Drynaria fortunei (Kunze ex Mett.) J. Sm. [Polypodiaceae; Drynariae Rhizoma] |
Kaempferol, luteolin, naringin, catechin, and cyclolaudenol |
Kaempferol and naringin may promote BMSC osteogenic differentiation and ameliorate the development of osteoporosis |
Naringin exerts protective effects in GIOP by the PI3K/AKT/mTOR pathway. Naringin promotes BMSC osteogenic differentiation to ameliorate osteoporosis development by targeting JAK2/STAT3 signalling |
Liu M et al. (2021), Wang et al. (2022), and Ge and Zhou (2021)
|
Epimedium brevicornu Maxim. [Berberidaceae; Epimedii Folium] |
Icariin, epimedin A, magnoflorine, cupressoside A, and icarisideⅡ |
Icariin might promote bone differentiation, improve osteoblast vitality, and promote bone binding |
Epimedin C could alleviate glucocorticoid-induced suppression of osteogenic differentiation by modulating the PI3K/AKT/Runx2 signaling pathway. Icariin alleviates osteoporosis through EphB4/Ephrin-B2 axis |
Huang et al.
(2020), Xu et al. (2022), and Chen F et al. (2022)
|
Dipsacus asper Wall. Ex Henry [Dipsacaceae; Dispaci Radix] |
Asperosaponin Ⅵ, loganin, sweroside, dipsanoside H, and acanthoside D |
Asperosaponin Ⅵ reduces the differentiation of mononuclear osteoclasts and enhances osteogenesis |
Asperosaponin Ⅵ can suppress osteoclastogenesis by stimulating the SMADs, TGF-β1, VEGFA, and OPG/RANKL signaling pathways. Sweroside induces the formation of mineralized bone matrix by regulating BMP2/CBFA1-mediated molecules |
Chen Q et al. (2022) and Choi et al. (2021)
|
Psoralea corylifolia L. [Fabaceae; Psoraleae Fructus] |
Psoralen, ispsoralen, bakuchiol, coryfolin, corylifolinin, bavachin, and bavachalcone |
Psoralen can increase the proliferation and viability of hBMSCs. Psoralen alleviates radiation-induced bone injury by rescuing skeletal stem cell stemness |
Psoralen accelerates the osteogenic differentiation of hBMSCs by activating the TGF-β/Smad3 pathway. Psoralen alleviates bone injury through AKT-mediated upregulation of GSK-3β and NRF2. Isopsoralen regulates PPAR-γ/Wnt to inhibit oxidative stress in osteoporosis |
Huang et al. (2021), Yin et al. (2022), and Wang et al. (2018)
|
Cuscuta chinensis Lam. [Convolvulaceae; Cuscutae Semen] |
Quercetin, kaempferol, hyperoside, and polysaccharide |
Cuscutae Semen polysaccharide may exert a protective role in bone by promoting bone formation and inhibiting bone resorption. |
Hyperoside reduces the expression of RANKL, TRAF6, IκBα, NF-κB p65, OPG, and NFATc1 |
Yang et al. (2022) and Chen et al. (2018)
|
Eucommia ulmoides Oliv. [Eucommiaceae; Eucommiae Cortex] |
5-(hydroxymethyl)-2-furaldehyde, geniposidic acid, (p)-syringaresinol, aucubin, liriodendrin, and geniposide |
Aucubin and geniposide slow the development of osteoporosis by inhibiting osteoclast differentiation. Geniposide ameliorates endoplasmic reticulum stress and mitochondrial apoptosis in osteoblasts |
Aucubin increases the expression of collagen I, OCN, OPN, osterix, and phosphorylated Akt and Smads in bone tissue. Geniposide activates the expression of NRF2 and alleviates ER stress in MC3T3-E1 cells |
Zhang Y et al. (2021), Li Y et al. (2020), and Yaosheng et al. (2022)
|
Euodia rutaecarpa (Juss.) Benth [Rutaceae; Euodiae Fructus] |
Rubiadin, monotropein, polysaccharide, 2-hydroxy-1-methoxy-anthraquinone, and 1,3,8-trihydroxy-2-methoxy-anthraquinone |
Monotropein and rubiadin-1-methyl ether can prevent bone loss in glucocorticoid-induced osteoporosis |
Monotropein attenuates oxidative stress via Akt/mTOR-mediated autophagy in osteoblast cells |
Xia T et al. (2019) and Shi et al. (2020)
|
Curculigo orchioides Gaertn. [Amaryllidaceae; Curculiginis Rhizoma] |
Curculigoside, curculigine A, and orcinol glucoside |
Curculigoside attenuates oxidative stress and osteoclastogenesis |
Curculigoside mitigates oxidative stress and osteoclastogenesis by activating Nrf2 and inhibiting the NF-κB pathway |
Liu H et al. (2021)
|
Achyranthis Achyranthes bidentata Bl. [Amaranthaceae; Bidentatae Radix] |
Polysaccharide, quercetin, achyranthoside E, chikusetsusaponin Ⅳa, momordin Ⅰb, ecdysterone, daucosterol, isocyasterone, 5-epicyasterone, sengosterone, and cyasterone |
Ecdysterone suppresses osteoclast differentiation and bone resorption activity |
Ecdysterone enhances the activity of alkaline phosphatase, upregulates the expression of RANKL, and increases the serum content of calcium, phosphorus and TRAP in rats |
Yi et al. (2019) and Tang et al. (2018)
|
Cornus officinalis Sieb. Et Zucc. [Cornaceae; Corni Fructus] |
Gallic acid, ursolic acid, morroniside, sweroside, and cornuside |
Morroniside can promote the differentiation of osteoblast and inhibit the differentiation of osteoclast |
Morroniside might inhibit TRAP activity and TRAP-stained multinucleated positive cells |
Lee et al. (2021)
|
Cervi Cornus Colla |
Cervi Cornus Colla polypeptides and Cervi Cornus Colla polysaccharides |
Cervi Cornus Colla polypeptides have protective effects on OVX rats |
Cervi Cornus Colla polypeptides can inhibit IL-1 and IL-6 by nVAP and promote mitosis |
Zhang et al. (2013)
|
Polygonum multiflora Thunb. [Polygonaceae; Polygoni Multiflori Rhizoma] |
2,3,5,4-tetrahydroxystilbene-2-O-β-D-glucoside, emodin, physcion, schizandrin, and tetrahydroxystilbene glucoside |
Tetrahydroxystilbene glucoside can promote MC3T3-E1 cell proliferation and differentiation |
Tetrahydroxystilbene glucoside regulates OPG/RANKL/M-CSF expression via the PI3K/Akt pathway. Schizandrin protects against OVX-induced bone loss by suppressing ROS via Nrf2 |
Fan et al. (2018) and (Ni et al., 2020) |
Ligustrum lucidum Ait. [Oleaceae; Ligustri Lucidi Fructus] |
Nuzhenide, oleuropein, oleanolic acid, palmitie specnuezhenide, and salidroside |
Ligustri Lucidi Fructus increases BMD, improves bone microstructure, and promotes osteoblast proliferation |
Oleanolic acid can inhibit RANKL-induced osteoclastogenesis via ERα/miR-503/RANK signaling pathway in RAW264.7 cells |
Xie et al. (2019)
|
Dioscorea opposita Thunb. [Dioscoreaceae; Dioscoreae Rhizoma] |
Saponins, diosgenin, sapogenins, starch, purine derivatives, mucilage, Chinese yam polysaccharides, allantoin, and dioscorin |
Diosgenin promotes the proliferation and differentiation of MG-63 cells |
Diosgenin can increase the expression of Ki67, PCNA, OPN, BGP, β-catenin, Runx2, and cyclinD1 |
Ge et al. (2021)
|
Lycium barbarum L. [Solanaceae; Lycii Fructus] |
Betaine, zeaxanthin, rutin, physalein, and ascorbic acid |
Polysaccharide can promote osteoblast differentiation |
− |
Wang et al. (2020)
|
Cistanche deserticola Y. C. Ma [Orobanchaceae; Cistanches Herba] |
Verbascoside, echinacoside, acteoside, cistanoside C, geniposide, and ononin |
Cistanches Herba aqueous extract enhances BMD, increases ALP activity, and decreases the levels of DPD, cathepsin K, TRAP, and MAD. |
Cistanches Herba aqueous extract might downregulate the levels of TRAF6, RANKL, RANK, NF-κB, IKKβ, and NFAT2 and upregulate the PI3K, AKT, OPG, and c-Fos expressions. Total glycosides and polysaccharides of Cistanches Herba could decrease the expressions of RANKL and p-β-catenin and upregulate the expression of BMP-2, OCN, OPG, and p-GSK-3β |
Bo et al. (2019) and Fujiang et al. (2021)
|
Eclipta prostrata L. [Asteraceae; Ecliptae Herba] |
Wedelolactone, apigenin, eclalbasaponins, and luteolin |
Ecliptae Herba can improve bone micro-structure, inhibit osteoclast, increase the number of osteoblasts, and regulate the dynamic balance of bone absorption and formation |
Ecliptae Herba alters and bone condition is improved via bacterial feeding in vivo
|
Zhao et al. (2019)
|