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Abstract
Background:Hematopoietic stem cells (HSCs) from different sources show var-
ied repopulating capacity, and HSCs lose their stemness after long-time ex vivo
culture. A deep understanding of these phenomenamay provide helpful insights
for HSCs.
Methods: Here, we applied single-cell RNA-seq (scRNA-seq) to analyse the
naïve and stimulated human CD34+ cells from cord blood (CB) and mobilised
peripheral blood (mPB).
Results: We collected over 16 000 high-quality single-cell data to construct a
comprehensive inference map and characterised the HSCs under a quiescent
state on the hierarchy top. Then, we compared HSCs in CB with those in
mPB and HSCs of naïve samples to those of cultured samples, and identified
stemness-related genes (SRGs) associated with cell source (CS-SRGs) and cul-
ture time (CT-SRGs), respectively. Interestingly, CS-SRGs and CT-SRGs share
genes enriched in the signalling pathways such as mRNA catabolic process,
translational initiation, ribonucleoprotein complex biogenesis and cotransla-
tional protein targeting to membrane, suggesting dynamic protein translation
and processing may be a common requirement for stemness maintenance.
Meanwhile, CT-SRGs are enriched in pathways involved in glucocorticoid and
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Key Specialties, Grant/Award Number:
SZGSP012 corticosteroid response that affect HSCs homing and engraftment. In contrast,

CS-SRGs specifically contain genes related to purine and ATPmetabolic process,
which is crucial for HSC homeostasis in the stress settings. Particularly, when
CT-SRGs are used as reference genes for the construction of the development tra-
jectory of CD34+ cells, lymphoid andmyeloid lineages are clearly separated after
HSCs/MPPs. Finally, we presented an application through a small-scale drug
screening using Connectivity Map (CMap) against CT-SRGs. A small molecule,
cucurbitacin I, was found to efficiently expand HSCs ex vivo while maintaining
its stemness.
Conclusions: Our findings provide new perspectives for understanding HSCs,
and the strategy to identify candidatemolecules through SRGsmay be applicable
to study other stem cells.

KEYWORDS
cord blood, human hematopoietic stem cells, mobilised peripheral blood, single-cell RNA-seq,
stemness-related genes

1 INTRODUCTION

Hematopoietic stem cells (HSCs) are responsible for initi-
ating hematopoiesis and maintaining the homeostasis of
the hematopoietic system.1 HSCs are defined as cells on
top of the hematopoietic hierarchy with totipotency.2,3 The
molecular signatures and signalling pathways of human
HSCs have been extensively investigated4,5 and strategies
tomodulate those factors or signalling pathways have been
explored to expand and maintain the functional HSCs ex
vivo.6 Several candidates capable of efficiently expanding
HSCs, including SR1 and UM171, have been identified and
validated in animal models.7,8,9 However, the strategies
and small molecules mentioned above have not been suc-
cessfully applied under clinical settings. Thus, there are
other important underlyingmechanisms required for HSC
maintenance to be identified.
In human, CD34+ cells isolated with magnetic beads

containing the HSCs are clinically used for HSC trans-
plantation (HSCT) and HSC gene therapy (HSC-GT). On
one aspect, it is well known that CD34+ cells derived
from cord blood (CB) have stronger regeneration capac-
ities than that from mobilised peripheral blood (mPB).10
In clinical practice, the minimal number of mPB CD34+
cells required for allogenic HSCT is usually above 2
× 106/kg.11,12,13 By contrast for CB CD34+ cells, a quarter
population (0.5 × 106/kg) is sufficient for allogeneic cell
transplantation.14 In addition, when generating human-
ised mice model, the required human CD34+ cells are
0.5 × 105 of CB or 1.0 × 106 of mPB cells per mouse,15,16
further confirming the higher stemness of CD34+ cells
from CB. Although the reasons for these biological differ-
ences are still not fully clear, several mechanisms that have

been implicated, which were related to telomere dynam-
ics, cell cycle progression, certain transcription factor
pathways, differential gene expression and the autocrine
production of particular cytokines.17 On another aspect,
it is critical to keep the manipulation time of HSCs short
during a successful HSC-GT, as the capacity of HSCs
to rebuild the hematopoiesis is decreased along with
the ex vivo culture time.18 However, the differences of
CD34+ cells from CB and mPB sources, as well as from
naive and cultured conditions, are not intensively inves-
tigated. Therefore, a systematic analysis would be helpful
to understand the underlying mechanism, and findings
from these studies should shed light on the signature
genes and signalling pathways related to the stemness
of HSCs.
Increasing evidence shows that CD34+ cells are a het-

erogeneous cell population at different levels.19,20 To fully
explore the HSC complexity, single-cell RNA sequenc-
ing (scRNA-seq) has been intensively used in this field
with two approaches: one approach is to isolate the HSCs
and other progenitor cells using fluorescence-assisted cell
sorting (FACS) with different antibodies against cell sur-
face markers, and then perform the scRNA-seq in those
“characterised” cell populations, respectively21; another
approach is to perform scRNA-seq on unsorted CD34+
cells and then define the sub-cell populations based on
bioinformatic analysis.22 However, as the first approach
still relies on the expression of surface markers, which
may introduce bias in cell definition, it may not fully cover
and reveal the bona fide cell populations as considerable
cells are discarded during FACS process. Moreover, recent
studies have found HSCs may also exist in other cell pop-
ulations, suggesting the population characterisation based
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on cell surfacemarkers are not sufficient.23 By contrast, the
second approach, in theory, is able to capture all kinds of
cells in an unbiased way during hematopoiesis, by which
cell populations are clustered and defined by their gene
expression profiles.21,24,25 scRNA-seq of unsorted CD34+
cells has revealed hierarchically structured transcriptional
landscape of hematopoietic differentiation and has iden-
tified new markers of HSCs and other progenitor cells.
However, no systematic analysis has been performed to
understand the differences between CD34+ from CB and
mPB or between naïve or stimulated CD34+ cells.
Here, we collected CB and mPB CD34+ cells from

independent individuals, conducted the scRNA-seq imme-
diately or after 2 days ex vivo culture. With the compre-
hensive scRNA-seq dataset, we performed bioinformatic
analysis to characterised HSC population and identi-
fied two sets of stemness-related genes (SRGs) associated
with culture time and cell source, termed as CT-SRGs
and CS-SRGs respectively. Furthermore, using CT-SRGs
to perform CMap searching, we validated the candidate
small molecules predicted to regulate SRGs through ex
vivo CD34+ cell culture and following FACS analysis.
We found small molecule cucurbitacin I can efficiently
expand HSCs ex vivo while maintaining its stemness.
Our results demonstrate SRGs revealed by scRNA-seq can
provide helpful insights for understanding the stemness
of HSCs.

2 METHODS

2.1 Enrichment of CD34+ cells from
human CB and mPB samples

Human CB and mPB samples were obtained with
informed consent from health donor. Mononuclear cells
(MNCs) were obtained by centrifugation on Lymphoprep
medium, MNC was enriched for CD34+ cells selection
with the CD34 Microbead kit and LS column using MACS
magnet technology (Miltenyi). The sorted CD34+ cells
were subjected to downstream experiments.

2.2 Cell culture and scRNA-seq

Fresh CD34+ cells were immediately cultured ex vivo or
used for single-cell RNA-seq (scRNA-seq). For cell cul-
ture, CD34+ cells were resuspended in SCGM medium
(Cellgenix) with the following recombinant hematopoi-
etic cytokines: recombinant human stem cell factor
(rhSCF) 100 ng/ml, recombinant human thrombopoietin
(rhTPO) 100 ng/ml, recombinant human fms-related tyro-
sine kinase-3 ligand (rhFlt3-L) 100 ng/ml and cultured

in 24-well tissue culture plates at 37◦C in an atmosphere
of 5% CO2 for 48 h (Thermo Fisher). Then, cells were
collected for scRNA-seq. scRNA-seq were performed by
the DNBelab C4 platform.26 In brief, single-cell suspen-
sionswere used for droplet generation, emulsion breakage,
beads collection, reverse transcription and cDNA ampli-
fication to generate barcoded libraries. Indexed libraries
were constructed according to the manufacturer’s proto-
col. The sequencing libraries were quantified by QubitTM
ssDNA Assay Kit (Thermo Fisher Scientific; #Q10212).
DNA nanoballs (DNBs) were loaded into the patterned
nano arrays and sequenced on the ultra-high-throughput
DIPSEQ T1 sequencer using the following read length:
30 bp for read 1, inclusive of 10 bp cell barcode 1, 10 bp cell
barcode 2 and 10 bp unique molecular identifier (UMI),
100 bp of transcript sequence for read 2 and 10 bp for
sample index.

2.3 Quality control of scRNA-seq data

The DNBelabC Series HT scRNA analysis Soft-
ware Suite (v.1.0.0) (https://github.com/MGI-tech-
bioinformatics/DNBelab_C_Series_HT_scRNA-analysis-
software/tree/version1.0) was applied to perform sample
demultiplexing, barcode processing and single-cell 3′ UMI
counting with default parameters. The read structure is
paired-end: the Read1 has 30 bases, of which the 1st–20th
bases are cell barcodes, and the 21st–30th bases are UMIs;
the Read2 comprises 100-bp cDNA sequences. The PISA
software (https://github.com/shiquan/PISA) was used
to parse raw reads into FASTQ+ format based on the
library structure and check cell barcodes with the allowed
list if the hamming distance is less than or equal to one.
Processed reads were then aligned to the UCSC hg38
human genome using splicing-aware aligner STAR.77 with
default parameters. Obtained SAM files were transformed
into BAM format and annotated with a reference gene
set using PISA. The UMIs in reads with the same cell
barcode and gene annotation containing 1-bp mismatch
were corrected to the most supported one. Gene-cell
metrics were generated for advanced analysis of valid cells
that were automatically recognised according to the UMI
number distribution of each cell.
The R (v.3.6.3) package Seurat (v.3.2.1)78,49 was used to

perform the following steps: (1) quality control of three
indicators: the number of genes expressed per cell, the
number of UMI and the proportional distribution of mito-
chondrial RNA to screen high-quality cells for subsequent
analysis.79,80 As the number of genes expressed per cell var-
ied greatly, we selected Tukey’s test method81 to remove
cells with abnormal gene numbers. Cells that expressed
genes lower than Q1−IQR or higher than Q3+IQR were

https://www.ncbi.nlm.nih.gov/protein/Q10212
https://github.com/MGI-tech-bioinformatics/DNBelab_C_Series_HT_scRNA-analysis-software/tree/version1.0
https://github.com/MGI-tech-bioinformatics/DNBelab_C_Series_HT_scRNA-analysis-software/tree/version1.0
https://github.com/MGI-tech-bioinformatics/DNBelab_C_Series_HT_scRNA-analysis-software/tree/version1.0
https://github.com/shiquan/PISA
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removed. Meanwhile, cells with a mitochondrial mRNA
ratio greater than 10% were also removed; (2) doublets
removal. We used an R package ‘DoubletFinder’ (v.2.0.3)82
to remove doublets; (3) batch effect removal.We created an
integrated data assay of all samples by identifying anchors
using ‘FindIntegrationAnchors’ function; (4) data nor-
malisation was performed using ‘NormalizeData’ function
with scaling factor 10,000 and then log-transformed the
data. (5) Detection of 4000 highly variable genes (HVGs)
by ‘FindVariableFeatures’ function with ‘vst’ method; (6)
scaling of the features by ‘ScaleData’ function to get a unit
variance and zero mean of all samples.

2.4 Dimensionality reduction and cell
cluster

The final cell-gene matrix was introduced into the Seu-
rat (v.3.2.1) package to create a Seurat object followed
by employing the ‘CreateSeuratObject’, ‘NormalizeData’,
‘FindVariableFeatures’, ‘ScaleData’ and ‘RunPCA’ func-
tions, to normalisation, scaling and dimensionality reduc-
tion successively.83 We perform principal component anal-
ysis (PCA) on the previously determined variable features
by ‘RunPCA’ function with top 40 significant PCs that
represent a robust compression of the dataset. Next, we
applied a graph-based clustering approach to construct
a shared nearest neighbour graph for a given dataset by
‘FindNeighbors’ function between every cell, and we opti-
mised the modularity function to determine clusters by
‘FindClusters’ function with resolution set to 0.6. Finally,
we used UMAP to learn the underlying manifold of the
data and place similar cells together in low-dimensional
space.

2.5 Cell type annotation

Cell type annotation is divided into two steps: prelimi-
nary annotation and manual correction based on existing
marker genes.

2.6 Preliminary annotation

We executed biologically related pairwise differential gene
expression analysis between duos of clusters by ‘Find-
AllMarkers’ function with ‘min.pct’ equal to 0.2 and
‘logfc.threshold’ set to 0.25, to identify marker genes of
each cluster and examine the quantitative changes in the
expression levels between the clusters. Then, we com-
pared the marker genes of each cluster with marker genes
of defined cell types in the published papers to demon-

strate the accuracy of the preceding steps of dimensionality
reduction and cell clustering.

2.7 Manual correction

Because the marker genes of HSCs and their down-
stream progeny cells are still uncertain, we additionally
collected eight bulk RNA-seq datasets33,34,35,36,84,37,43,38 to
improve the cell definition. Detailed procedures are as fol-
lows: (1) Using GEO2R, a NCBI online tool, to calculate
gene expression levels of reference datasets, respectively;
(2) selected top 500 significantly up-regulated genes as
biomarkers of each cell type; (3) performed hypergeomet-
ric distribution test between differentially expressed genes
(DEGs) of each dataset and current data and assigned the
cell type based on the significance of p value. The heatmap
was created using the R package ‘pheatmap’ with enriched
Log10(p value).

2.8 Differential gene expression
analysis

We executed biologically related pairwise differential gene
expression analysis between duos of samples to identify
marker genes and to examine the quantitative changes in
the expression levels between the samples inHSCs.We cal-
culated the DEGs by applying the ‘FindMarkers’ function
(Wilcoxon rank-sum with adjusted p values for multiple
testing with the Benjamini–Hochberg correction). We fil-
tered out the obtained DEGs by setting ‘min.pct’ to 0.2, so
that a gene is expressed in at least 20% of the cells in one
of the two tested groups. A genewas considered significant
with adjusted p < .05 and logFC > 0.25.

2.9 RNA velocity analysis

By distinguishing between unspliced and spliced mRNAs,
RNA velocity, the time derivative of the gene expres-
sion state, can be directly estimated. Thus, we utilised
velocyto44 to compute the rate of transcriptional alter-
ation of each cell. The BAM files of each biological
replicate were introduced into dropEst (https://github.
com/kharchenkolab/dropEst)85 output pipeline to pro-
duce 10x-like BAM files, and were then transformed to
standard loom files containing annotated spliced and
unspliced reads using velocyto.py (http://velocyto.org/
velocyto.py/tutorial/index.html). These files were then
merged using python package ‘loompy’ and finally, we
employed pagoda2 (https://github.com/kharchenkolab/
pagoda2) to obtain cell clusters embedding, and then
visualise the RNA velocity by R package ‘velocyto.R’.

https://github.com/kharchenkolab/dropEst
https://github.com/kharchenkolab/dropEst
http://velocyto.org/velocyto.py/tutorial/index.html
http://velocyto.org/velocyto.py/tutorial/index.html
https://github.com/kharchenkolab/pagoda2
https://github.com/kharchenkolab/pagoda2
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2.10 Developmental trajectory
inference analysis

The Monocle2 (v.2.14.0)86,42 algorithm with the core
SRGs was applied to order all cells in pseudo time.
By creating an object with parameter ‘expressionFam-
ily = negbinomial.size’, regressed out the batch effect
using the ‘reduceDimension’ function with the method
of DDRTree, with parameter ‘residualModelFormulaStr’
setting to exclude technology influence and with default
‘reduction_method’ to achieve dimensionality reduction.
Cell differentiation trajectory was successfully built based
on the above steps.
Next, the BEAM function was used to detect genes that

separate cells into the considered cell branches. We used
the ‘plot_multiple_branches_heatmap’ function to sepa-
rate the branch-related gene set with a q-value less than
or equal to 10e−4 and the ‘num_clusters’ = 3.

2.11 Gene ontology terms enrichment
analysis

Gene ontology (GO) enrichment analysis was performed
on the given gene set. The enrichGO function of the
‘clusterProfiler’.87 R package was used to do enrichment
analysis. Terms with the q value < 0.05 corrected by FDR
were considered statistically significant.

2.12 Cell cycle scoring

According to the marker genes directly related to S phase
and G2M phase in human cells, we used the ‘CellCy-
cleScoring’ function in Seurat (v.3.2.1) to score the cell
cycle phase of each single cell. This function calculated
the cell cycle score based on the expression of previ-
ously published canonical marker genes.88 The single cells
highly expressing G2/M- or S-phase markers were scored
as G2/M- or S-phase cells, respectively, and those not
expressing any of the two categories of genes were scored
as G0|G1 phase. We stored S and G2/M scores in Seurat
object meta data, along with the predicted classification
of each cell in either G2M, S or G1 phase for advanced
visualisation.

2.13 Prediction of transcription factor
regulons

Topredict transcription factor regulons,weutilisedRpack-
age SCENIC (v.1.1.3)50,89 to identify potential targets of

each TF based on co-expression to infer gene co-expression
networks with default parameters by ‘GENIE3/GRNBoost’
(https://github.com/aertslab/GRNBoost) and used ‘cisTar-
get’ database (https://resources.aertslab.org/cistarget/) to
analyse transcription factor bindingmotifs based on DNA-
motif analysis. There are two types of regulons in SCENIC,
one is ‘core TF name’_ ‘extended’_ ‘number of target
genes’, like ‘HLF_extended_15 g’, representing a gene reg-
ulatory network composed of transcription factors and all
target genes, the other is ‘core TF name’_ ‘number of target
genes’, like MECOM (29 g), on behalf of a gene regu-
latory network containing transcription factors and high
confidence target genes (namely, genes with highCon-
fAnnot = TRUE). ‘AUCell’ (https://github.com/aertslab/
AUCell) was applied to generate AUC scores of all cells,
which reflects the regulons activity in each cell, to identify
cells with active gene sets in scRNA-seq data. Generated
AUC scores of cells were used in downstream visualisation
steps.

2.14 CMap analysis

Connectivity Map (CMap)57 is a database containing
expression changes of over 1500 genes in multiple cell
types treated with about 5000 small molecule compounds
and 3000 genetic reagents. CMap also provide a cloud-
based software platform, CLUE (https://clue.io/query), for
the analysis of perturbational datasets generated using
gene expression (L1000) and proteomic (P100 and GCP)
assays. To understand the relationship between signa-
tures (gene expression profiles) and perturbagens (small
molecule), we used Gene Expression (L1000) in Query, a
tool of CLUE, with default query parameters as follows:
(1) select the ‘Touchstone’, ‘Latest and select’ and ‘Indi-
vidual query’ parameters; (2) paste the gene into the ‘Up-
Reguleated genes’ dialog box and checked the correct gene
name; and (3) submit the query and download the results
of ‘DETAILED LIST’ and ‘HEAT MAP’ for advanced
screening analysis.

2.15 HSCs signature scoring

We collected the top 250 high expressed genes as HSC
marker genes of each two published papers37,38 as sig-
nature. The relative expression of each signature was
scored in two SRGs sets and HSC-LDGs through gene set
variation analysis (GSVA; https://www.bioconductor.org/
packages/devel/bioc/vignettes/GSVA/inst/doc/GSVA.
html)90 of each HSC cell, respectively. Violin plots were
drawn using the R package ‘ggpurb’ (https://rpkgs.
datanovia.com/ggpubr/).

https://github.com/aertslab/GRNBoost
https://resources.aertslab.org/cistarget/
https://github.com/aertslab/AUCell
https://github.com/aertslab/AUCell
https://clue.io/query
https://www.bioconductor.org/packages/devel/bioc/vignettes/GSVA/inst/doc/GSVA.html
https://www.bioconductor.org/packages/devel/bioc/vignettes/GSVA/inst/doc/GSVA.html
https://www.bioconductor.org/packages/devel/bioc/vignettes/GSVA/inst/doc/GSVA.html
https://rpkgs.datanovia.com/ggpubr/
https://rpkgs.datanovia.com/ggpubr/
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F IGURE 1 Single-cell transcriptome landscape of naïve and stimulated human CD34+ cells from cord blood (CB) and mobilised
peripheral blood (mPB). (A) Schematic diagram of the overall experimental design. (B) All CD34+ cells sorted from all eight samples assigned
to specific lineages by k-nearest neighbour (KNN) analysis are illustrated in the same UMAP space generated from the data. (C) Dot plot
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2.16 Cells treated with candidate small
molecules

Ten thousand CD34+ cells from CB and mPB were
cultured in SCGM medium (Cellgenix) with the follow-
ing recombinant hematopoietic cytokines: recombinant
human stem cell factor (rhSCF) (100 ng/ml), recombi-
nant human thrombopoietin (rhTPO) (100 ng/ml) and
recombinant human fms-related tyrosine kinase-3 ligand
(rhFlt3-L) (100 ng/ml). Cells were cultured in 24-well tis-
sue culture plates at 37◦C in an atmosphere of 5% CO2
and treated with candidate small molecules NVP-BEZ235
(10 nM), cucurbitacin I (100 nM), fenretinide (100 nM) and
calmidazolium (500 nM). Medium were changed every
two days and candidate small molecules were added.

2.17 FACS analysis

Sorted CD34+ cells without treatment or treated with
small molecules at day 6 were collected, washed in DPBS,
and then incubated with fluorescence conjugated anti-
body CD34 (Biolegend) and CD38 (BD) at 4◦C for 30 min,
washed and resuspended in DPBS for FACS analysis.

3 RESULTS

3.1 Identification of cell populations in
human CD34+ cells

To decipher the differences between CD34+ cells from
CB and mPB and between the naïve and cultured CD34+
cells, we collected CB and mPB CD34+ cells from fresh
(termed naïve) or cultured for 2 days (termed stimulated)
conditions and captured their single-cell transcriptomes
using a massively parallel single-cell library prepara-
tion technique—DNBelab C4.26 The overall experimental
design is shown in Figure 1A.
We collected two biological replicates for each group,

and after quality control we obtained 16 196 cells in total,
with an average of ∼3300 genes (∼11 600 UMIs) per cell
(Figure S1A). The cell number (replicate1, replicate2) of
each group is (4135, 4155) for CB CD34+ naive, (1773, 1484)
for CB CD34+ stimulated, (890, 995) for mPB CD34+ naïve
and (1272, 1492) for mPB CD34+ stimulated. Global cor-

relation analysis revealed a strong correlation between
biological replicates, and samples in the same culture con-
ditions had higher transcriptome similarities than samples
from the same source (Figure S1B). To get an integrated
single-cell transcriptome map of CD34+ cells, we per-
formed graph-based clustering of the dataset, and found
that almost all cells (99.8%, 16 171 of 16 196) were CD34 pos-
itive (Figure S1C), which was consistent with our CD34+
cell sorting procedure (Figure S1D). Meanwhile, we anal-
yse the overall transcriptional states difference between
CB and mPB. The up-regulated GO terms in CB CD34+
naïve include aerobic respiration and oxidative phosphory-
lation, and up-regulated GO terms in mPB CD34+ naïve
are protein folding in endoplasmic reticulum and alterna-
tive mRNA splicing via spliceosome and so on (Figure S1E),
suggesting CB CD34+ naïve may have a higher metabolic
rate that facilitates the cell proliferation. This is consistent
with the fact that CD34+ cells from CB have a stronger
regeneration capacity. In summary, these results demon-
strated that our transcriptome dataset had good quality for
the subsequent analysis.
Next, to characterise the human HSC population

and its functional signalling pathways, we separated the
total 16 196 cells into 12 populations with resolution
set to 0.6 (see Methods) and collected the top highly
expressed marker genes of each population to define
cell types (Tables S1 and S2). Based on these marker
genes, we were able to assign the populations with dis-
tinct cell identities, including HSCs, MPPs, as well as
myeloid (MEMPs, CMPs, GMPs), erythroid (MEPs) and
lymphoid (LMPPs, MLPs, ProBs) lineages (Figure 1B).
The replicates in the same group showed a similar pat-
tern for cell composition (Figure S1F) and the frequency
of mRNA expression of these 12 populations were com-
parable (Figure S1G). Many previously reported marker
genes were also confirmed in our data (Figures 1C
and S2 and Table S1), such as AVP, MLLT3, HLF
and CRHBP of HSCs.4,27,28,29,30,22 ZBTB16 of lymphoid-
primed multipotent progenitors (LMPPs),27 TUBB, DUT
and TUBA1B of megakaryocyte–erythroid–mastcell pro-
genitors (MEMPs).31 MPO and LYZ of granulocyte–
monocyte progenitors (GMPs),27,32,22 HBD and GATA2
of megakaryocyte–erythroid progenitors (MEPs)27,22 IGKC
and MS4A1 of B cells progenitors (ProBs).31 To further
validate the accuracy of cell type identification, we used
a hypergeometric distribution test to evaluate the consis-

displaying the expression levels of representative marker genes of each cell type. The marker genes are defined as genes that are significantly
up-regulated in one cell type compared with other cell types. The node size positively correlates with the proportion of a given type of cells
expressing a given marker gene. The colour keys from blue to red indicate the relative gene expression level from low to high. (D) Enrichment
levels of the top enriched GO terms of marker genes in each cell type. The colour keys from grey to red indicate the −log10-transformed p
value from low to high
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F IGURE 2 Developmental trajectory analysis of human CD34+ cells. (A) Developmental trajectory of all 16 196 CD34+ cells reveals
seven states recognised by Monocle2. Each dot represents one cell and different colours represent different states. Cells from the same state
have similar pseudo time along the trajectory, while the arrow indicates the direction of the trajectory. The branch points of the trajectory are
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tency between marker genes of cell clusters in our data
and the top 500 up-regulated genes of cell types in seven
published papers.33,34,35,36,37,38,30 By this analysis, we also
observed a high consistency between these genes, par-
ticularly in HSC populations, providing further evidence
supporting the cell type identification (Figure S3).
To further confirm the characteristics of these 12

cell types, functional enrichment analysis of the marker
genes was performed (Figure 1D). Up-regulated genes
in HSC/MPPs were related to purine metabolic process
as well as cellular stress response, including response to
glucocorticoid, response to corticosteroid and response to
steroid hormone. Those have been reported as signature
pathways enriched in HSCs in previous studies.39,40,41 In
contrast, up-regulated genes in downstream progenitors
were enriched for cell differentiation and cell activation
related pathways, such as leukocyte proliferation, myeloid
cell differentiation and megakaryocyte differentiation, in
agreement with the cell development process and cell-
cycle progression (Figure 1D and Table S3). Taken together,
we obtained high-quality scRNA-seq data from 16 196
sorted CD34+ cells from naïve and stimulated CB and
mPB and identified 12 cell types including HSCs. Our data
are consistent with previous reports, while providing a
more comprehensive reference map for investigating the
underlying mechanism of human HSCs.

3.2 Differentiation trajectory of human
HSCs

To further validate the accuracy of our reference map, we
usedMonocle42 to conjecture the differentiation trajectory
with total 16 196 cells and checked whether our 12 cell
types exhibit similar patterns with previous studies, which
found that HSCs first differentiated into MPPs, and then
into LMPPs and other progenitor cells.2,43 In our results,
seven state cells were distributed along the trajectory and
we found most HSCs/MPPs were located near the tips of
the trajectory, while other cells were distributed amongst
the six branches (Figures 2A and B and S4A), in agreement
with previous reports. Consistently, PCA revealed that the
cell types defined as adjacent developmental states in our
map were clustered together, such as HSCs, MPPs and

LMPPs which were all upstream progenitors (Figure S4B).
To determine the lineage affiliation of these branches, we
checked the expression patterns of some marker genes.
As we expected, the expression levels of AVP, HLF and
VIM, all related to self-renewal potential and quiescence
in HSCs and MPPs28,30,22 were decreased over the pseudo
time. ZBTB16 and MZB1, the marker genes of LMPPs
and MLPs, were up-regulated at the early stage but then
decreased later along the pseudo-time, in agreement with
the position of LMPPs andMLPs on the trajectory.Myeloid
and erythroid lineages such as MEMPs, CMPs, GMPs and
MEPs were mainly situated at the end of the trajectory
(States5–7) with high expression of their lineage marker
genes such asDUT,CENPF,MPO andHBD (Figures 2C and
D).
To further confirm the differentiation trajectory

inferred, we used RNA velocity44 to project all cells into
a two-dimensional UMAP space with arrows showing
the direction and the speed of differentiation (Figures 2E
and S4C). When a developmental routine was finally
fitted (Figure 2F), we found that it was consistent with the
current classical model of lineage determination in human
hematopoietic hierarchy45,46 thus further illustrating the
accuracy of cell annotation and differentiation trajectory
of our data.

3.3 The characteristics and gene
regulatory networks of human HSCs

To further characterise the human HSCs in our data, we
did GO term analysis of the up-regulated genes of HSCs
compared with other cell types. We found pathways asso-
ciated with cell cycle as well as mitosis, such as regulation
of spindle checkpoint, regulation of cell cycle spindle assem-
bly checkpoint and mitotic cell cycle arrest, were present
as the most significant ones, which also includes other
GO terms such as response to glucocorticoid and response
to corticosteroid (Figure 3A). The cell cycle activity of
CD34+ cells over the lifetime is dynamic, and it reflects
the requirements of the organism at different developmen-
tal points.47,48 Thus, we calculated cell cycle phase scores
based on canonical markers by Seurat49 and found that
HSCs were significantly enriched in G0 and G1 phases

marked by black circles with numbers. (B) Cell type assignment along the developmental trajectory. Each dot represents one cell and different
colours represent different classes of progenitor cells. HSC and MPP are mainly located in State1, LMPP and MLPs lie at State2-4, and myeloid
and erythroid progenitor cells (MEMP, CMP, GMP and MEPs) are gathered in State5-7. (C) Heatmap showing the expression of marker genes
(shown in Figure 1C) in seven developmental states, whereas the colour keys from blue to red indicate the relative gene expression levels from
low to high. (D) Expression levels of representative marker genes along developmental pseudo time. (E and F) Amalgamated (E) and fitted (F)
lineage trees showing the developmental routine from HSCs to multipotent progenitors and downstream lymphoid, myeloid and erythroid
lineages. Arrows represent developmental directions, and each circle in (F) represents a cluster.
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F IGURE 3 Cell cycle and gene regulatory networks of human HSCs. (A) Enriched GO terms of up-regulated genes in HSCs compared
with other cell types. (B) The percentage of HSCs and other cells in G0/G1 stage. p Value was calculated by Fisher’s exact test. (C) Heatmap
showing up-regulated regulons in each cell type compared with other cell types (left). Up-regulated regulons in HSCs are listed in right. The
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(96.4%, p value= 5.62E−227; Figure 3B and Table S4) when
compared with other cell types, indicating that most HSCs
were in a resting state, in consistent with GO term analysis
and previous studies.
Subsequently, we wondered whether some gene regula-

tory networks (regulons), a collection of genes regulated
by common transcript factors (TFs), specifically existed
in HSCs. To achieve this, we applied SCENIC50 to each
cell of the 12 identified cell types. SCENIC recognised
371 activated regulons whose activities were dynamically
changed among different cell types (Figures 3C and S5).
Interestingly, expression of TFs in several identified reg-
ulons, like HLF, MECOM and ELK3, were also enriched
in HSCs and MPPs (Figures 3C and D and Table S2).
In addition, the functions of these TFs and their target
gene sets were significantly enriched in response to cor-
ticosterone and response to purine-containing compound
(Figure 3E), which were consistent with those of HSC
marker genes (Figures 3A and 1D). Thus, using regulons
analysis, we confirmed previous reported TFs, such asHLF
andMECOM,51 and their target genes, were also presented
in HSCs of our data.28,22 Besides, we also found many
novel regulons worthy of further investigations, including
FOS, MEF2C, TEAD4, ELK3 and HOXA9 (Figures 3C and
D). Thus, our single-cell data not only captured the pre-
vious HSC signatures, but may also provide new hints for
investigating HSCs in general.

3.4 Identification of SRGs probably
controlling stemness of human HSCs

The purpose of this study is to understand the differences
of CD34+ cells from CB and mPB and before and after
culture, and to identify the SRGs. We found that HSCs
accounted for 9.9% of all cells profiled in our data, and
their composition was significantly decreased under stim-
ulated condition in both CB and mPB samples (Figure 4A
and Table S5), in agreement with the reduced stemness of
these samples. Interestingly, we noticed that cell sources
and 2 days ex vivo culture only slightly affect the cell
cycle phase scores (Figure 4B), suggesting quiescent main-
tenance is still a robust characteristic for all HSCs, even
after a short time ex vivo culture. To reveal SRGs respon-
sible for stemness maintenance of HSCs, we investigated
the transcriptome changes between naïve and stimulated
HSCs first. By differential expression analysis, we obtained

247 CT-SRGs (culture time-related SRGs), from the inter-
section of 716 up-regulated genes in HSCs of CB CD34+
naïve and 1164 up-regulated genes in HSCs of mPB CD34+
naïve (p value< .05 and ln-transformed fold change> 0.25)
(Figures 4C–E and Tables S6–8). In addition, as previous
studies found that CD34+ cells derived from CB exhib-
ited a higher level of stemness than mPB,52,53,54 we also
obtained 560 CS-SRGs (cell source-related SRGs) by com-
paringHSCs of naïve CB to that of naïvemPB (p value< .05
and ln-transformed fold change > 0.25) (Figure 4F and
Table S9). GSVA using HSC data sets from two published
papers37,38 revealed that the overall expression levels of
both CT-SRGs and CS-SRGswere significantly higher than
HSC marker genes (Figures 4G and H), further demon-
strating that both CT-SRGs and CS-SRGs could better
reflect the stemness of HSCs.
Then we asked the commonalities and differences

between CT-SRGs and CS-SRGs. Interestingly, a large frac-
tion of the intersection genes in CT-SRGs and CS-SRGs
are enriched in GO terms related to protein targeting to
membrane (p value of CT-SRGs= 1.94E−50, p value of CR-
SRGs = 2.25E−34) and protein targeting to ER (p value of
CT-SRGs = 1.48E−48, p value of CR-SRGs = 3.26E−31)
(Figure 4I), which are signatures for protein synthe-
sis process and translation of ribosomal coding genes
(Table S10). It is worth noting that nine genes specifically
present in CT-SRGs, including AREG, CFLAR, DDIT4,
DUSP1, FLT1, FOS, FOSB, FOXO3 and ZFP36, were signifi-
cantly enriched in GO terms of response to glucocorticoid
(p value = 8.50E−06) and response to corticosteroid (p
value = 1.96E−05) (Figure 4J), which has been reported
to affect HSCs homing and engraftment.39 By contrast,
we found purine nucleoside triphosphate metabolic pro-
cess (p value = 4.90E−12) and ATP metabolic process (p
value = 4.48E−10), which is crucial for HSCs homeosta-
sis in the stress settings,55,56 were specifically enriched in
CS-SRGs (Figure 4K).
Taken together, these results demonstrated that CT-

SRGs and CS-SRGs share common pathways, and both
CT-SRGs and CS-SRGs exhibit a better consistency with
HSC characteristics than unsorted HSC marker genes,
indicating their potential function and applications in
human HSCs. Furthermore, CT-SRGs and CS-SRGs still
have their own specifically enriched genes and signalling
pathways, suggesting the stemness differences because of
cell sources and culture time share distinct mechanism as
well.

colour keys from blue to red indicate scaled area under curve (AUC) value from low to high. The higher scaled AUC value a regulon has, the
more enriched regulon. (D) UMAP plot showing the representative regulons of HSCs. Cells are coloured by AUC value of each regulon. The
colour keys from grey to red indicate AUC scores from low to high. (E) Enriched GO terms of up-regulated regulons in HSCs. In this figure,
the HSCs indicates the HSC cells from all collected samples regardless of cell source or culture time.
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F IGURE 4 Identification and characterisation of stemness-related genes (SRGs) related to culture time and cell source. (A) Bar graphs
displaying the proportion of HSCs in naïve and stimulated CD34+ cells from CB and mPB (n = 2). p Value was calculated by Fisher’s exact
test. ns means not significant. (B) Bar graphs displaying the percentage of HSC cells in G0/G1 stage per sample (n = 2). p Value was calculated
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3.5 The differentiation trajectory of
human CD34+ cells reconstructed using
CT-SRGs

During HSCT and HSC-GT, the ability of CD34+ cells to
rebuild the hematopoiesis is negatively correlated with the
ex vivo culture time, therefore to understand the transcrip-
tomic changes during this process, we focused onCT-SRGs
in further analysis. First, we reconstructed the differen-
tiation trajectory of human CD34+ cells using CT-SRGs,
and we were amazed to find that State2 and State3 were
clearly separated in the developmental trajectory after
State1 (Figure 5A). Consistent with the trajectory conjec-
tured based on marker genes (Figure 2B), the majority
of HSC and MPP were still located at the top of the tra-
jectory (State1). In contrast, lymphoid progenitors (LMPP,
MLP-1, MLP-2 and ProB) and myeloid/erythroid progen-
itors (MEMP, CMP, GMP, MEP-1, MEP-2 and MEP-3) in
Figure 1B are mainly located at State2 and State3 respec-
tively (Figure S6a). Thus, we named State1, State2 and
State3 as ‘HSC/MPPs’, ‘Lymphoid’ and ‘Myeloid and Ery-
throid’ (Figure 5B). We further checked the expression
changes of marker genes along pseudo-time. AVP, HLF,
VIM and KLF6 of HSC and MPP were highly expressed
in State1, then decreased with the pseudo-time progres-
sion. Oppositely,MKI67 andHBD gradually increasedwith
pseudo-time and reached the peak in State3, signifying
Myeloid and Erythroid lineages may enrich in State3.
State2 should be Lymphoid lineagewith high expression of
IGKC and MS4A1 (Figure S6B). Next, we identified DEGs
between the branches to further corroborate the previ-
ous results, and we got three gene clusters with different
expression patterns across the three states. GO Term anal-
ysis of the three gene clusters indicated related pathways
were enriched in corresponding states, such as lymphoid
differentiation in Lymphoid lineage (State2), cotransla-
tional protein targeting to membrane in HSC/MPPs (State1)

andneutrophil activation inmyeloid and erythroid lineages
(State3) (Figure 5C). A total of 15 CT-SRGs were up-
regulated in State2, whereas no CT-SRG was up-regulated
in State3 (Figure 5D). These results indicated that Lym-
phoid lineagemay be closer to HSC/MPPswhen compared
with Myeloid and Erythroid lineages. In agreement, the
15 CT-SRGs were up-regulated in lymphoid progenitors
as well as in MPPs and HSCs (Figure 5E). In conclusion,
CT-SRGs may be better reference genes for development
trajectory construction. The updated trajectory revealed
a closer relationship between HSCs and lymphoid lin-
eage, and could be used to explore new strategies for the
maintenance of HSC stemness.

3.6 Small molecules modulating
CT-SRG promote cell proliferation and
stemness maintenance of human HSCs ex
vivo

To check whether CT-SRGs are important for human
HSCs, we used CMap, an online tool kit based on a
perturbation-driven gene expression dataset57 to search
for candidate small molecules that could affect the
global expression levels of CT-SRGs. The identified small
molecules will be tested in the following experiments to
see if they can affect the stemness of HSCs (Figure 6A).
In sum, we identified 145 candidates of CT-SRGs. Among
them, small molecules function as protein synthesis
inhibitors (such as emetine and cephaeline) and gluco-
corticoid/corticosteroid receptor agonist (dexamethasone)
were predicted to positively regulate the expression lev-
els of CT-SRGs (Table S11). These data are consistent
with the above results, that the functions of CT-SRGs
were enriched in protein synthesis process and gluco-
corticoid/corticosteroid responses (Figures 4I and J). In
addition, small molecules that target ATPase, mTOR and

by Fisher’s exact test, and there was no significant difference among these groups. (C) Volcano plots showing gene expression changes of
HSCs between naïve CB and stimulated CB. The CB HSC naïve and CB HSC stimulated indicates the HSC cells from naïve and stimulated CB
source respectively. (D) Volcano plots showing gene expression changes of HSCs between naïve mPB and stimulated mPB. The mPB HSC
naïve and mPB HSC stimulated indicates the HSC cells from naïve and stimulated mPB source respectively. (E) Venn diagram showing 247
CT-SRGs obtained from the intersection of 716 up-regulated genes in CB HSC naïve (C) and 1164 up-regulated genes in mPB HSC naïve (D).
(F) Volcano plots showing gene expression changes of HSCs between naïve CB and naïve mPB. The HSCs naïve indicates the HSC cells from
CB and mPB without cell culture (naïve). Cell Source-related SRGs (CS-SRGs, n = 560), marked by the purple dotted circle, was the
up-regulated genes in CB HSC naïve compared with mPB HSC naïve. (G and H) Violin plots showing the GSVA enrichment scores of
intersection genes between “HSC marker genes,” “CT-SRGs,” “CS-SRGs” and signature genes of LT-HSC or HSC reported by Novershtern
et al. (G) and Milyavsky et al. (H). HSC marker genes were the marker genes up-regulated in HSCs compared with other cell types (shown in
Table S2), whereas CT-SRGs and CS-SRGs were described in (E) and (F). The horizontal axis represents different gene sets, and the vertical
axis represents GSVA enrichment scores. p Value was calculated by two-sided Wilcoxon rank-sum test. (I) Common enriched GO terms of
CT-SRGs and CR-SRGs. GO terms enriched in CT-SRGs are shown in red, whereas GO terms enriched in CS-SRGs are shown in blue, the
coloured bars indicate −log10-transformed p values. (J) Specifically enriched GO terms of CT-SRGs compared with CS-SRGs. (K) Specifically
enriched GO terms of CS-SRGs compared with CT-SRGs.
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F IGURE 5 Differentiation and development trajectory of CD34+ cells based on CT-SRGs. (A) The trajectory tree reconstructed using
CT-SRGs (culture time-related SRGs, n = 247). Each dot represents a cell and the colour keys from dark to light indicate the differentiation
time from early to late. The branch point of the trajectory was marked with black circle and the number 1. (B) The State branch recognised by
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MAP kinase pathways, were also characterised as candi-
dates in our screening (Table S11). Importantly, fenretinide,
a retinoid receptor agonist, is identified in our CMap
screening against CT-SRGs. And it has been reported to
enhance human HSC self-renewal by modulating sphin-
golipidmetabolism ex vivo.58 In summary, smallmolecules
predicted to modulate CT-SRGs can be candidates capable
of regulating human HSC stemness.
To identify other regulators of HSC stemness, we

selected three small molecules, NVP-BEZ235, which is
related to the signal of mTOR/PI3K,59 cucurbitacin I,
which is related to the signal of STAT3/JAK2,60 and calmi-
dazolium, which is related to the signal of calcium channel
blocker, calmodulin antagonist61 (Figure 6B). We treated
CB andmPBCD34+ cells ex vivowith those smallmolecule
candidates, cultured them for an extended time period
(up to 6 days) and then measured the CD34+ cell prolif-
eration and HSCs percentage. Fenretinide was used as a
positive control. When compared with fenretinide treat-
ment and untreated control, only cucurbitacin I, but not
other tested molecules, increased the CD34+ cell num-
bers in both CB and mPB after 6 days’ ex vivo culture
(Figures 6C and D). More important, when examining a
more restricted surface markers of HSCs using FACS, the
cucurbitacin I treated cells also exhibited the highest pro-
portion of CD34+CD38− cells. These results indicate that
cucurbitacin I not only enhances the expansion but may
also maintains the stemness of human HSCs from both
CB and mPB sources (Figures 6E and F). Taken together,
we provided a preliminary application of CT-SRGs to iden-
tify HSCs modulators, and validated that a small molecule
cucurbitacin I could enhance human HSC proliferation
while maintaining their stemness ex vivo.

4 DISCUSSION

CD34+ cells from CB and mPB possess distinct ability
to reconstruct hematopoiesis after allogeneic stem cell
transplantation and HSCs loss stemness during ex vivo
culture. Uncovering the underlying mechanism of these

phenomena may provide helpful insights to understand
HSCs function and to expand HSCs ex vivo without los-
ing stemness. Many previous studies have demonstrated
that, scRNA-seq without cell sorting can capture detailed
molecular profiles of all cell populations at single cell level
and be used to characterise novel cell clusters and their cor-
responding signature genes.62,22 Using this method, novel
cell types have been identified and functionally validated
during hematopoiesis.63,30,64
In our present study, we collected over 16 000 single-

cell data of CD34+ cells from native and stimulated CB
and mPB and subsequently performed the bioinformatic
analyses and functional assays (Figure 1A). It is worth
mentioning that our data shows good quality with a
higher average gene number per cell and a lower mito-
chondrial percentage (Figure S1). We first constructed a
reference map and identified 12 populations enriched in
specific genes and signalling pathways, including HSCs
(Figures 1B–D). Importantly, our data showed consistency
with previous studies,2 as all classical cell types reported
before have their corresponding parts in our data (Figure
S3). Furthermore, our cell types exhibit similar patterns of
differentiation trajectory with previous studies (Figure 2),
illustrating the accuracy of cell annotation and our refer-
encemap. Based on thesemolecular data, we characterised
the gene regulatory networks of humanHSCs on top of our
trajectory map, and found that most HSCs stay in G0 and
G1 phase, indicating that cells were in a quiescent state.
In agreement, transcription factors critical for the mainte-
nance ofHSCs, such asAVP,MLLT3,HLF,MECOM,CD52,
are highly expressed in HSCs. And those TFs and their
target gene sets were significantly enriched in response to
corticosterone and response to purine-containing compound
(Figure 3). Besides, novel transcription factors and reg-
ulons, not reported to be involved in HSCs, have been
revealed, such as FOS,MEF2C, TEAD4, ELK3 andHOXA9.
Those factors are candidates for further investigation.
After confirming the validity of our data, we next identi-

fied SRGs associated with culture time (CT-SRGs) and cell
source (CS-SRGs) respectively, and analysed their enriched
pathways and potential application for stemness score

Monocle2. Each dot represents a cell and different colour represents different states identified by Monocle2, whereas cells from the same state
have similar pseudo time along the trajectory. The branch point of the trajectory was marked with black circle and the number 1. The general
localisation of HSC/MPPs, lymphoid (mainly corresponsive to LMPP, MLP-1, MLP-2 and ProB) and myeloid and erythroid (mainly
corresponsive to MEMP, CMP, GMP, MEP-1, MEP-2 and MEP-3) were named according to the mapping relationship of different cell types in
states (Figure S6a) and the expression change of lineage marker gene along the pseudo time (Figure S6b). (C) Heatmap of the key genes
involved in branch determination and their functions. The three dynamic expression patterns of genes highly expressed in lymphoid lineage
(Pattern 2), HSC/MPPs (Pattern 1) and myeloid and erythroid lineages (Pattern 3) were shown on the left, with specifically enriched GO terms
shown on the right. (D) Venn diagram showing shared genes between CT-SRGs and the genes of three patterns shown in (C). Fifteen genes
were shared in CT-SRGs and Pattern 2 genes (Lymphoid). (E) Dot plot displaying the expression of 15 shared genes in different cell types. The
node size represents the cell proportion that expresses the given gene. The colour keys from blue to red indicate the relative gene expression
levels from low to high.
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F IGURE 6 Cucurbitacin I could enhance HSCs proliferation and stemness. (A) The diagram of small molecules screening pipeline.
Small molecules that might perturb CT-SRGs expression were predicted using CMap, and then verified by cell culture and FACS ex vivo. (B)
Candidate molecules affecting CT-SRGs predicted by CMap. The first column is the names of small molecules, the second column is the
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and trajectory construction (Figures 4 and 5). CT-SRGs
and CS-SRGs share common signalling pathways involved
in mRNA catabolic process, translational initiation and
ribonucleoprotein complex biogenesis, suggesting dynamic
protein translation and processing may be a common
requirement for stemnessmaintenance. In agreement, reg-
ulation of protein synthesis and ribosome biogenesis are
strongly coupled to stem cell behaviour, and the transla-
tion regulatory mechanisms that affect stem cell function
include mTOR signalling, ribosome levels, and mRNA
and tRNA features and mounts.65,66 Previous studies have
demonstrated that protein synthesis is also delicately reg-
ulated in HSCs, and disruption of ribosome function or
tRNA editing, perturb the HSCs proliferation, differentia-
tion and engraftment.67,68,69,70 Here, with scRNA-seq and
a systematic comparison, our results suggest that changes
of protein biosynthesis may be also responsible for the
stemness decrease of CD34+ cell during normal ex vivo
culture, and be the reason why CD34+ cell from mPB has
weaker repopulating capability in transplantation. It will
be interesting to see whether modulating these pathways
discovered in our study can enhance the HSCs func-
tion, although it could be challenging as either reduced
or increased protein synthesis impairs HSCs function.71
Furthermore, we found CT-SRGs is specifically enriched
in signalling pathways of response to glucocorticoid and
response to corticosteroid, and CS-SRGs is enriched in
purine nucleoside triphosphate metabolic process and ATP
metabolic process by contrast (Figures 4J andK). Therefore,
our results suggest that stronger stemness of naïve HSCs
is probably due to their higher sensitivity to glucocorti-
coids. Previous studies already show glucocorticoids act as
an activator of CXCR4 and pre-treatment of human HSCs
with glucocorticoids promote their homing and long-term
engraftment after transplanted into NSG mice.39 Thus,
naïve HSCsmay be also more likely to migrate to the niche
through glucocorticoid-activated CXCR4/SDF-1 chemo-
taxis after transplantation. To maintain the long-term
engraftment capability of HSCs during ex vivo culture,
pre-treatment of HSCs with glucocorticoids or overex-
pressing CXCR4 in HSCs could be possible solutions.
Instead, to enhance the stemness of HSCs frommPB,mod-
ulating metabolism, particularly the purine metabolites,
may be the key points, as HSCs from CB show a stronger
purine metabolic process in our data. Consistently, purine

metabolites have been reported to play a crucial role for
HSC maintenance and their response to stress.55,56 It is
worth noting that, though SRGs are obtained by com-
paring cells with stronger stemness to those with weaker
stemness, it doesn’t mean SRGs are only related to ‘stem-
ness’ or ‘regeneration’, and SRGs may be also related
to the primed potential or developmental trajectory of
the cells with stronger stemness. Interestingly, we found
CT-SRGs may be better reference genes for construction
of the development trajectory of CD34+ cells. In this
updated trajectory, Lymphoid and Myeloid and Erythroid
lineages are clearly separated after HSC/MPPs. Moreover,
parts of CT-SRGs are up-regulated in both Lymphoid and
HSC/MPPs, suggesting Lymphoid lineage have a closer
relationship with HSC/MPPs in human (Figure 5). In
agreement, a previous study indicates hypoxia can favour
production of human lymphoid cells as well as HSCs.72
Another study show that lymphoid-biased progenitors are
capable of long-term survival and can be maintained inde-
pendently from HSCs after autologous transplantation.73
Therefore, it could be interesting to check whether the up-
regulated CT-SRGs play a role in those lymphoid-biased
progenitors. Meanwhile, as CT-SRGs are related to cul-
ture time, it may be worthy to investigate whether ex vivo
culture process affects lymphoid development, which is
important for rebuilding adaptive immune system after
transplantation.
It is well known that cell–cell interaction is important

for niche remodelling and HSC homeostasis.74,75 Thus,
one pitfall of this study is that we cannot exclude the
roles of other cell types in CB and mPB CD34+ cells
during HSCT. Nevertheless, we selected small molecules
modulating CT-SRGs via a virtual screening process and
performed cell proliferation and FACS assays. A small
molecule cucurbitacin-I, from 3 tested candidates, can
promote HSCs proliferation while maintaining their stem-
ness (Figure 6). Cucurbitacin I is a regulator of multiple
signalling pathways and is used in cancer treatment.76
However, its function in human HSCs has not been clar-
ified. Here, our data suggest cucurbitacin I may be a novel
therapeutic molecule to expand HSCs ex vivo, though its
role on HSCs require further validation in mice transplan-
tation experiment. Our findings suggest that CT-SRGs (247
genes), as well as CS-SRGs (560 genes), could be used as a
database to select small molecules that modulate human

biological function of corresponding genes, and the third column is the correlation score calculated by CMap. (C) Proliferation of CD34+ cells
from CB and mPB after treatment with candidate small molecules were calculated at day 0, day 2, day 4 and day 6 after ex vivo culture. Both
CB and mPB were cultured with 10 000 initial cells. (D) Fold-increase in CD34+ cell number after 6 days ex vivo culture as compared with
input numbers. (E) Flow cytometry plots show CD34+CD38– proportions from CB and mPB after 6 days ex vivo culture. (F) Statistic analysis
of CD34+CD38− proportions after different small molecule treatments. p Value was calculated by t-test, *p < .05; **p < .01; ***p < .001; ns, not
significant. Error bars indicate standard deviations of triplicate cultures. For fenretinide and cucurbitacin I treatment, 100 nM dose was used.
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HSCs function. The selected candidates are worthy for
subsequent functional validations.
Overall, our studies indicate ex vivo culture may more

likely to affect the homing and engraftment capability of
HSCs, while HSCs fromCB share differentmetabolic regu-
lations from that of mPB. SRGs revealed by our scRNA-seq
can be a valuable database to identify new candidates for
functional HSC expansion. With further investigation, our
results may guide researchers and clinicians to further
optimise the HSCs processing in both gene therapy and
clinical applications.
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