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Abstract

Purpose: MRI-guided adaptive radiation therapy (MRgART), particularly daily online adaptive 

replanning (OLAR) can substantially improve radiation therapy delivery, however it can be labor-

intensive and time-consuming. Currently, the decision to perform OLAR for a treatment fraction 

is determined subjectively. In this work, we develop a machine learning algorithm based on 

structural similarity index measure (SSIM) and change in entropy to quickly and objectively 

determine whether OLAR is necessary for a daily MRI set.

Methods: A total of 109 daily MRI sets acquired on a 1.5T MR-Linac during MRgART for 

22 pancreatic cancer patients each treated with five fractions were retrospectively analyzed. For 

each daily MRI set, OLAR and reposition (No-OLAR) plans were created and the superior plan 

with the daily fraction determined per clinical dose-volume criteria. SSIM and entropy maps were 

extracted from each daily MRI set, with respective to its reference (e.g., dry-run) MRI in the 

region enclosed by 50–100% isodose surfaces. A total of six common features were extracted 

from SSIM maps. Pearson’s rank correlation coefficient was utilized to rule-out redundant SSIM 

features. A t-test was used to determine significant SSIM features which were combined with 

the change in entropy to develop ensemble machine classifier with 5-fold cross validation. The 

performance of the classifier was evaluated using the area under curve (AUC) of the receiver 

operating characteristic (ROC) curve.

Results: A machine learning classifier model using two SSIM features (mean and full 

width at half maximum) and change in entropy was determined to be able to significantly 

discriminate between No-OLAR and OLAR groups. The obtained machine learning ensemble 

classifier can predict OLAR necessity with a cross validated AUC of 0.93. Misclassification 
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was found primarily for No-OLAR cases with dosimetric plan quality closely comparable to the 

corresponding OLAR plans, thus, are not a major practical concern.

Conclusion: A machine learning classifier based on simple first-order image features, i.e., SSIM 

features and change in entropy, was developed to determine when OLAR is necessary for a daily 

MRI set with practical acceptable prediction accuracy. This classifier may be implemented in the 

MRgART process to automatically and objectively determine if OLAR is required following daily 

MRI.
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1. INTRODUCTION

During radiation therapy (RT) delivery, the location, shape, and size of tumors and organs 

at risk (OARs) can change significantly between treatment fractions primarily due to 

unreproducible patient setup errors and patient-specific changes in anatomy, physiology, 

and treatment response1,2. These inter-fraction changes can hinder the effectiveness of RT. 

The current standard of care to address the inter-fraction variations is to use image-guided 

RT (IGRT) to reposition the patient based on the daily image while delivering the same 

treatment plan (i.e., reference plan) for all fractions. However, IGRT repositioning primarily 

addresses translational errors, therefore it cannot fully account for all inter-fraction changes. 

To improve IGRT, adaptive RT (ART) is being developed3,4. In particular, online adaptive 

re-planning (OLAR) requires accurate delineation of OARs and targets based on the daily 

anatomy and the creation of an adaptive plan for the treatment fraction, which has the 

potential to fully address inter-fractional variations5.

With the recent commercial introduction of hybrid MRI scanner and linear accelerator 

systems (MR-Linac), MRI-guided adaptive radiation therapy (MRgART), particularly MR-

guided OLAR, is being rapidly implemented and practiced in the clinic6–8. Compared 

to common image modalities for IGRT, e.g., CT, cone-beam CT, MRI provides superior 

soft-tissue contrast, functional information of tumor and OARs, and real-time imaging 

during RT delivery. Recently, Paulson et al.,9 reported the clinical use of a MR-Linac 

system which integrates 1.5 Tesla MRI and 7 MV Linac (Unity, Elekta AB). The Unity 

MR-Linac system offers two adaptive planning techniques to address the inter-fraction 

variations based on daily MRI: (i) Adapt-to-position (ATP, i.e., No-OLAR), in which the 

reference plan is reoptimized with an isocenter shift determined from the co-registration 

of the daily MRI and the reference image, and ii) Adapt-to-shape (ATS, i.e., OLAR), in 

which a new plan is generated based on the anatomy of the day from the daily MRI9. 

The Unity system offers six different algorithms to optimize OLAR plans: (1) original 

segments, (2) adapt segments, (3) optimize weights from segments, (4) optimize weights 

from fluence, (5) optimize weights and shapes from segments, and (6) optimize weights and 

shapes from fluence10. Another MR-Linac system, MRIdian, (ViewRay Inc) uses similar 

workflow (called “on-table adaptation”) for OLAR and a reposition workflow (adjusting 

table) for No-OLAR11. While the No-OLAR workflow in both systems is similar to IGRT 
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repositioning, primarily accounting for translational shifts, the OLAR workflow can fully 

correct for inter-fraction variations.

With today’s technology, OLAR is a complex, labor-intensive, and time-consuming process 

requiring delineation based on the anatomy of the day, plan optimization, evaluation, and 

quality assurance (QA) using the newly acquired daily image. It has been well documented 

by several early adopters of MRgART that the OLAR can take up to 90 min12. Paulson 

et al.,9 reported a median time of 62 min for using OLAR to treat abdominal tumors. The 

times required for OLAR with the ViewRay MRgART system were in the range of 30–80 

minutes according to the study by Görkem et al12. Along with the prolonged time, OLAR 

requires substantial radiation oncology staffing for real-time input and decision making at 

the treatment console.

On the other hand, OLAR is not necessary for all treatment fractions. For a fraction with 

minimal interfractional deformation, IGRT repositioning (No-OLAR) may be sufficient. 

Based on the study by Omari et al,13 approximately 2/3 of the treatment fractions for 

pancreatic cancer require OLAR. Thus, in clinical practice, it is desirable to determine 

when OLAR is necessary before substantial effort (e.g., re-contouring on daily image) is 

spent14,15. Our previous study on this topic based on CTs,14 showed that the Jacobian 

determinant histogram (JDH) obtained from deformable image registration (DIR) between 

reference (planning) and daily CTs can be used to determine the necessity of OLAR for 

prostate where deformation is largely limited to expansion/contraction of the rectum and 

bladder.

Although this JDH method works reasonably for CT in a tumor site with not too complex 

deformation, it is not suitable for MRI in the abdomen primarily due to inaccurate DIR for 

the complexity and the lack of trends for the organ deformation in abdomen. Consequently, 

parameters derived from the DIR (e.g., JDH, deformation vector field) may not be able to 

accurately measure the actual organ deformation. Currently, the decision to perform OLAR 

for a treatment fraction during MRgART is determined either empirically (e.g., based on 

fractionation) or by subjectively inspecting the daily MRI after it is acquired16. This practice 

cannot ensure OLAR is used only when it is necessary.

Structural similarity index measure (SSIM) is introduced to quantitatively assess the 

similarity between two images17,18. The purpose of this study is to investigate whether 

the first-order features from SSIM and change in entropy calculated between reference and 

a daily MRI can be used to robustly determine the necessity of OLAR for a daily fraction 

based on the differences (e.g., organ deformation) between the two MRI sets. SSIM and 

entropy maps can be calculated immediately following the acquisition of the daily MRI 

without the need of labor-intensive and time-consuming segmentation.

2. MATERIALS AND METHODS

2.1 MRI Data

In this IRB approved HIPAA compliant study, a total of 109 daily MRI sets and 22 dry-run 

MRI sets acquired during MRgART for 22 pancreatic cancer patients were retrospectively 

Parchur et al. Page 3

Med Phys. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



analyzed. These patients were treated with SBRT in five fractions using either the No-OLAR 

or OLAR workflow on an MRI-Linac (Unity, Elekta) from January 2019 to June 2021. In 

our practice, we schedule a zero fraction for each patient to acquire “dry-run MRI” on the 

Unity without treatment, ensuring the quality of daily MRI is appropriate for the patient. 

Both the dry-run and daily MRIs were acquired under free breathing using an in-house 

developed 4D-MRI technique9,19. A dose of 3300 cGy in 5 fractions was used for the 

treatment. The motion-averaged images derived from the 4D-MRI were used for the daily 

planning image. A high-performance computer server located in the MR-Linac machine 

network was used for the rapid reconstruction and processing of 4D-MRI. All dry-run 

and daily MRI datasets were preprocessed using a standardization process including bias 

correction and Gaussian smoothing, as depicted in FIG 1. The bias correction was applied to 

correct for the RF coil inhomogeneity via an intensity-based nonparametric bias correction 

method, i.e., N4 algorithm, followed by Gaussian smoothing used to smooth noisy pixels 

while preserving the intensity of most edges20. The obtained dry-run and daily MRIs were 

rigidly registered and the contours on the dry-run MRI were transferred onto the daily MRI 

using a software (MIM Software Inc., Version 7.0.6, Cleveland, OH).

2.2 Plan Generation

For each patient, a reference plan was created based on the dry-run MRI. For each daily 

MRI set, a pair of plans, i.e., No-OLAR and OLAR plans, were generated using a treatment 

planning system (MonacoTM V5.4, Elekta, Stockholm, Sweden). The dose calculation was 

performed with a graphics processing unit (GPU) accelerated Monte Carlo dose (GPUMCD) 

engine considering a transverse 1.5 T magnetic field using a calculation grid size of 3 

mm and statistical uncertainty of 1% per calculation9,21,22. For each daily MRI set, the 

qualities of the plan pair were compared based on the dose distribution and commonly used 

dose-volume criteria of the target (e.g., planning target volume, PTV) and OARs used in 

our clinic as shown in Table 1. Currently, these constraints are being used for a clinical trial 

(ClinicalTrials.gov Identifier: NCT03704662) in treating locally advanced type-A pancreatic 

adenocarcinoma patients23. For example, a plan with satisfied target coverage and better 

OAR sparing was considered superior. For two plans with similar OAR sparing, the plan 

with higher target coverage was considered superior. Two plans with similar target coverage 

and OAR sparing were considered as comparable. The plan quality was assessed by an 

experienced physicist and was independently verified by two other investigators to minimize 

the subjectiveness. All daily MRI sets were divided into OLAR and No-OLAR groups. A 

daily MRI set with its OLAR plan superior to its No-OLAR plan was classified as an OLAR 

set, while a daily MRI set with its No-OLAR plan equivalent or comparable to its OLAR 

was called No-OLAR set.

2.3 Structural Similarity Index Measure and Entropy

For each patient, selected isodose surfaces (IDS) from the reference plans were converted 

into structures and transferred to each daily MRI set via rigid registration using the MIM 

software tool. To minimize residual registration errors, local registration using a box-based 

assisted alignment algorithm was applied by drawing the box enclosing the selected IDSs. 

SSIM map and entropy map were generated to extract quantitative features from the solid 
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regions enclosing the 50%, 80%, and 100% IDS and in the shells enclosing 50–80%, 80–

100%, and 50–100% IDS.

SSIM values were extracted in these enclosed regions between the reference and each 

daily MRI set using ‘multissim3’ function in MATLAB (R2020b), based on multiplicative 

combination of the three terms, luminance (l), contrast (c), and structural (s), as shown in the 

equations below15:

SSIM x, y = l x, y α . c x, y β . s x, y γ (1)

l x, y = 2μxμy + C1
μx2 + μy2 + C1 (2)

c x, y = 2σxσy + C2
σx2 + σy2 + C2 (3)

s x, y = σxy + C3
σxσy + C3 (4)

where μx, μy, σx,σy, and σxy are the local means, standard deviations, and cross-covariances 

of x and y, respectively. The indices l and c are limited between 0 and 1, and the s index 

is limited between −1 and +1. C1, C2, and C3 are the small constants introduced to evade 

numerical instability when the denominator approaches zero. It was determined that the 

appropriate region where the anatomy deformation measured by SSIM was most relevant for 

OLAR (e.g., with high dose gradience) was the ring (shell in 3D) enclosed by the 50–100% 

IDS. Unless otherwise specified, all SSIM data reported hereafter were calculated in the 50–

100% rings (shells). SSIM value of 1.0 refers to identical reference and daily MRIs in the 

selected regions. The entire data analysis workflow is depicted in FIG. 2A. FIG. 2B shows 

a sample of the axial views of the rings enclosed by the 50–100% IDSs on a representative 

daily MRI set (left), and their corresponding SSIM maps (right) obtained between the daily 

and reference MRI sets, where higher SSIM values are represented by the bright yellow 

regions and lower values are represented by the dark regions. FIG. 2C shows an example of 

the SSIM map (left) and its corresponding histogram (right). Six commonly used features, 

i.e., mean, median, moment (2nd order), skewness, kurtosis, full width at half maximum 

(FWHM)24,25, were extracted from the SSIM maps for all daily MRI sets.

Similarly, the total change in local entropy (Δ entropy) between daily and Ref MRI sets was 

calculated from the entropy map as shown in Eq. 5, which determines statistical measure of 

randomness within 50–100% IDSs.

Δ Entropy = 1 + Log Daily Entropy − Log Ref Entropy
Log Daily Entropy × 10 (5)

Correlations of these features to No-OLAR or OLAR groups were analyzed to identify 

features with significant difference between No-OLAR and OLAR groups by Pearson’s 
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rank correlation in RStudio (Version 1.1.456) using the ‘Performance Analytics’ package 

(Version 2.04) and ‘corrplot’ package (Version 0.92) in the Anaconda environment. The best 

performing features were determined by using t-test p-values and Pearson’s rank correlation.

2.4 Machine Learning Analysis

Multiple classification models were trained using simple decision tree, fine Gaussian SVM, 

complex trees, Bayesian classifier, and KNN in MATLAB’s classification learner app using 

2–3 features combination to determine the best performing model. A 5-fold cross validation 

process was used to optimize the model hyperparameter. To construct a deeper tree an 

ensemble bagged tree classifier was also used, it starts by bagging a weak learner as a KNN, 

discriminant or decision tree on the data set and generate bootstrap replicas of the data set 

to grow the decision trees on the replicas. For this study, the weak learner was set to be 

a decision tree with the number of learners for the ensemble bagged tree classifier set to 

100 with 0.1 shrinkage learning rate. Model performance, i.e., predicting whether No-OLAR 

or OLAR should be used for a daily MRI, was judged using the area under the receiver 

operator characteristic plot (AUC of the ROC curve). The entire process for developing the 

structural similarity and change in entropy-based OLAR and No-OLAR prediction model is 

shown in FIG. 2A. Misclassification (inaccuracy) of the obtained model was analyzed.

3. RESULTS

Spearman correlations showed that three SSIM features and change in entropy were not 

redundant. These features passed the t-test (p<0.005) indicating significant differences 

between the No-OLAR and OLAR groups. FIG. 3 shows the analysis of the six SSIM 

features and Δ entropy, showing (A) the Pearson correlation matrix of the seven features 

with No-OLAR and OLAR group, i.e., distribution of each variable along the diagonal with 

bivariate scatter plots, the significance levels and its Pearson’s correlation rank, (B) the 

Pearson rank of the non-redundant features with p<0.005. FIG 4A represents the boxplot 

visualization of the (i) mean, (ii) FWHM, and (iii) Δ entropy, the p-values obtained using 

t-test analysis between OLAR and No-OLAR group is represented in the inset of the figure 

itself. The box plot in FIG 4A shows separation of the means between No-OLAR and OLAR 

groups with ◇ shaped symbol. Based on the analysis, the best performing three features 

that can be used to separate the No-OLAR and OLAR groups was determined to be mean, 

FWHM, and Δ entropy.

The best performing model was an ensemble classifier with three features combination 

(SSIM mean, SSIM FWHM, Δ entropy) with an AUC of 0.93. FIG 4B and 4C represents the 

ensemble classifier analysis results using three features, which predicts the OLAR necessity 

with 5-fold cross validation. FIG. 4B and 4C depict the confusion matrices and receiver 

operating characteristic (ROC) curves, respectively, for the obtained results using ensemble 

classifier to predict the No-OLAR and the OLAR cases with AUC of 0.93.

The obtained model misclassified four fractions in the testing dataset. FIG 5 presents 

the dosimetric comparisons between the OLAR and NO-OLAR plans for all the four 

misclassification fractions (4 cases). It is seen that the difference in the plan qualities 

between the OLAR and No-OLAR plans for these cases can be considered marginal. For 
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example, for case 1, the PTV coverage (V3300cGy) of > 95% was satisfied by both the 

No-OLAR (95.01%) and OLAR (96.3%) plans, while the stomach constraints of V2650cGy 

< 5cc and V2000cGy < 20cc were slightly violated in the No-OLAR plan.

4. DISCUSSION

It is desirable to quickly and objectively determine when OLAR is needed during adaptive 

radiation therapy since OLAR can be labor-intensive and time-consuming and is not 

necessary for all treatment fractions. In this work, a simple machine learning classifier based 

on first-order structural similarity texture features such as SSIM and change in entropy was 

developed to automatically determine whether OLAR is necessary for a given daily MRI set. 

The development process starts by first identifying the best performing features, which are 

classified OLAR vs No-OLAR with high significance (p<0.05). Even though some of the 

individual features in classifying No-OLAR vs OLAR groups were significantly different, 

still the single feature performance was not high enough.

We found that an ensemble classifier with three features combination increased the model 

performance and was able to differentiate between the two groups with an AUC of 0.93. The 

obtained classifier model can be implemented in MRgART workflow immediately following 

the daily MRI acquisition by: (1) populating the reference plan created offline by rigidly 

registering the daily and reference MRIs, (2) calculating SSIM and entropy maps in the 

region enclosing the 50–100% IDSs between the daily and reference MRIs, (3) extracting 

mean and FWHM from SSIM map, and Δ entropy from entropy map, and (4) applying 

the obtained three feature values to the classifier model derived in this work to determine 

whether OLAR should be used for the fraction. This process can be fully automated and can 

quickly and objectively determine if OLAR is beneficial for the treatment fraction prior to 

initiating the time-consuming and labor-intensive OLAR workflow.

Since OLAR can account for organ deformation while No-OLAR cannot, it is necessary to 

identify an appropriate region where the magnitude of structure deformation determines 

the necessity of using OLAR vs No-OLAR. Our analysis indicates that in the region 

enclosed by 50–100% IDSs, the SSIM-based classification performed best. Subsequently, 

all data presented in this paper was based on the analysis in this region. The AUC of 

0.93 for the developed model is practically acceptable. The close examination of the wrong 

predication (misclassification) fractions (FIG. 5) revealed that the plan quality between the 

No-OLAR and OLAR plans for these failure fractions were comparable, implying that a 

wrong prediction for such a fraction would not result in significant dosimetric consequences. 

Furthermore, the simple model obtained is efficient in classifying OLAR cases with greater 

accuracy compared to No-OLAR cases (94% vs, 78%, FIG 4B). The four No-OLAR 

cases misclassified showed very comparable target coverage (all >~95%) and OAR sparing 

(~1.23% difference) compared to the corresponding OLAR plans (FIG. 5).

There are some limitations to our study. For PTVs with small volumes (<10 cc), the 

developed classifier may not be applicable. For such cases, it was observed that the 50–

100% IDSs enclosed shells were thin, resulting in a very small number of voxels in the 

structural similarity texture matrix, which can lead to inaccuracy in extracting features. We 
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used the dry-run MRI as the reference image to create a reference plan and to register it to 

daily MRIs to calculate SSIM for each fraction. The dry-run MRI, instead of the recent daily 

MRI, was used as a reference to avoid additional effort e.g., verifying contours and plan on 

each daily MRI which will increase the difficulty in clinical implementation. Furthermore, 

we were using rigid registration instead of DIR for the considerations that (1) the rigid 

registration would be substantially faster than DIR in the future implementation, and (2) DIR 

is problematic to address large deformations in abdomen.

Increasing the dataset size in future studies will improve the machine learning classifier 

performance. Currently, a five-fold cross validation was implemented to estimate the 

classifier performance due to the limited data size. A more generalizable approach currently 

being investigated in our group is to add higher order features, such as multiscale 

wavelet texture features using a sophisticated machine learning algorithm to predict OLAR 

necessity26. Multiscale wavelet texture features can distinguish No-OLAR and OLAR 

plans with close dosimetric differences, thus increasing the classification accuracy as 

compared to first-order SSIM and entropy-based features. In general, first-order texture 

features may not be able to encode invisible patterns from MRI sets as wavelet-based 

multiscale texture features can. The high model accuracy of OLAR group patients (~94%) 

makes the model more valuable in the clinic, although extracting more specific higher 

order features further improves classifier performance. Nonetheless, the simpler SSIM and 

entropy-based classifier model is more intuitive and can be more easily understood as 

compared to the complex wavelet features. This classifier is suitable for use as a secondary 

check of the prediction from the wavelet classifier due to its easy 2D visual projection of 

misclassification region on axial MR slices. Such a secondary check is generally desirable 

in a fully automated process. Also, SSIM maps intuitively illustrate differences in daily MR 

imaging compared to reference MR imaging.

Personnel scheduling has been a major issue in MRgART in some clinics. Being able to 

quickly and automatically determine if OLAR is needed, while cannot fully resolve the 

scheduling issue, may help avoid unnecessary personnel effort and save time for the patient 

and the machine. For example, certain team members of MRgART (radiation oncologist, 

physicist, and/or dosimetrist) can be relieved for other tasks once the OLAR is determined 

to be unnecessary. Currently, active research and development efforts for fully automated 

MRgART process (e.g., auto-contouring, auto-planning) are ongoing. The present work can 

be a part of the automated process where staff scheduling may no longer be a major issue.

5. CONCLUSIONS

A machine learning classifier based on first-order image features (SSIM and change in 

entropy features) was developed to determine when OLAR is necessary for a daily MRI 

set with acceptable prediction accuracy. First-order texture-based features can identify 

underlying residual anatomical changes of the daily MRI data set, which results in an 

AUC of 93% in predicting OLAR necessity. The process of using the ensemble classifier 

model can be fully automated and incorporated into the MRgART workflow to quickly and 

objectively determine if OLAR is needed immediately following the daily MRI acquisition. 
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Further studies with larger datasets are needed to validate the process and to improve the 

performance of the classifier.
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FIG 1. 
Schematic representation for dry-run and daily MRI standardization, including bias 

correction, Gaussian smoothing, before their registration and the contour transfer from 

reference MRI to daily MRI.
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FIG 2. 
(A) Schematic representation of data analysis workflow from extracting SSIM and change in 

entropy (Δ entropy) between reference and daily MRIs in the region enclosed by 50–100% 

iso-dose surfaces (IDSs) to establishing optimizable support vector machine classifier with 

the 5-fold cross validation. (B) Typical axial views of the rings enclosed by 50 and 100% 

IDSs of a daily MRI set (left) and the corresponding SSIM maps (right), (C) an example 

of 3D SSIM map in the region enclosing the 50–100% IDSs (left) and the SSIM histogram 

(right).
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FIG 3. 
Analyses of SSIM and Δ entropy features, (A) Pearson correlation matrix analysis of 

SSIM and Δ entropy features with correlation histograms and p-values, (B) Pearson rank 

of correlation matrix to features with p-value <0.005, with Pearson rank indicated by the 

size and the color of the circles, where red, and blue colors indicate a negative or a positive 

correlation, respectively.
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FIG 4. 
Performance of the classification using three features ensemble classifier, showing (A) 

a boxplot of (i) SSIM mean, (ii) SSIM FWHM, and (iii) Δ entropy for classifying No-

OLAR and OLAR with p-value indicated, (B) the Confusion-matrix for the true and false 

predictions of No-OLAR versus OLAR, (C) the corresponding area under the curve (AUC) 

plot for the classification of No-OLAR vs OLAR using the machine learning classifier.
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FIG 5. 
Plan quality comparison of the No-OLAR vs OLAR plans for four misclassified fractions (4 

cases).
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Table 1.

Dose volume constraints of PTV and selected OARs for SBRT with a prescription of 3300 cGy in 5 fractions 

for pancreatic cancer.

Structure Dosimetric Criterion Tolerance

PTV V3300cGy ≥ 95 % −15%

V2500cGy ≥ 95 % −15%

Stomach
Bowel_Small
Colon

V3200cGy ≤ 0.03 cc

V2650cGy ≤ 5 cc +0.5 cc

V2000cGy ≤ 20 cc +2 cc

Duodenum V3400cGy ≤ 0.03 cc

V3300cGy ≤ 1 cc

V2650cGy ≤ 5 cc +0.5 cc

V2000cGy ≤ 20 cc +2 cc

SpinalCord Dmax ≤ 800 cGy +1200 cGy

Kidney_L V1200cGy ≤ 75%

Kidney_R V1200cGy ≤ 75%

Liver V1200cGy ≤ 50%

Skin Dmax ≤ 3200 cGy
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