Skip to main content
. 2023 Jan 9;13:1063899. doi: 10.3389/fphar.2022.1063899

TABLE 1.

Chemical constitutes and potential mechanism for each KTTCM.

Botanical drugs Chemical constituents Potential anti-osteoporotic activity Potential mechanisms Reference
Drynaria fortunei (Kunze ex Mett.) J. Sm. [Polypodiaceae; Drynariae Rhizoma] Kaempferol, luteolin, naringin, catechin, and cyclolaudenol Kaempferol and naringin may promote BMSC osteogenic differentiation and ameliorate the development of osteoporosis Naringin exerts protective effects in GIOP by the PI3K/AKT/mTOR pathway. Naringin promotes BMSC osteogenic differentiation to ameliorate osteoporosis development by targeting JAK2/STAT3 signalling Liu M et al. (2021), Wang et al. (2022), and Ge and Zhou (2021)
Epimedium brevicornu Maxim. [Berberidaceae; Epimedii Folium] Icariin, epimedin A, magnoflorine, cupressoside A, and icarisideⅡ Icariin might promote bone differentiation, improve osteoblast vitality, and promote bone binding Epimedin C could alleviate glucocorticoid-induced suppression of osteogenic differentiation by modulating the PI3K/AKT/Runx2 signaling pathway. Icariin alleviates osteoporosis through EphB4/Ephrin-B2 axis Huang et al. (2020), Xu et al. (2022), and Chen F et al. (2022)
Dipsacus asper Wall. Ex Henry [Dipsacaceae; Dispaci Radix] Asperosaponin Ⅵ, loganin, sweroside, dipsanoside H, and acanthoside D Asperosaponin Ⅵ reduces the differentiation of mononuclear osteoclasts and enhances osteogenesis Asperosaponin Ⅵ can suppress osteoclastogenesis by stimulating the SMADs, TGF-β1, VEGFA, and OPG/RANKL signaling pathways. Sweroside induces the formation of mineralized bone matrix by regulating BMP2/CBFA1-mediated molecules Chen Q et al. (2022) and Choi et al. (2021)
Psoralea corylifolia L. [Fabaceae; Psoraleae Fructus] Psoralen, ispsoralen, bakuchiol, coryfolin, corylifolinin, bavachin, and bavachalcone Psoralen can increase the proliferation and viability of hBMSCs. Psoralen alleviates radiation-induced bone injury by rescuing skeletal stem cell stemness Psoralen accelerates the osteogenic differentiation of hBMSCs by activating the TGF-β/Smad3 pathway. Psoralen alleviates bone injury through AKT-mediated upregulation of GSK-3β and NRF2. Isopsoralen regulates PPAR-γ/Wnt to inhibit oxidative stress in osteoporosis Huang et al. (2021), Yin et al. (2022), and Wang et al. (2018)
Cuscuta chinensis Lam. [Convolvulaceae; Cuscutae Semen] Quercetin, kaempferol, hyperoside, and polysaccharide Cuscutae Semen polysaccharide may exert a protective role in bone by promoting bone formation and inhibiting bone resorption. Hyperoside reduces the expression of RANKL, TRAF6, IκBα, NF-κB p65, OPG, and NFATc1 Yang et al. (2022) and Chen et al. (2018)
Eucommia ulmoides Oliv. [Eucommiaceae; Eucommiae Cortex] 5-(hydroxymethyl)-2-furaldehyde, geniposidic acid, (p)-syringaresinol, aucubin, liriodendrin, and geniposide Aucubin and geniposide slow the development of osteoporosis by inhibiting osteoclast differentiation. Geniposide ameliorates endoplasmic reticulum stress and mitochondrial apoptosis in osteoblasts Aucubin increases the expression of collagen I, OCN, OPN, osterix, and phosphorylated Akt and Smads in bone tissue. Geniposide activates the expression of NRF2 and alleviates ER stress in MC3T3-E1 cells Zhang Y et al. (2021), Li Y et al. (2020), and Yaosheng et al. (2022)
Euodia rutaecarpa (Juss.) Benth [Rutaceae; Euodiae Fructus] Rubiadin, monotropein, polysaccharide, 2-hydroxy-1-methoxy-anthraquinone, and 1,3,8-trihydroxy-2-methoxy-anthraquinone Monotropein and rubiadin-1-methyl ether can prevent bone loss in glucocorticoid-induced osteoporosis Monotropein attenuates oxidative stress via Akt/mTOR-mediated autophagy in osteoblast cells Xia T et al. (2019) and Shi et al. (2020)
Curculigo orchioides Gaertn. [Amaryllidaceae; Curculiginis Rhizoma] Curculigoside, curculigine A, and orcinol glucoside Curculigoside attenuates oxidative stress and osteoclastogenesis Curculigoside mitigates oxidative stress and osteoclastogenesis by activating Nrf2 and inhibiting the NF-κB pathway Liu H et al. (2021)
Achyranthis Achyranthes bidentata Bl. [Amaranthaceae; Bidentatae Radix] Polysaccharide, quercetin, achyranthoside E, chikusetsusaponin Ⅳa, momordin Ⅰb, ecdysterone, daucosterol, isocyasterone, 5-epicyasterone, sengosterone, and cyasterone Ecdysterone suppresses osteoclast differentiation and bone resorption activity Ecdysterone enhances the activity of alkaline phosphatase, upregulates the expression of RANKL, and increases the serum content of calcium, phosphorus and TRAP in rats Yi et al. (2019) and Tang et al. (2018)
Cornus officinalis Sieb. Et Zucc. [Cornaceae; Corni Fructus] Gallic acid, ursolic acid, morroniside, sweroside, and cornuside Morroniside can promote the differentiation of osteoblast and inhibit the differentiation of osteoclast Morroniside might inhibit TRAP activity and TRAP-stained multinucleated positive cells Lee et al. (2021)
Cervi Cornus Colla Cervi Cornus Colla polypeptides and Cervi Cornus Colla polysaccharides Cervi Cornus Colla polypeptides have protective effects on OVX rats Cervi Cornus Colla polypeptides can inhibit IL-1 and IL-6 by nVAP and promote mitosis Zhang et al. (2013)
Polygonum multiflora Thunb. [Polygonaceae; Polygoni Multiflori Rhizoma] 2,3,5,4-tetrahydroxystilbene-2-O-β-D-glucoside, emodin, physcion, schizandrin, and tetrahydroxystilbene glucoside Tetrahydroxystilbene glucoside can promote MC3T3-E1 cell proliferation and differentiation Tetrahydroxystilbene glucoside regulates OPG/RANKL/M-CSF expression via the PI3K/Akt pathway. Schizandrin protects against OVX-induced bone loss by suppressing ROS via Nrf2 Fan et al. (2018) and (Ni et al., 2020)
Ligustrum lucidum Ait. [Oleaceae; Ligustri Lucidi Fructus] Nuzhenide, oleuropein, oleanolic acid, palmitie specnuezhenide, and salidroside Ligustri Lucidi Fructus increases BMD, improves bone microstructure, and promotes osteoblast proliferation Oleanolic acid can inhibit RANKL-induced osteoclastogenesis via ERα/miR-503/RANK signaling pathway in RAW264.7 cells Xie et al. (2019)
Dioscorea opposita Thunb. [Dioscoreaceae; Dioscoreae Rhizoma] Saponins, diosgenin, sapogenins, starch, purine derivatives, mucilage, Chinese yam polysaccharides, allantoin, and dioscorin Diosgenin promotes the proliferation and differentiation of MG-63 cells Diosgenin can increase the expression of Ki67, PCNA, OPN, BGP, β-catenin, Runx2, and cyclinD1 Ge et al. (2021)
Lycium barbarum L. [Solanaceae; Lycii Fructus] Betaine, zeaxanthin, rutin, physalein, and ascorbic acid Polysaccharide can promote osteoblast differentiation Wang et al. (2020)
Cistanche deserticola Y. C. Ma [Orobanchaceae; Cistanches Herba] Verbascoside, echinacoside, acteoside, cistanoside C, geniposide, and ononin Cistanches Herba aqueous extract enhances BMD, increases ALP activity, and decreases the levels of DPD, cathepsin K, TRAP, and MAD. Cistanches Herba aqueous extract might downregulate the levels of TRAF6, RANKL, RANK, NF-κB, IKKβ, and NFAT2 and upregulate the PI3K, AKT, OPG, and c-Fos expressions. Total glycosides and polysaccharides of Cistanches Herba could decrease the expressions of RANKL and p-β-catenin and upregulate the expression of BMP-2, OCN, OPG, and p-GSK-3β Bo et al. (2019) and Fujiang et al. (2021)
Eclipta prostrata L. [Asteraceae; Ecliptae Herba] Wedelolactone, apigenin, eclalbasaponins, and luteolin Ecliptae Herba can improve bone micro-structure, inhibit osteoclast, increase the number of osteoblasts, and regulate the dynamic balance of bone absorption and formation Ecliptae Herba alters and bone condition is improved via bacterial feeding in vivo Zhao et al. (2019)