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Prioritizing molecules for synthesis is a key role of computa-
tional methods within medicinal chemistry. Multiple tools exist
for ranking molecules, from the cheap and popular molecular
docking methods to more computationally expensive molec-
ular-dynamics (MD)-based methods. It is often questioned
whether the accuracy of the more rigorous methods justifies
the higher computational cost and associated calculation time.
Here, we compared the performance on ranking the binding of
small molecules for seven scoring functions from five docking
programs, one end-point method (MM/GBSA), and two MD-

based free energy methods (PMX, FEP+). We investigated 16
pharmaceutically relevant targets with a total of 423 known
binders. The performance of docking methods for ligand
ranking was strongly system dependent. We observed that MD-
based methods predominantly outperformed docking algo-
rithms and MM/GBSA calculations. Based on our results, we
recommend the application of MD-based free energy methods
for prioritization of molecules for synthesis in lead optimization,
whenever feasible.

Introduction

In drug discovery, optimizing a molecule to become a clinical
candidate takes several years. While the binding affinity of the
molecule to the target protein is not the only optimization
parameter, it is a necessary pre-requisite to arrive at an
efficacious drug molecule. In each of the many optimization
cycles, the number of design proposals is typically much larger

than the number of molecules (compounds) that can be
synthesized in the lab. Prioritizing the most promising mole-
cules for synthesis is therefore a crucial step in drug discovery
project work.

Nowadays, computational methods have become indispen-
sable in supporting this important task.[1] A range of different
methods to support the selection of compounds are available.
However, the choice of method involves a trade-off between
speed and accuracy (Figure 1). For projects with a known three-
dimensional structure of the protein target, docking has
evolved to a popular approach widely applied in industry
today.[2] Due to its low computational cost, molecular docking is
a powerful tool for screening very large libraries up to millions
of compounds[3] to achieve an enrichment of actives or filter
out binders from non-binders respectively.

The basic principle of docking was developed decades ago[4]

and involves two steps in general: (1) search in a predefined
space (e.g. the binding site of the protein) for different
potential binding poses (conformations and orientations) and
(2) evaluate the potential binding of each ligand with a pose
from the first step (assigning a numerical value referred to as
the score, which preferably would correlate with the binding
free energy). Both stages have used several simplifications to
optimize for efficiency. These simplifications allow docking to
be efficient in structure-based virtual screening campaigns and
applicable to typical library sizes of millions of compounds at a
reasonable cost. While simplified docking algorithms allow for
fast pose generation and scoring, their accuracy is impaired by
several approximations such as omitting degrees of freedom
important to rigorously describe entropic contributions of the
ligand and protein (e.g. protein reorganization), and de-
solvation effects.[5] Despite those limitations and due to the
robustness and ease of use, docking is often also applied for
prioritizing smaller sets (typically <100) of compounds for
synthesis in lead optimization based on their docking scores.
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Post-processing of docking results provides an alternative to
using the docking scoring function to rank compounds (Fig-
ure 1). Such methods include the molecular mechanics com-
bined with the generalized Born surface area approach (MM/
GBSA).[6] MM/GBSA can significantly improve the success rate
for some targets, albeit with large system dependency.[7]

Compared to docking, MM/GBSA has a more physical represen-
tation of the protein-ligand binding problem. It takes into
account not only the bound but also the unbound states as
well as implicit solvation. Representative structures of the two
states are either generated by molecular dynamics simulations
or energy minimization as implemented in the Schrödinger
Suite (Prime, Schrödinger, LLC, New York, NY, 2021 and Prime
MM-GBSA node[8]). As an end-state method, MM/GBSA focuses
more on enthalpic than entropic changes. Especially for systems
where entropic contributions play a major role, the accuracy
required for ligand ranking in lead optimization is largely
hampered by these approximations.

Molecular-dynamics (MD)-based methods for calculating
protein-ligand binding free energies are more computationally
demanding than docking methods but have the most rigorous
representation of the underlying physics of the protein-ligand
complex systems, at least within a given energy model. They
make use of a physics-based model Hamiltonian, a representa-
tive conformational ensemble obtained through extensive
sampling, and a free energy estimator derived from statistical
mechanics.[9] Often, these are referred to as ‘alchemical’ or ‘FEP’
(Free Energy Perturbation) methods. MD-based methods in
principle account for the full range of entropic and enthalpic
contributions relevant for accurate binding free energy esti-
mates. Sufficiency in sampling and the accuracy of the
molecular mechanics force field are among the crucial determi-
nants for successful application of relative binding free energy
calculations (RBFEs).[10]

The improved usability, efficiency, and performance of MD-
based (FEP) methods lead to increased adoption of RBFE
calculations using MD simulation within industry.[11] In drug

discovery project teams, this often raises the question whether
their accuracy justifies the higher computational cost, compared
to faster and less complex docking approaches. However,
comparative studies on the performance of docking with or
without post-processing algorithms and MD-based methods are
only available anecdotally for few or single targets.[12] A system-
atic comparison on a larger data set of multiple, pharmaceuti-
cally relevant targets is yet to be reported.

In this work, we evaluated the ligand ranking performance
of multiple docking algorithms (GOLD[13], Glide[14], FlexX[15],
OEDocking (FRED[16], HYBRID[17]), AutoDock Vina[18]), the single
snapshot end-point method MM/GBSA for docking refinement,
and more expensive MD-based free energy methods on a large
publicly available protein-ligand test set of which subsets were
used in several RBFE studies published recently.[11b,19] The two
MD-based free energy methods we included in this work were
FEP+ [12b,19b,20] implemented in the Schrödinger software suite
and PMX[21] (a non-equilibrium switching method implemented
with GROMACS and pmx). Both methods have shown robust-
ness and good accuracy in predicting binding free energies for
ligand ranking.[11b,19b,e] All FEP+ and PMX results discussed in
this study were retrieved from previously published
literature.[11b,19e,22]

Docking methods were compared using the lowest energy
pose the methods generated, instead of comparing scoring
functions against a single consistent reference pose. This was to
compare how methods performed to reflect a realistic use case
within medicinal chemistry projects. For extensive work done in
the past decades on benchmarking the performance of docking
algorithms for pose prediction and ranking (enrichment of
actives) we refer the reader to prior work.[23] Here, we consider
sets of active ligands only. Focusing only on actives facilitated
the comparison to the recently published RBFE results men-
tioned above. We see a high practical value of our study as an
aid to medicinal and computational chemists working on drug
discovery projects with the need to prioritize molecules for
synthesis.

Figure 1. Generalized workflow for the ranking of smaller compound sets.
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Results and Discussion

In this study, we wanted to test whether the accuracy of MD-
based methods for ligand ranking justifies the higher cost in
MD-based methods (FEP+ /PMX) compared to docking meth-
ods, across a range of pharmaceutically relevant targets. We
also sought to determine whether MD-based methods were
worth the extra investment and whether commercial methods
outperform the non-commercial alternatives. For completeness,
we also include results from MM/GBSA calculations. MM/GBSA
calculations were a post-processing of the Glide docked poses
to refine docking scores. We were interested in how much this
re-scoring improves ligand ranking compared to the original
results from Glide docking scores. In the main text, we evaluate
the ranking abilities of all methods through the Kendall’s τ
coefficient analysis across all targets and for each target
individually.[24] This is followed by a comparison of each
method‘s ability to, for three randomly selected ligands for a
given target, correctly rank the random ligands and identify the
most potent ligand in the set, known as high- and low-level
success rate of ligand ranking analysis. This type of analysis
enabled us to better compare between targets. Further
confusion matrix-based analysis can be found within the
supporting information.

Docking programs are able to generate binding poses which
are close to reference structures

The first, and most important, stage of ligand ranking is to
accurately generate the protein-ligand binding pose. The bind-
ing pose prediction capabilities of docking programs have been
extensively studied previously[23k,l,y,ac,25] and are not the focus of
this study. However, we briefly investigated the ability of each
algorithm to recreate a co-crystallized pose – to enable us to
interpret the differences in ranking ability. It is important to
reiterate that both MM/GBSA and MD-based free energy
methods are seen as post-processing of either docked, or even
aligned, poses and not studied with regards to pose prediction.

In this work, we investigated 16 pharmaceutically relevant
targets with a total of 423 known binders used in recent
benchmarks of binding free energy calculations.[11b,19b,e,22a] More
information on the data set is given in the Experimental
Section.

Six docking algorithms were used for non-constrained
docking: Glide, GoldScore@GOLD, FRED, ChemPLP@GOLD,
AutoDock Vina, and FlexX. Five algorithms were used that
employed constraints: Glide, GoldScore@GOLD, HYBRID, Chem-
PLP@GOLD and FlexX. Constraints can be used to ‘guide’ the
docking results and a common use case is where a similar
ligand has already been co-crystallized and can be used to bias
the docking result towards this pose. For each docking
algorithm in our study, the top scoring pose for each of the 423
compounds for 16 targets was used to compute heavy-atom
root-mean-squared deviation (RMSD) values from the reference
co-crystallized ligand structures (see Experimental Section). The
results are summarized in Figure 2. For each docking algorithm,

green cells indicated a higher percentage (closer to 100%) of
the docked poses that were within the 2 Å cut-off and vice
versa for red cells.

In Figure 2 we show, for all targets, at least one non-
constrained docking algorithm could predict a pose within 2 Å
of the reference structure for more than 60% of compounds.
None of the non-constrained docking algorithms could get over
50% of the docked poses within 2 Å of the reference structure
for the full set of targets. The performance varied between
different targets.

As expected, docking algorithms that used scaffold con-
straints had, in general, better performance than non-con-
strained docking algorithms. This high degree of success is
partially due to the compounds in the dataset sharing a high
structural similarity with the co-crystallized ligand in each target
system.

In some cases of reduced performance in constrained
docking pose predictions, the observation can be explained by
how the constraints were set up. The determination of the
ligand‘s common core substructure in Glide and FlexX is
automated, while the common core had to be determined
manually for constrained docking with GOLD. Special care has
to be taken when using automatic determination of the
common core for ligands that contain symmetrical fragments.
In such cases, automatic determination of the common core
can result in poses which flip the structure over, rotating it
around any symmetrical part, especially when there is addi-
tional functional symmetry when considering the whole
structure of the ligand. This can result in binding modes which
are essentially opposite of what they ought to be. This
highlights the importance of manually inspecting the binding
poses after docking, before proceeding with further post-
processing. Such inspection can incorporate additional informa-
tion, such as existing knowledge on compound structure
activity relationships (SAR).

Binding free energies calculated by MD-based methods show
better rank correlations with experimentally measured
binding free energies than docking scores

To assess the performance of ranking compounds for all
docking, MM/GBSA and MD-based methods, averaged Kendall’s
τ coefficient values were computed (perfect ranking agreement
when τ=1) across all targets. Experimental values were
converted from reported affinity measurements (IC50 or Kd to
the binding free energy ΔG in kcal ·mol� 1). The results are
summarized in Table 1. Note that MM/GBSA, as used here, is a
post-processing algorithm for the refinement of docking results
and involves no molecular dynamics. In this work, poses from
Glide (constrained/non-constrained) were used in MM/GBSA
calculations. We grouped MM/GBSA results with results from
docking algorithms in tables and figures in this manuscript,
even though we considered MM/GBSA as an end-point method
instead of a docking method. Reported values for FEP+ and
PMX are based on calculated RBFEs retrieved from previously
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published sources [11b,19e,22a] and [22b], respectively (see
also Experimental Section).

Docking scores had a relatively poor correlation with
experimental binding free energies whereas MD-based free
energy methods showed better performance. This trend of poor
correlation between docking scores and experimental results is
consistent with that observed in a previous benchmark study
by Warren et al. (2006) where they found no strong correlation
for any scoring function.[23y] Here, MM/GBSA outperformed
some docking algorithms (AutoDock Vina, Glide, FlexX, FRED,
HYBRID) but had similar or worse performance than the best
docking method in this case (GOLD). MD-based methods have a
more detailed representation of the underlying physics of the
protein-ligand complex system compared to MM/GBSA and
docking scores. This is in line with our observation that MD-
based methods (especially FEP+) had the best performance in
this case.

The error bars for Kendall’s τ values in Table 1 are large (>
0.2), indicating varied performance across these targets for each
method. Additionally, we computed Kendall’s τ values sepa-
rately for each target in order to assess performance of ranking
ligands for each method. Figures S3–S33 show the results with
the RMSD value of each ligand, with Figure 3 as an example. In

Figure 2. The percentage of compounds for which the top scored docked pose was found within 2 Å of the crystal structure for all targets. Docking programs
are able to generate binding poses which are close to reference structures for most targets.

Table 1. Averaged Kendall’s τ coefficient values across all targets for each
method. Uncertainties were estimated using standard deviations.

Type Methods[a] Kendall’s τ coefficient

non-constrained docking ChemPLP 0.2�0.2
GoldScore 0.3�0.2
Glide 0.1�0.2
FlexX 0.0�0.3
FRED 0.1�0.2
AutoDock Vina 0.1�0.3
MM/GBSA* 0.3�0.3

constrained docking ChemPLP 0.3�0.3
GoldScore 0.3�0.1
Glide 0.1�0.3
FlexX 0.1�0.3
HYBRID 0.1�0.3
MM/GBSA* 0.2�0.3

MD-based FEP+ 0.6�0.2
PMX 0.4�0.2

[a] * indicates that the Glide docking was used to generate the initial
coordinates before pre-processing.
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most targets, at least one of the MD-based free energy methods
(FEP+ or PMX) had the highest Kendall’s τ value among all
methods. FEP+ typically outperformed PMX. The most prom-
inent reasons for the better performance of FEP+ may be the
different sampling protocol of the MD engines (free energy
perturbations with Hamiltonian replica exchange versus non-
equilibrium switching) and the force field parameters (OPLS3e
(with custom parameters) versus Open Force Field 1.0 “Parsley”
for the ligands and Amber99sb*ILDN for the protein).

We observed a few exceptions where docking or MM/GBSA
yielded higher Kendall’s τ values than MD-based free energy
methods. However, the differences to the best performing MD-
based method were mostly marginal. Non-constrained docking
algorithms got the highest Kendall’s τ value among all methods
in mcl1 (Kendall’s τ=0.46 (GoldScore) versus Kendall’s τ=0.43
(FEP+); Figure S14) and thrombin (Kendall’s τ=0.67 (AutoDock
Vina) versus Kendall’s τ=0.60 (FEP+); S17). MM/GBSA results of
cdk8 had the highest Kendall’s τ value (Kendall’s τ=0.63 (MM/
GBSA) versus Kendall’s τ=0.56 (FEP+)) as shown in Figures S10
and Figure S26. There are also a few targets (4 for non-
constrained and 4 for constrained docking) in which we saw
docking algorithms and/or MM/GBSA results yielding higher
Kendall’s τ values than one of the MD-based free energy
methods (Figures S5, S6, S8, S9, S18, S19, S21, S24).

The observation for those targets could indicate potential
issues frequently encountered in simulations, such as non-
converged simulations (finite sampling), approximations com-
ing from the force field or finite size of the simulation box, and
inappropriate preparation of the starting structures (e.g. poor
or incorrect selection of tautomeric and charge states and/or
ligand poses).[26] The mcl1 ligand data set exhibits several meta-
substituted phenyl rings which can indicate a potentially strong
dependence on the starting structure. Further investigations by
the authors of the corresponding published binding free energy
study[22b] are ongoing and will be part of a separate publication.
A small dynamic range as in the case of thrombin (1.7 kcal/mol)
poses a particular challenge for ranking methods. The detailed
investigation for all particular examples mentioned is beyond
the scope of the current study.

To estimate the uncertainties of the computed Kendall’s τ
values for each target, we performed 10000 rounds of boot-
strapping (sampled with replacement) for docking scores/
predicted binding free energies from each method across all
targets. The mean values from bootstrapping are reported in
Figure 4. It was remarkable that FEP+ had a Kendall’s τ value
larger than 0.5 in 12/16 systems.

Reflecting on the docked ligand RMSDs shown in Figure 2
can help partially elucidate some of the poor correlations for
docking methods in Figure 4. For example, in galectin both
constrained Glide and FlexX algorithms failed to recreate the
crystallographic poses across the ligand series. So it is not
surprising that the series is poorly ranked by constrained
docking. The lower correlation for non-constrained docking in
galectin and jnk1 can also be partially explained by the poorer
docked poses. The opposite case can also be seen in our study,
where syk shows a larger deviation from the crystallographic
poses while still showing a slight positive correlation across
most non-constrained docking methods.

Among all tested docking algorithms with scaffold con-
straints, GOLD with ChemPLP and GoldScore scoring functions
had the best performance and at least one of these scoring
functions got the highest Kendall’s τ values for 12 targets.
Among non-constrained docking, GOLD with GoldScore had
the best performance and got the highest Kendall’s τ values in
8 targets.

Compared to docking algorithms, MM/GBSA got higher
Kendall’s τ values for 6 targets with both constrained and non-
constrained docking, respectively. In addition, the performance
of docking algorithms and MM/GBSA again varied between
different targets and none of them could consistently return
good results in all targets. The Kendall’s τ analysis compares
ligand series of different sizes. Therefore, we sought to better
compare methods through two further analyses. The first was
how well each method could rank three random ligands within
the dataset (known as the high-level success of each method).
The second was how well each method could identify the most
potent ligand amongst a set of three randomly selected ligands
(known as the low-level success of each method).

Figure 3. Scatter plot of predicted binding free energies/docking scores vs.
experimental binding free energies for cdk2. Results for non-constrained
docking algorithms are shown here. The color map shows RMSD (Å) of each
compound (we did not compute RMSD values for MD-based methods (PMX,
FEP+) and MM/GBSA calculations since it is not applicable to these
methods). FEP+ and PMX results were retrieved from Refs. [11b] and [22b],
respectively. The relative free energy differences were converted into free
energy differences with Arsenic.[27]
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MD-based methods outperform docking algorithms and
MM/GBSA in both high- and low-level success rate

Some of the smaller protein-target sets lead to a lower
statistical significance, based on the number of data points and
the dynamic range (affinity range). Particularly for targets like
galectin and thrombin, which suffer from a very low number of
data points (8 and 11, respectively) and low dynamic ranges
(2.7 and 1.7 kcal ·mol� 1). Given the experimental
(0.64 kcal ·mol� 1 for affinity measurements[28]) and calculation
errors (typically larger than 1.0 kcal ·mol� 1 for MD-based
methods) the low dynamic ranges render data points within
this dataset indistinguishable by docking, MM/GBSA or MD-
based methods.[29]

To better account for the different number of data points
per target, we sought another measure to assess the ligand-
ranking performance of the different methods under investiga-
tion. This was achieved through the determination of high- and
low-level success rates. Here we used three different, randomly
picked ligands for each target. The low-level ranking success
rate tells how many times the most potent ligand in this
random set was also evaluated as the best by the program. The
high-level ranking success rate indicates how many times the
combination of three ligands were ranked correctly relative to
one another.

The overall success rate of each method was evaluated by
averaging across all targets. The mean values and standard
deviations were reported in Table 2. On average, all methods
performed better than a random assignment. Success rates for

Figure 4. Kendall’s rank correlation coefficient (τ) for all tested methods across all targets. Mean values of each target after 10000 rounds of bootstrapping are
reported. MD-based methods get a higher Kendall’s rank correlation coefficient than docking methods in most targets. FEP+ and PMX data based on results
published in Refs. [11b,19e,22a] and [22b], respectively.

Table 2. Success rate (%) of docking algorithms and MD-based methods.
Reported values are averaged across all targets (without bootstrapping).
Uncertainties are estimated using standard deviations. Success rates for
FEP+ and PMX were calculated based on results published in Refs.
[11b,19e,22a] and [22b], respectively.

Type Methods[a] High level [%] Low level [%]

non-constrained
docking

ChemPLP 27�7 47�11
GoldScore 31�10 52�13
Glide 20�9 37�12
FlexX 19�12 34�17
FRED 21�10 36�14
AutoDock Vina 25�16 42�19
MM/GBSA* 31�16 49�21

constrained docking ChemPLP 33�11 51�15
GoldScore 33�8 54�10
Glide 21�11 40�12
FlexX 23�11 37�18
HYBRID 23�11 37�16
MM/GBSA* 30�15 47�18

MD-based methods FEP+ 52�13 70�10
PMX 37�14 57�12

[a] * indicates that the Glide docking was used to generate the initial
coordinates before post-processing.
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FEP+ and PMX were calculated based on results published in
Refs. [11b,19e,22a] and [22b], respectively. In general, MD-
based methods (FEP+ , PMX) yielded higher success rates than
docking algorithms and MM/GBSA, indicating a better perform-
ance of ranking ligands using calculated binding free energies.
Among constrained docking algorithms, GoldScore and
ChemPLP had better performance than other algorithms and
MM/GBSA calculations. Better performance of GOLD with con-
strained docking might be related to the fact that the common
core had to be determined manually. This resulted in more
reliable determination of the common core in cases where
ligands exhibited functional symmetry and contained sym-
metrical fragments. FlexX on the other hand, did not offer an
option for manual determination of the common core between
the ligand to dock and the reference structure (co-crystallized
ligand).

We then checked performance of these methods in each
target. The results are summarized in Figures 5 and 6
(uncertainties are shown in Figure S35 and S36).

Similar to the results in Kendall’s τ analysis, MD-based
methods again outperformed docking algorithms and MM/
GBSA for most targets. We also observed exceptions as we did
in Kendall’s τ results and summarized them in Tables S3, S4.
MM/GBSA outperformed constrained docking algorithms in 4
targets (high-level success) and 4 targets (low-level success).
Compared to non-constrained docking algorithms, MM/GBSA
had a better performance in 6 targets for both high- and low-

level success rates. We also compared docking algorithms for
their performance and summarized the results in Table S5.
Overall, GOLD with GoldScore had the best performance in
both constrained and non-constrained docking for both high-
and low-level success rates.

Interestingly, our results showed that MM/GBSA calculations
had similar performance as the best docking algorithm judged
by both Kendall’s τ and high/low-level success rates (also in
confusion matrix analysis, which can be found in the SI) and
outperformed other docking algorithms. For the majority of
systems, MM/GBSA improved the correlation to experimental
results of the non-constrained Glide docking results. This result
implies that post-processing Glide results with relatively cheap
MM/GBSA calculations will often improve the ranking of a set of
compounds. However, as suggested by previous studies and
confirmed in this work, the performance of MM/GBSA calcu-
lations and docking scores are system dependent.[7] It is also
known that MM/GBSA calculated binding free energies are
sensitive to many parameters (e.g., force field, dielectric
constant, protein-ligand conformation, and, when dynamics is
used in these calculations (as is common in other implementa-
tions) the amount and type of dynamics employed). Since the
focus of this work was not a thorough comparison between
MM/GBSA calculations and docking methods, we did not
explore the impact of the many parameters of MM/GBSA in the
current work.

Figure 5. High-level success rate for all docking algorithms across all targets. This is the rate of correctly ranking three randomly selected ligands for a given
target. Mean values of each target after 10000 rounds of bootstrapping are reported. Success rates for FEP+ and PMX were calculated based on results
published in Refs. [11b,19e,22a] and [22b], respectively. MD-based methods have higher high-level success rates than docking algorithms for most targets.
The grey scale indicates a success rate worse than a random guess (16.67%) and the green scale indicates a success rate better than a random guess.
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Conclusion

The main focus of this work was assessing ligand ranking
abilities of commonly used docking and MD-based free energy
methods. Overall, MD-based free energy methods (PMX and
FEP+) predominantly outperformed docking methods and
showed considerably less system dependency for the inves-
tigated targets. Our results suggest the more expensive MD-
based algorithms should be the methods of choice when it
comes to prioritization of (smaller) ligand sets for synthesis in
lead optimization. For an example on the use of machine
learning to expand the applicability of MD-based free energy
methods to larger ligand sets we refer to Ref. [30]. In contrast to
docking, MD-based free energy methods provide a full
description of the underlying statistical thermodynamics. They
include conformational sampling of both ligand and protein as
well as an explicit treatment of solvation degrees of freedom.
This leads to a more accurate estimation of binding free
energies. However, in lead optimization, docking will likely
remain a powerful tool for system preparation or pre-filtering
large virtual chemical spaces. Docking is also a key component
in recent developments of automatized holistic workflows

combining docking, MD-based binding affinity estimation and
machine learning.[30–31]

Experimental Section

Selected docking algorithms and MD simulations

We evaluated five docking programs (GOLD[13], Glide[14], FlexX[15],
OEDocking (FRED[16], HYBRID[17]), AutoDock Vina[18]), an end-point
method (MM/GBSA calculation[8] based on docked poses from
Glide), and two MD simulation-based free energy calculation
methods (FEP+ [12b,19b,20] (in the Schrodinger software suite) and
PMX[21] (non-equilibrium switching method implemented in GRO-
MACS and pmx)). Both MD simulation-based methods have been
successful in predicting ligand binding free energies in previous
work.[19b,d,e,20a,b,32]

System selection

We selected 16 target protein structures with 423 ligands (Table 3)
from the reference dataset (protein-ligand benchmark: https://
zenodo.org/record/5679599)[33] which were used in several relative
binding free energy benchmark studies.[11b,19a–c,e]

Figure 6. Low-level success rate for all docking algorithms across all targets. This is the rate of correctly identifying the most potent ligand in a set of three
randomly selected ligands for a given target. Mean values of each target after 10000 rounds of bootstrapping are reported. Success rates for FEP+ and PMX
were calculated based on results published in Refs. [11b,19e,22a] and [22b], respectively. MD-based methods have higher low-level success rates than
docking algorithms for most targets. The grey scale indicates a success rate worse than a random guess (33.33%) and the green scale indicates a success rate
better than a random guess.
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This study examines only active compounds and their relative
ranking, rather than focusing on an enrichment of actives (picking
active compounds out of a library containing both actives and
inactives). That is, all of the compounds studied here are binders,
without any decoys, and share high structural similarity (common
scaffold) within each series of the protein target. Focusing on active
compounds only enabled the comparison to data from recent
benchmarks of binding free energy calculations.[11b,19b,e,22a] This test
set reflects typical use cases for compound prioritization within a
congeneric series as performed during lead optimization in
industry.

Protein preparation

The protein structures were prepared for molecular docking studies
from the original published structures for each target from the
reference dataset[33] (PDB ID in Table 1), which allowed for selection
of key water molecules. The structures were downloaded from the
Protein Data Bank (https://www.rcsb.org) and aligned to the
structures in the reference dataset, in order to calculate the RMSD
between the docking solution pose and the reference ligand
binding pose contained in the reference dataset[33]. The following
targets from the reference dataset were eliminated in this present
study:

* Ros1 was eliminated as the original crystal structure that was
used for the preparation of the protein in the reference dataset
was not published.

* Pde2 was eliminated as there was no common substructure
between the co-crystallized ligand and the ligand series being
docked.

* Pde10 was removed, as despite the high sequence similarity
between human and rat, we only wanted to inspect targets
where an identical sequence was used throughout all models
and assays.

* The Base structures were excluded as the docking model setups,
accounting for a more basic pH, might have required manual
adaptation and this was beyond our generalizable preparation
workflows at pH 7.4.

The PDB structures were aligned to the benchmark set input
structures using the Maestro[34] structalign command in the
terminal. The structures were aligned by chain A in all cases but

thrombin, which contained the relevant binding site in chain H. The
PDB ID and the alignment RMSD (as output from the structalign
algorithm) for every target are provided in Table S1. The aligned
protein structures were used directly as the input for docking with
FlexX, since it required no prior receptor preparation. The protein
preparation step (including the selection of water molecules) was
one part of the docking process (https://www.biosolveit.de/wp-
content/uploads/2021/01/FlexX.pdf).

For all the other docking programs, only the protein chain
containing the binding site was used. We removed the remaining
chains along with cofactors, ions, and ligands which were distanced
more than 6 Å away from the atoms of the crystal ligand. The
following preparation procedure was done using the Protein
Preparation Workflow (beta).[35] N-acetyl (NCA) and N-methyl amide
(NMA) groups were added to uncapped N and C termini. Bond
orders were assigned to all bonds in the structures, including the
use of SMILES from the Chemical Component Dictionary database
for known het groups[34]. Missing loops were rebuilt using
Prime.[35c,36] The protonation states of the ligands were generated
with Epik at pH 7.4�2.0. Missing side chains and atoms were
corrected. If the crystal structure contained any multiple alternate
residue structures, only the position with the highest occupancy
was considered. All hydrogen atoms in the crystal structure were
deleted first and then were added explicitly to the whole complex
structure by the program. Water molecules beyond 5 Å from the
ligand were deleted, remaining waters were examined for possible
interactions or clashes with the ligands being docked (see below).

The hydrogen-bonding network was optimized, and any water
molecules that did not form any clear hydrogen-bonds with both
the protein and the co-crystallized ligand were deleted. For the
chosen targets, there was a recognizable common core between
the structure of the co-crystallized ligand and respective ligands in
the protein-ligand benchmark set. In some cases a water molecule
formed interactions with the substructure of the crystal ligand that
was differing between the ligands of the benchmark set. If such
water molecules were expected to be displaced by the docked
ligands, they were only considered when docking with GOLD, as it
was the only program that can displace the waters during docking.
The final structures were minimized within the root-mean-square
deviation (RMSD) 0.3 Å constraint using the Protein Preparation
Workflow (beta).[35]

Since the protein preparation step is a part of the docking
algorithm of FlexX, the protein structures (e.g., protonation states,
water molecules) prepared by FlexX were expected to be different
from those prepared by Protein Preparation Workflow (see above).
Since this is how FlexX was designed, the difference here is
inevitable and we did not introduce any human bias in this
preparation step.

Using CORINA to prepare ligand 3D conformers

We used the ligand conformations in the reference dataset[33] and
standardized the bond lengths and angles using CORINA 4.3.0[37] to
prevent any bias. 3D coordinates were used as the basis of the
determination of the stereochemistry, using the option -d 3dst.
Since we aimed at a direct comparison to the published results
from MD-based free energy calculations, we applied the same
tautomers and charge states as in the reference dataset.[33]

GOLD

GOLD (Genetic Optimization for Ligand Docking, v2020.3.0) uses a
genetic algorithm to sample possible ligand conformations. Dock-
ing was performed with the “gold_auto” command. After the use of

Table 3. Targets studied in this work.

Target
label

Protein PDB ID Ligands

cdk2 Cyclin-dependent kinase 2 1H1Q 16
cdk8 Cyclin-dependent kinase 8 5HNB 33
cmet Hepatocyte growth factor receptor 4R1Y 12
Eg5 Kinesin-like protein kif11 3 L9H 28
galectin Galectin-3 5E89 8
hif2a Endothelial pas domain-containing

protein 1
5TBM 42

jnk1 Mitogen-activated protein kinase 8 2GMX 21
mcl1 Induced myeloid leukaemia cell

differentiation protein
4HW3 42

p38 Mitogen-activated protein kinase 14 3FLY 34
pfkfb3 Fructose-2,6-bisphosphatase 3 6HVI 40
ptp1b Protein tyrosine phosphatase 1B 2QBS 23
shp2 Tyrosine-protein phosphatase

non-receptor type 11
5EHR 26

syk Tyrosine-protein kinase syk 4PV0 44
thrombin Thrombin light chain 2ZFF 11
tnks2 Tankyrase-2 4UI5 27
tyk2 Non-receptor tyrosine-protein kinase tyk2 4GIH 16
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the CORINA 3D structure generator, ligands were converted from a
SD format to a mol2 format. The atom types and bond orders were
assigned appropriately during this process with utility programs
gold_utils -convert and check_mol2.[13]

Water molecules forming interactions with the part of the crystal
ligand that was differing between the ligands being docked were
set as displaceable by the ligand, and rotation and translation
within the maximum radius (2 Å) was used to optimize their
position. Using the GOLD algorithm for water displacement and
translation has consistently shown improved results in our dataset
when compared to not considering these water molecules (data
not shown). For water molecules that were forming H-bonds with
the substructure common to all the ligands and the crystal ligand,
only rotation was used to optimize the binding (they were
considered the same way as an e.g. hydroxy group of threonine).

We used the same general settings for docking with GOLD for all
targets. The binding site was defined by whole residues reaching
within the 6.0 Å radius (default) of the co-crystallized ligand, and
the cavity detection algorithm[38] was used to restrict the binding
site to concave parts of the protein surface. All H-bond donors/
acceptors were set to be treated as solvent accessible by GOLD, to
enable solvent accessibility of backbone carbonyls.

The formation of intramolecular hydrogen bonds was disabled,
otherwise the highest ligand flexibility settings were used: flipping
of ring corners,[39] amides, and pyramidal nitrogens was enabled,
and all planar nitrogens and protonated carboxylic acid groups
have been selected as rotatable. Default torsion angle distributions
were enabled to bias the search towards the ligand torsion-angle
values commonly observed in crystal structures, and rotatable
bonds were post-processed. The genetic algorithm was set to “very
flexible”.

We enabled generation of diverse solutions and internal ligand
energy offset. Ten poses were generated for each ligand. Only the
top-ranked ligand pose was saved. We disabled early termination of
the genetic algorithm. For scaffold constrained docking, the
maximal common substructure to all ligands and the crystal ligand
was determined manually for each target. This common substruc-
ture pose was extracted from the co-crystallized ligand pose,
docking was then performed using the default constraint weight
(5.0).

The choice of the GOLD scoring function was made based on the
evaluation of the pose prediction performance on our dataset
(RMSD values from redocking the crystal ligand, data not shown).
GoldScore (the original GOLD scoring function) and ChemPLP (the
default scoring function for GOLD version 5.1 and later) performed
much better in this respect.

KNIME workflows

The MM/GBSA calculations, and docking with both FlexX and Glide
were performed using KNIME workflows,[40] using the official nodes
issued by the providers of the docking software. KNIME workflows
were also used for the direct collection, analysis, and post-
processing of the docking results of FlexX, Glide, and GOLD. The
RMSD node[8] was used to calculate RMSDs between the docked
poses and the reference ligand pose from the dataset.

FlexX

The Docking (FlexX) node from BioSolveIT (https://www.biosolveit.
com/KNIME)[41] was used to generate a maximum of 10 FlexX
docking poses per ligand (default). This node requires SDF and PDB

format for ligand and protein input files. The CORINA standardized
molecule library of ligand conformations and the crystal ligand
were imported using the SDF reader nodes with the “Extract
molecule name” option enabled. The crystal ligand structures were
used to define the binding site (input port 1), just as well as the
template pose when the docking was done with the common
substructure constraint (input port 3). The protein structure was
imported with the PDB Reader node[8].

The resulting poses from docking were input in the Affinity
Calculator (HYDE)[41] node along with the protein structure and the
crystal ligand structure as the reference for the binding site
definition. The HYDE affinity calculator was used to optimize the
FlexX-generated poses, estimate their upper affinity limits, and label
the intramolecular clashes, the intermolecular clashes, and the
torsion qualities of the docked poses. If any of these attributes was
labelled as unfavorable by HYDE scorer (“red”), the respective pose
was filtered out with the Rule-based Row Filter node. The optimal
pose per ligand was determined by grouping the poses by the
molecule name, and with a Group By node aggregating the lowest
Upper Affinity (Ki) Limit value [nM] of them as determined by HYDE
scorer. HYDE-optimized pose with the lowest Upper Affinity Limit
value was extracted with the “Inner Join” mode option of the Joiner
node. The binding free energy (ΔG) was calculated using
ΔG=RT ln(Ki).

Glide and MM/GBSA calculations

Glide docking was performed using the Glide Ligand Docking
node.[8] The Glide Grid Generation node[8] was used to create the
glide grid from the prepared protein-ligand complex. Ligands were
not re-prepared for docking using LigPrep (in the Schrodinger
software suite). This was to allow the protonation states and bond
orders from the reference dataset[33] to be kept unchanged.

MM/GBSA calculations were done with the Prime MM-GBSA node,[8]

using the conformations resulting from the scaffold-constrained
and non-constrained Glide docking runs as the input.

OEDocking (FRED, HYBRID)

The performance of a rigid docking algorithm – OEDocking – was
also evaluated in this work. Since the ligand conformation is fixed
in a rigid docking process, it is more efficient than flexible docking
since less conformational space is sampled during docking.

Both FRED[16] and HYBRID[17] programs in the OEDocking Toolkit
4.0.0.2 (OpenEye Scientific Software) were evaluated using the
dataset. Both programs use Chemgauss4, a scoring function
developed based on Chemgauss3[16] with improved recognition of
hydrogen bond networks, for the final refinement of the docked
poses. FRED and HYBRID programs differ in the initial exhaustive
searching phase where FRED uses Chemgauss3 but HYBRID uses
the Chemical Gaussian Overlay (CGO). CGO is a ligand-based
scoring function and considers the similarity of the shape and 3D
arrangement of chemical features between the ligands to dock and
the reference ligand (bound ligand in the reference structure from
the dataset). Thus, docked poses from HYBRID are expected to be
closer to the reference structure. In this work, we considered FRED
to be non-constrained docking and HYBRID as constrained docking.

OMEGA[42] 4.0.1.2 in OEToolkits was used to generate conformers
for ligands with all default parameters. The docking volume (active
site) was automatically determined by the program based on the
input protein-ligand bound complex structure from procedures
described in the protein preparation section (using the MakeR-
eceptor function). Both FRED and HYBRID were performed using
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default settings except a maximum of 10 docked poses were
generated for each ligand. To retain crystallographic water
molecules in the receptor, the MakeReceptor GUI app in the
OEDocking Toolkit was used when creating the receptors used in
docking.

AutoDock Vina

AutoDock Vina[18] (v1.1.2) is a free docking program which is an
evolution of AutoDock 4.[43] It implements a more efficient scoring
function than AutoDock 4, while still maintaining a comparable
level of accuracy.[18]

The search space (a cubic docking box) was defined using the
center of mass of the ligand in the reference structure. The size of
the box was automatically determined using algorithms based on a
previous study,[44] which performed a systematic analysis of the
effect of the box size on docking using AutoDock Vina and showed
that an optimal box size should be 2.9 times larger than the radius
of gyration of a docking compound. The protein structures, which
were prepared using the procedures described in the previous
section on protein preparation, were used as the receptor input.
The top scoring ligand conformers from OEDocking (HYBRID) were
used as the input ligand conformations for AutoDock Vina. Unlike
in rigid docking (FRED and HYBRID), AutoDock Vina allows ligand
conformations to change during docking process. For AutoDock
Vina we used the top scoring ligand conformers from HYBRID as
input, which is similar to the protocol we used in a previous
study.[45] Default settings in the scripts provided in AutoDock
Tools[43a] were used to prepare receptors and ligands, with the
exception that the crystallographic water molecules were retained
in the receptors (the default is to remove them). The exhaustiveness
was set to 40, which controls how many times AutoDock Vina
repeated the calculations with different randomizations for a ligand.
10 docked poses were saved out for each ligand. Single point
energy calculations (the score_only flag) were performed on the
best docked pose to get higher resolution of the scores (5 decimals)
for ranking analysis.

Non-equilibrium free energy calculations using pmx and
GROMACS (PMX)

The results using a non-equilibrium workflow based on GROMACS
and pmx,[21] were retrieved from published sources.[22b] These
published results originate from the same calculation workflow as
in a previous study,[19e] but employing the Parsley forcefield (v1.0.0)
parameters for the ligands.[46] The alchemical perturbations and the
input structures were used in these calculations as available in the
reference dataset.[33] The analysis workflow used for analyzing the
calculations is available in Ref. [22b]. The final free energy differ-
ences were calculated from the combined relative free energy
differences with Arsenic.[27]

Free energy perturbation using FEP+

The results using Schrodinger FEP+ [19b] were retrieved from
published sources, where the calculation results can be
found.[11b,19e,22a] These calculations used the same input structures as
available in the reference dataset as well as the same alchemical
perturbations.[33] The results for targets cdk2, galectin, jnk1, mcl1,
p38, ptp1b, thrombin and tyk2 were retrieved from reference [19e].
Reference [11b] is the source of the results of targets cdk8, cmet,
eg5, hif2a, pfkfb3, shp2, syk, and tnks2. Again, the relative free
energy differences were converted into free energy differences with
Arsenic.[27]

Evaluate performance of bound conformation predictions

To compare performance of these docking methods for binding
pose predictions, we computed the root-mean-square-distance
(RMSD) of the top scored docked pose of each ligand and the
reference structure with symmetry adjustments (e.g., flipping of a
phenyl ring does not yield an artificially high RMSD). Each ligand
was aligned to the available protein-ligand complex crystal
structure for each target and was used as the reference structure in
binding pose assessment. We calculated the percentage of ligands
of which the RMSD are within 2 Å for each target and used them to
compare different docking methods.

Evaluate performance of ligand ranking

We performed multiple analyses to compare the predictive
performance of the methods studied (docking methods, MM/GBSA
calculations and MD-based methods) with respect to ligand
ranking. First, we computed Kendall’s τ (with perfect ranking
agreement when τ=1) for each target separately and the overall
dataset. Kendall’s τ is especially suited as a metric to assess pairwise
ligand ranking performance. We also calculated both low- and
high-level success of ligand ranking as defined as follows: for three
different randomly picked ligands of a target, the low-level ranking
success rate tells how many times the most potent ligand was also
evaluated as the best by the program; while the high-level ranking
success rate indicates how many times the combination of three
ligands were ranked correctly (from the worst to the best). To
assess uncertainties, we performed 10000 bootstrapping trials by
randomly selecting half of the compounds for each target. A further
performance analysis using a confusion matrix can be found in the
supporting information.
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