMAE, 

SSIM, and PSNR for the 150 testing patient studies. CUSIP-DuRDN showed more accurate 

prediction results than CUSIP, demonstrating the superiority of DuRDN to U-Net. Direct 

Sino2Sino was more accurate than the above two groups. DuDoSS showed the lowest 

errors among all the testing groups. The significant p-values further validated that DuDoSS 
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produced more accurate synthetic projections relative to the other groups. In addition, to test 

the influence of loss functions on the accuracy of the synthetic sinograms by DuDoSS, we 

implemented several ablation DuDoSS groups supervised by different loss functions. The 

results demonstrated that L1 loss was currently the most simple but effective loss function in 

this study, which are presented in Section 3 of the Supplementary Materials.

Figure 3 provides an example of synthetic projections at three consecutive Angles 2, 3, 4. 

In Angles 2, 3, and 4, CUSIP and CUSIP-DuRDN both showed obvious under-estimations 

of the projection intensity, especially at the cardiac regions. In contrast, Direct Sino2Sino 

yielded more consistent projections than the above two groups. DuDoSS yielded the most 

consistent projections with ground truth in all 3 projection angles. In addition, Table 3 lists 

the quantitative evaluations of the synthetic projections at Angles 2, 3, and 4 for the 150 

testing patient studies. At each projection angle, it can be observed that Direct Sino2Sino 

yielded more accurate projections than CUSIP and CUSIP-DuRDN. DuDoSS provided the 

most accurate predictions at each angle. DuDoSS predicted significantly more accurate 

projections than other groups in Angles 2, 3, and 4 based on the significant p-values.

3.2 Reconstructed SPECT images

The synthetic projections from CUSIP, CUSIP-DuRDN, Direct Sino2Sino, and DuDoSS 

were reconstructed into NAC and AC SPECT images using MLEM. Direct Img2Img 

predicted full-view SPECT images from sparsely-sampled SPECT images directly. Sample 

NAC and AC SPECT images are shown in Figure 4. The reconstructed NAC or AC 

images by CUSIP and CUSIP-DuRDN showed obvious under-estimations of the myocardial 

perfusion intensities due to the under-estimations of synthetic projections as presented in 

Figure 3. Direct Img2Img showed slightly more visually consistent NAC and AC images 

with ground truth than Direct Sino2Sino. In contrast, DuDoSS showed the most consistent 

NAC and AC SPECT images with the ground-truth full-view SPECT images.

To better quantify the myocardial perfusion intensities of the NAC and AC SPECT 

images, we plotted the circumferential count profiles of myocardial perfusion intensities 

for representative NAC and AC SPECT images as shown in Figure 5. The detailed 

implementation of the circumferential profiles is presented in Section 4 of Supplementary 

Materials. It can be observed that the profiles from DuDoSS were the most consistent with 

those of the ground truth for both the NAC and AC SPECT images. In contrast, the profiles 

of CUSIP were even worse than those from Sparse-View baseline due to the significant 

under-estimations of myocardial perfusion intensities in the cardiac regions.

The voxel-wise quantitative evaluations of the reconstructed NAC and AC SPECT images of 

the 150 patient studies are provided in Tables 4 and 5. In both NAC and AC images, CUSIP 

produced the highest voxel-wise errors, followed by CUSIP-DuRDN. Direct Sino2Sino 

showed better results than Direct Img2Img, and our DuDoSS showed more consistent results 

than other testing groups. DuDoSS showed statistically more accurate results relative to the 

other testing groups based on the significant p-values.
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3.3 Polar maps of SPECT images

Figure 6 shows the 17-segment polar maps from representative NAC and AC SPECT 

images. The segment intensities of polar maps by CUSIP and CUSIP-DuRDN were under-

estimated compared with the ground-truth polar maps of the full-view SPECT images. 

Direct Sino2Sino and Direct Img2Img produced more consistent polar maps with ground 

truth than the above two groups, in which the Direct Img2Img appeared slightly better. In 

contrast, the polar maps of DuDoSS showed polar maps that were more consistent with the 

ground truth than other testing groups.

Figure 7 shows the correlation maps of the polar map segments between the predicted 

and the ground-truth full-view SPECT images of the 150 testing patient studies. For 

the segments of both NAC and AC images, the distributions of the correlation points 

using CUSIP deviated from the identity line, which produced the highest segment-wise 

errors. Direct Sino2Sino also showed slight deviations from the line of identity. The point 

distributions from Sparse-View Baseline were more dispersed than other groups. In contrast, 

point distributions of DuDoSS were the most concentrated along the identity line, which 

suggested that DuDoSS outputs the most consistent polar maps with the ground truth.

Figure 8 displays the Bland-Altman plots of segment PE between the predicted and ground-

truth full-view NAC and AC SPECT images from the 150 patient studies tested. In the polar 

maps of both NAC and AC images, the PE distributions of CUSIP were obviously lower 

than 0, leading to higher segment-wise errors. The PE distributions of Sparse-View Baseline 

were more dispersed than other testing groups. In contrast, the PE distributions of DuDoSS 

concentrated more densely around 0, showing lower quantification errors than other groups.

Table 6 lists the segment-wise quantitative evaluations of the polar maps in terms of the 

APE from the 150 patient studies used for testing. CUSIP and CUSIP-DuRDN showed the 

highest errors. Direct Img2Img showed slightly better performance than Direct Sino2Sino, 

which was consistent with the SPECT images shown in Figure 4 and polar maps shown 

in Figure 6. Our DuDoSS yielded the most accurate polar maps compared with other 

testing groups. The significant p-values further showed that DuDoSS were statistically more 

accurate than the other testing groups.

4. DISCUSSION

We have established a novel deep-learning-based algorithm DuDoSS to generate synthetic 

full-view projections from sparsely sampled projections of cardiac SPECT. The prior image 

predicted in the image domain was forward-projected and utilized as guidance for the 

generation of synthetic full-view projections in the sinogram domain. For data consistency, 

the Sprior−combine was combined with Angle 1 of the Ssparse and Angles 2–4 of the Sprior. 

The Sprior provided a prior coarse estimation of Angles 2–4 in the target sinogram Sfull. 

Thus, the Sprior−combine contained the information of both the ground-truth Angle 1 and 

the prior estimation of Angles 2–4. The prior estimation of Angles 2–4 enabled the input 

Sprior−combine to be closer to the target Sfull, and thus enabled the SinoNet to be easier 

to predict a more accurate synthetic sinogram. In contrast, it was more challenging for 

the Direct Sino2Sino to estimate the Sfull since the input of Direct Sino2Sino contains 
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only zero values at Angles 2–4 and thus was further away from the target Sfull. The 

synthetic projections generated with DuDoSS were the most consistent with the ground-truth 

full-view projections compared to the other groups. The CUSIP approach predicted the 

projections in Angles 2, 3, and 4 separately using three separate neural networks. In this 

way, the inter-angle spatial information of image volumes was not fully incorporated into 

the networks. In DuDoSS, Angles 1, 2, 3, and 4 were all concatenated into the dimension 

of 64×64×60. Thus, the inter-angle spatial information of Angles 2, 3, and 4 was fully 

incorporated, which yielded a higher prediction accuracy. If the proposed DuDoSS are 

deployed in clinical practice, theoretically the SPECT scanning time can be reduced to about 

only 25% of that using the conventional full-view scanning since only one fourth of the 

angles are used. This scanning time can be potentially further reduced if sparser projections 

are scanned. In addition, the time of generating synthetic projections using DuDoSS is 

neglectable, less than 100 ms for each patient. Even though the total scanning time can 

be largely reduced, extensive validation of DuDoSS in real clinical scenario should be 

performed before this technique is translated into clinical applications.

A good performance was previously reported for CUSIP in the sinogram synthesis of 

whole-body 177Lu SPECT37. However, CUSIP did not yield favorable results for 99mTc-

tetrofosmin cardiac SPECT images in our study. The observed inconsistency in performance 

of CUSIP might be related to difference in the whole-body and cardiac imaging protocols, 

tracer types, data noise level, etc.

It can be noticed that the MLEM algorithm is derived based on Poisson distributed 

data,51, 52 but the synthetic projections in our study are not strictly Poisson distributed. 

The MLEM algorithm can sometimes be used when the data is not strictly Poisson 

distributed.53 In addition, the proposed DuDoSS method in this paper focuses on synthetic 

projection generations instead of image reconstructions. Based on the properties of the 

synthetic projections, more appropriate algorithms, such as Maximum a Posteriori (MAP)54 

and Penalized Weighted Least-Squared (PWLS),55 could be applied depending on user’s 

preference.

However, using MLEM reconstruction on non-Poisson synthetic data could still be a major 

limitation of this study. Investigating other networks and loss functions to maintain Poisson 

distribution should be pursued in future studies. For example, adding a convolutional 

module, such as the variational autoencoder (VAE),56 could be a promising solution to 

amend the statistical properties of the synthetic sinograms. The statistical properties of the 

synthetic sinograms can be extracted and encoded at the bottleneck latent space of VAE, 

which can be then modified to satisfy the conditions of the Poisson distribution. This might 

address the non-Poisson issue and be the next promising research direction to explore.

The complexity of DuDoSS compared with other approaches cannot be ignored. Two 

neural networks were concatenated in an end-to-end manner to enable the information 

transition from the image domain to the sinogram domain. Although the total training time 

of DuDoSS was shorter than CUSIP-DuRDN, implementing DuDoSS still consumed more 

memories. How to simplify the overall architectures of DuDoSS while keeping the original 

performance will be a meaningful algorithm-optimization topic to explore in the future. A 
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potential solution is to reduce the number of convolutional layers in DuRDN or replace 

the DuRDN with other simpler but efficient modules like ResNet.32 Another solution could 

be based on the weight-shared strategy.57 The weights of some structures in ImgNet and 

SinoNet that have similar functions can be shared with each other. For example, the weights 

of the input encoding layer of ImgNet can be reused in the SinoNet to reduce the total 

amount of parameters in the whole framework.

The image noise level was another important factor in this study. In Figure 3, the noise 

levels of the synthetic projections were lower than the ground-truth projections. A style-

transferring convolutional module could be incorporated into the overall workflow to adjust 

the noise level to make the noise level of the synthetic projections more consistent. This 

might be a promising research direction to explore in the future. In addition, incorporating 

the statistical properties of the synthetic projections could be another promising research 

direction to further improve the prediction accuracy. A potential solution is developing 

additional convolutional modules to extract and represent the Poisson statistical properties of 

the synthetic sinograms. Then, the extracted statistical properties can be further regularized 

by KL-divergence or related loss functions, to further improve the network performance.

5. CONCLUSIONS

Our proposed DuDoSS approach was demonstrated to be an effective approach to generate 

accurate synthetic projections from sparsely-sampled projections of cardiac SPECT. The 

synthetic projections by DuDoSS were the most consistent with the ground-truth full-view 

projections when compared to previous approaches. The reconstructed NAC and AC SPECT 

images using the synthetic projections generated by DuDoSS showed the lowest voxel-wise 

and segment-wise errors. DuDoSS demonstrated good performance in the sparse-view 

cardiac SPECT reconstruction and can potentially enable fast data acquisition of cardiac 

SPECT.
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FIGURE 1. 
Diagram of DuDoSS. Xsparse reconstructed using sparsely-sampled projections Ssparse was 

input to the ImgNet to predict the full-view SPECT image Xfull−pred. Then, Xfull−pred was 

forward-projected to generate a prior full-view projections Sprior, which were then combined 

with the ground-truth acquired Angle 1 to obtain Sprior−combine. Next, Sprior−combine was 

input to the SinoNet to generate the predicted sinogram Spred. Finally, Spred was combined 

with the ground-truth acquired Angle 1 to output the combined projections Spred−combine.
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FIGURE 2. 
Sample synthetic projections of the slice crossing the center of the patient heart. The 

error maps between the synthetic and ground-truth full-view projections are shown in the 

second row. CUSIP and CUSIP-DuRDN show obvious under-estimations of the synthetic 

projections. DuDoSS outputs the most consistent projections with the ground truth full-view 

projections compared with other testing groups. Errors between the predicted and ground-

truth projections are denoted with white arrows.
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FIGURE 3. 
Sample synthetic projections at three consecutive Angles 2, 3, 4. The error maps between the 

synthetic and ground-truth corresponding projections are shown below each image. CUSIP 

and CUSP-DuRDN show obvious under-estimations in all angles, especially at the central 

cardiac regions. DuDoSS predicts the most consistent projections in all Angles 2, 3, and 4 

compared with the ground-truth projections. Errors between the predicted and ground-truth 

projections are denoted with white arrows.
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FIGURE 4. 
Sample NAC and AC SPECT images and corresponding error maps shown in the horizontal 

long axis (HLA) and the short axis (SA) views. The NAC SPECT images are shown in 

the top red dash box, and the AC SPECT images are shown in the bottom blue dash box. 

DuDoSS outputs the most consistent NAC and AC SPECT images with the ground-truth 

full-view SPECT images. Errors between the predicted and ground-truth SPECT images are 

denoted with white arrows.
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FIGURE 5. 
Circumferential count profiles of myocardial perfusion intensities of sample NAC and AC 

SPECT images in the SA view. The profiles of NAC and AC images are shown in the top 

red dash box and the bottom blue dash box. DuDoSS outputs the most consistent profiles 

with those of the ground-truth Full-View Recon, while CUSIP shows the highest prediction 

errors.
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FIGURE 6. 
Standard 17-segment polar maps of sample NAC and AC SPECT images. The polar maps of 

the NAC SPECT images are shown in the top red dash box, and the polar maps of the AC 

SPECT images are shown in the bottom blue dash box. DuDoSS outputs the most consistent 

polar maps with the ground-truth polar maps of both NAC and AC SPECT images. Errors 

between the predicted and ground-truth polar maps are denoted with white arrows.
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FIGURE 7. 
Correlation maps of the polar map segments between the predicted and the ground-truth 

full-view NAC and AC SPECT images of the 150 testing patient studies. The top red dash 

box and the bottom blue dash box show the NAC and AC SPECT images respectively. 

The red dash line in each figure represents the identity line (y = x). The distributions of 

correlation points in CUSIP deviate away from the identity line. The correlation points in 

DuDoSS concentrate most densely along the identity line. The correlation coefficients (Corr. 

Coef.) and coefficients of determination (R2) are shown at top left side of each plot.
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FIGURE 8. 
Bland-Altman plots of segment PE between the predicted and the ground-truth full-view 

NAC and AC SPECT images of the 150 testing patient studies. In each plot, the mean 

errors are denoted with blue solid lines, and the 97.5% confidence interval (±1.96 standard 

deviations) are denoted as green dash lines. In both NAC and AC images, the errors of 

CUSIP obviously deviate from the center line y = 0, which leads to much higher absolute 

errors than other groups. In contrast, the error of DuDoSS concentrates more densely along 

y = 0, showing lower segment-wise errors than other groups.
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TABLE 1.

The gender, age, height, weight, and BMI distribution of the enrolled patients.

Patient Information Age (year) Height (m) Weight (kg) BMI

Training Data

(132 M, 118 F)
a

Range 34 – 94 1.42 – 1.90 44.50 – 150.1 16.35 – 49.98

Mean ± Std. 64.79 ± 11.35 1.69 ± 0.11 87.09 ± 19.08 30.66 ± 6.16

Validation Data
(50 M, 50 F)

Range 39 – 96 1.45 – 1.93 42.20 – 159.2 17.69 – 49.14

Mean ± Std. 63.37 ± 11.91 1.67 ± 0.12 88.89 ± 21.00 31.67 ± 6.21

Testing Data
(86 M, 64 F)

Range 37 – 94 1.42 – 1.93 19.10 – 160.7 17.66 – 46.63

Mean ± Std. 67.90 ± 12.31 1.69 ± 0.11 84.34 ± 21.23 29.49 ± 5.71

a
M stands for male and F stands for female.

Med Phys. Author manuscript; available in PMC 2024 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chen et al. Page 25

TABLE 2.

Voxel-wise quantitative evaluations of the synthetic projections of the 150 testing patient studies.

Testing Groups NMSE (×10−2) NMAE (×10−2) SSIM PSNR P-value
a

CUSIP 2.53 ± 1.04 10.91 ± 1.26 0.979 ± 0.072 35.11 ± 4.08 –

CUSIP-DuRDN 2.17 ± 0.84 10.23 ± 1.59 0.980 ± 0.075 35.82 ± 4.44 < 0.001*

Direct Sino2Sino 1.80 ± 0.82 9.22 ± 1.58 0.983 ± 0.068 36.71 ± 4.35 < 0.001*

DuDoSS (proposed) 1.65 ± 0.72 8.95 ± 1.56 0.984 ± 0.067 37.09 ± 4.51 < 0.001*

a
Two-tailed paired t-test of NMSE between the current and previous group in the table.

*
Refers to significant difference with a significance level of 0.05.
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TABLE 3.

Quantitative evaluations of synthetic projections at Angle 2, 3, and 4 respectively of the 150 testing patient 

studies.

Testing Groups
Projection Angle 2 Projection Angle 3 Projection Angle 4

NMSE (×10−2) P-value
a NMSE (×10−2) P-value

a NMSE (×10−2) P-value
a

CUSIP 3.57 ± 1.26 – 3.29 ± 1.63 – 3.23 ± 1.38 –

CUSIP-DuRDN 2.89 ± 1.08 < 0.001* 2.93 ± 1.36 < 0.001* 2.86 ± 1.06 < 0.001*

Direct Sino2Sino 2.25 ± 1.02 < 0.001* 2.47 ± 1.32 < 0.001* 2.46 ± 1.13 < 0.001*

DuDoSS (proposed) 2.18 ± 0.96 0.004* 2.22 ± 1.05 < 0.001* 2.20 ± 1.03 < 0.001*

a
Two-tailed paired t-test of NMSE between the current and previous group in the table.

*
Refers to significant difference with a significance level of 0.05.

Med Phys. Author manuscript; available in PMC 2024 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chen et al. Page 27

TABLE 4.

Quantitative evaluations of the reconstructed NAC SPECT images of the 150 testing patient studies.

Testing Groups NMSE (×10−2) NMAE (×10−2) SSIM PSNR p-value
a

Sparse-View Baseline 2.51 ± 1.58 12.73 ± 2.77 0.9948 ± 0.0020 38.81 ± 2.86 –

CUSIP 2.54 ± 1.13 13.31 ± 2.19 0.9938 ± 0.0015 38.51 ± 2.02 –

CUSIP-DuRDN 1.64 ± 0.77 10.41 ± 2.10 0.9958 ± 0.0014 40.49 ± 2.28 < 0.001*

Direct Img2Img 1.53 ± 1.05 9.77 ± 2.69 0.9965 ± 0.0014 41.00 ± 1.82 0.154

Direct Sino2Sino 1.33 ± 0.81 9.17 ± 2.25 0.9967 ± 0.0013 41.54 ± 2.23 0.003*

DuDoSS (proposed) 1.07 ± 0.67 8.29 ± 1.84 0.9974 ± 0.0010 42.45 ± 2.55 < 0.001*

a
Two-tailed paired t-test of NMSE between the current and previous group in the table.

*
Refers to significant difference with a significance level of 0.05.
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TABLE 5.

Quantitative evaluations of the reconstructed AC SPECT images of the 150 testing patient studies.

Testing Groups NMSE (×10−2) NMAE (×10−2) SSIM PSNR P-value
a

Sparse-View Baseline 1.53 ± 0.72 9.84 ± 1.98 0.9966 ± 0.0011 41.16 ± 2.91 –

CUSIP 2.50 ± 1.03 12.99 ± 1.92 0.9938 ± 0.0013 38.89 ± 2.01 –

CUSIP-DuRDN 1.68 ± 0.86 10.20 ± 1.98 0.9958 ± 0.0014 40.72 ± 2.24 < 0.001*

Direct Img2Img 1.37 ± 0.80 9.02 ± 2.03 0.9967 ± 0.0012 41.71 ± 2.20 0.090

Direct Sino2Sino 1.28 ± 0.48 8.99 ± 1.61 0.9969 ± 0.0011 41.81 ± 2.41 < 0.001*

DuDoSS (proposed) 1.16 ± 0.71 8.30 ± 1.79 0.9973 ± 0.0011 42.43 ± 2.50 < 0.001*

a
Two-tailed paired t-test of NMSE between the current and previous group in the table.

*
Refers to significant difference with a significance level of 0.05.
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TABLE 6.

Quantitative evaluations of the polar map segments of the 150 testing patients.

Testing Groups
NAC SPECT Images AC SPECT Images

APE (×10−2) P-value
a APE (×10−2) P-value

a

Sparse-View Baseline 5.45 ± 4.35 – 5.19 ± 4.58 –

CUSIP 12.23 ± 4.46 – 11.35 ± 4.52 –

CUSIP-DuRDN 6.41 ± 4.23 < 0.001* 5.97 ± 4.15 < 0.001*

Direct Sino2Sino 4.79 ± 3.69 < 0.001* 4.46 ± 3.58 < 0.001*

Direct Img2Img 4.34 ± 3.50 < 0.001* 3.95 ± 3.21 < 0.001*

DuDoSS (proposed) 3.92 ± 3.20 < 0.001* 3.87 ± 3.23 0.023*

a
Two-tailed paired t-test of APE between the current and previous group.

*
Refers to significant difference with a significance level of 0.05.
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