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Abstract

Background: Vascular diseases are highly associated with inflammation and

thrombosis. Elucidating links between these two processes may provide a

clearer understanding of these diseases, allowing for the design of more

effective treatments. The activation of complement component 1 (C1) is a

crucial contributor to innate immunity and is associated with significant

concentrations of circulating C1q. Many pathological pathways initiate when

C1q interacts with gC1qR. This interaction plays a major role in inflammation

observed during atherosclerosis and the initiation of intrinsic coagulation.

However, the effects of C1 and the role of C1q/gC1qR on extrinsic coagulation,

which is the more physiologically relevant coagulation arm, has not been

studied. We hypothesized that C1q binding to gC1qR enhances the expression

of tissue factor (TF) in adventitial fibroblasts and vascular smooth muscle

cells, the primary TF bearing cells in the body.

Methods: Using an enzyme‐linked immunosorbent assay approach, TF

expression and the role of gC1qR was observed. Cells were conditioned for

1 h with C1q or a gC1qR blocker and C1q, to assess the role of gC1qR.

Additionally, cell growth characteristics were monitored to assess changes in

viability and metabolic activity.

Results: Our results indicate that the expression of TF increased significantly

after incubation with C1q as compared with unconditioned cells. Cells

conditioned with gC1qR blockers and C1q exhibited no change in TF

expression when compared with cells conditioned with the blocking

antibodies alone. Our results show no significant differences in metabolic

activity or cell viability under these conditions.

Conclusions: This indicates that gC1qR association with C1q induces TF

expression and may initiate extrinsic coagulation. Overall, this data illustrates
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a role for C1q in the activation of extrinsic coagulation and that gC1qR activity

may link inflammation and thrombosis.
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1 | INTRODUCTION

Cardiovascular diseases encompass a wide range of
complications associated with the heart and blood vessels
and have persisted as the number one cause of death in
the world over the last 2 decades.1,2 Narrowing of the
blood vessels due to plaque buildup within the vessel
walls, or atherosclerosis, is one of the most common
complications associated with vascular diseases. This can
lead to severe reductions in blood flow to downstream
tissue or a complete blockage of blood flow from the
heart.3 Conventionally, atherosclerosis has been consid-
ered vascular in nature; however, it has recently become
apparent that atherosclerosis can be characterized by
changes in both the thrombotic and inflammatory
responses and that these changes can have wide‐
ranging systemic effects.4,5

The result of physiological or pathological coagula-
tion can cause blood vessels to become obstructed
through the formation of a thrombus. The intrinsic and
extrinsic coagulation cascades can each result in
thrombus formation; however, it is the extrinsic cascade
that has more physiological relevance. Extrinsic coagula-
tion initiates upon vessel damage, exposing tissue‐factor‐
bearing cells, such as vascular smooth muscle cells
(SMCs) and adventitial fibroblasts (AFs), to blood
constitutents.6,7 Circulating Factor VII binds to exposed
tissue factor, initiating coagulation through this com-
plex's ability to enzymatically activate Factor X.8

Both innate and adaptive immune responses play an
essential role in the development of cardiovascular
diseases and its complications.4,9,10 Physiological inflam-
mation is a common defense mechanism in response to
infection or cell injury upon stimulation by inflammatory
cytokines or the secretion of chemical factors by the
injured cells. The inflammatory response can also
be influenced by the complement system, which is a
cascade of enzymatic reactions that results in the
formation of the membrane attack complex and the lysis
of invading pathogens. Complement component 1q (C1q)
is one of the initiating components of the complement
system. In addition to binding to antigen‐antibody
complexes,11,12 C1q has an affinity for gC1qR, a ubiquitous
cell surface receptor that is found on cell types associated
with cardiovascular disease development. Typically, the

binding of C1q to gC1qR induces immune responses,
including mediation of infection,13 phagocytosis and
uptake of apoptotic cells,13,14 monocyte differentiation,15

and inflammation.16 However, studies have also found
this binding to be associated with autoimmune diseases,
infection, intrinsic coagulation, endothelial cell activation,
COVID‐19 and carcinogenesis.17–21 It is also well‐cited
that C1q is present at sites of atherosclerosis and
inflammatory and vascular lesions,22–24 suggesting a
strong role for complement in vascular diseases, however,
the significance of its presence has yet to be elucidated.
More specifically, complement has been shown to
stimulate platelet and endothelial cell activities,25–27

however, the extent of these interactions has
not been fully characterized. While some links have
been established between complement and coagulation
through C1q‐gC1qR association, it is unclear what the
initiating steps are, their relevance in disease progression,
and how these steps can be targeted to mitigate disease
responses. Recent findings also show that complement
component 1 (C1) is activated during early pathological
cardiovascular events, leading to increased levels of
circulating C1q.28 C1q has also been found in the
sub‐endothelial space under these conditions and has
been shown to influence vascular smooth muscle cell
functions related to proliferation.29 Thus, it is critical to
evaluate the effect of C1q on vascular inflammatory
processes.

We chose to investigate the role of the C1q‐gC1qR
axis as a link between inflammation and coagulation to
promote extrinsic coagulation activation. Characteriza-
tion of this new link would provide new avenues for
vascular disease research and identify new targets for
therapeutic intervention strategies.

2 | MATERIALS AND METHODS

2.1 | Cells

Human AFs and human coronary artery SMCs were
purchased from ScienCell Research Laboratories and
Cell Applications Inc, respectively. AFs were kept in
fibroblast medium‐2 supplemented with 5% fetal bovine
serum, antibiotics (penicillin/streptomycin), and growth
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supplement (as suggested by and purchased from
ScienCell Research Laboratories) at 37°C and 5% CO2.
SMCs were kept in smooth muscle cell medium
supplemented with 2% fetal bovine serum, antibiotics
(penicillin/streptomycin), and growth supplement (as
suggested by and purchased from Cell Applications) at
37°C and 5% CO2. Both cell types were cultured on tissue
culture plastic flasks and well‐plates. At confluence, cells
were passaged with trypsin digestion for approximately
2min at room temperature (note that all reagents were
purchased from Millipore Sigma, unless noted other-
wise). For experiments, cells were incubated with
purified human C1q (Quidel Corporation), lipopolysac-
charides from Escherichia coli (LPS), human platelet‐
poor plasma (PPP, 1:10 in HEPES‐buffered Tyrode's
solution, pH 7.4), or a combination of anti‐gC1qR (60.11,
C1q binding site, from B. Ghebrehiwet) and C1q, LPS, or
PPP. All experiments also included an internal negative
control consisting of cells exposed only to media for the
entire duration. For statistical purposes, cell seeding
density was maintained at ~40,000 cells/cm2 for all
experiments. Note that all appropriate ethical guidelines
were followed during this study.

2.2 | Cell viability, density, and
metabolic activity

To determine if the incubation of cells with the particular
experimental conditions induced changes in cell culture
parameters, we used a standard live/dead cell cytotoxicity
assay and the MTT assay to quantify cell viability,
density, and metabolic activity after the exposure
conditions. The live/dead cell cytotoxicity assay consisted
of 2 μM calcein and 4 μM ethidium (Thermo Fisher
Scientific). After the cells were incubated in the exposure
conditions, they were washed with warmed PBS (pH 7.4,
37°C) and immediately incubated with ~50–100 μL of the
calcein/ethidium mixture for 3 min. After this incuba-
tion, cells were immediately imaged on an inverted
microscope at three randomized locations per indepen-
dent tissue culture well (Nikon, TE‐2000U). The data
from each well was then averaged for a single data point.
Cell viability was calculated by dividing the number of
live cells in the imaging area by the total number of cells
per imaging area.30 Cell density is the total number of
live cells per imaging area, calibrated for each of our
microscope objectives. The cell density was then
normalized by the cell seeding density to provide a
measure of proliferation over the time interval.30

To quantify the metabolic activity of each cell type
after exposure conditions, a 3‐[4,5‐dimethylthiazol‐2‐yl]
−2,5‐diphenyl tetrazolium bromide (MTT) assay was

used. This assay quantifies the activity of mitochondrial
dehydrogenase (all MTT reagents from Millipore Sigma).
After the experimental time course, cells were washed
with warmed PBS (pH 7.4, 37°C) and then immediately
incubated with MTT reagent reconstituted in appropriate
basal media for approximately 2 h. Formazan crystals
were dissolved in 10% Triton‐X and 0.1M HCl in
anhydrous isopropanol. The ensuing solution was mixed
on a platform rocker for approximately 15 min. Duplicate
100 μL samples were collected from each independent
condition and transferred to a 96‐well plate for absorb-
ance measurements and to ensure data accuracy. The
absorbance resulting from the dissolving procedures was
quantified at 570 nm using a microplate reader (Spec-
traMax i3, Molecular Devices; note that this microplate
reader was used for all absorbance data collection). All
data was normalized to the metabolic activity of paired
wells incubated without exposure conditions.30

2.3 | Tissue factor and ICAM‐1
expression

Tissue factor (TF) and ICAM‐1 expression on both cell
types was quantified after the exposure conditions using
a solid‐phase ELISA approach. Cells were washed with
warmed PBS (pH 7.4, 37°C), fixed with 0.5% glutar-
aldehyde (15min, pH 7.4, 37°C), then neutralized with
100mM glycine –0.1% BSA (30min, pH 7.5). TF and
ICAM‐1 expression were assessed with an anti‐CD142
monoclonal antibody and an anti‐ICAM‐1 monoclonal
antibody (both purchased from Invitrogen), respectively.
Cells were incubated with the respective primary anti-
body for 1 h at a final concentration of 1 μg/mL. To detect
primary antibody binding, cells were then washed with
PBS and incubated with an appropriate alkaline phos-
phatase conjugated secondary antibody for 1 h at a
concentration of 1 μg/mL. Color development was
achieved by addition of pNPP, and absorbance was read
spectrophotometrically at 405 nm using a microplate
reader. Note that all details have been reported by
us previously and that all appropriate negative and
positive controls were included within each independent
experiment.30,31

2.4 | Tissue factor expression while
blocking gC1qR

To investigate the potential mechanism for C1q‐induced
TF expression, we used a similar ELISA approach as
described above. Briefly, TF expression was quantified
after 1 h of exposure conditions. Before incubating the
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cells with the experimental conditions (as described
above), cells were first treated with a monoclonal
antibody for gC1qR (60.11 region) for 1 h. Cells were
then washed with warmed PBS (37°C, pH 7.4), fixed with
0.5% glutaraldehyde (15min, pH 7.4, 37°C), then
neutralized with 100mM glycine –0.1% BSA (30min,
pH 7.5). Cells were then incubated with an anti‐CD142
(TF) antibody for 1 h at a final concentration of 1 μg/mL.
To detect antibody binding, cells were washed with PBS
then incubated with an appropriate alkaline phosphatase
secondary antibody for 1 h at a concentration of 1 μg/mL.
Color development was achieved by addition of pNPP,
and absorbance was observed spectrophotometrically at
405 nm using a microplate reader.

2.5 | Secreted tissue factor

The presence of secreted tissue factor, in response to C1q,
was observed using a tissue factor capture ELISA kit
(Millipore Sigma). A TF standard curve was generated to
convert absorbance readings into TF concentration. After
the cells were incubated with the experimental condi-
tions for 1 h, 100 μL of the conditioned media was
transferred to a plate containing the TF capture antibody
and plates were placed on a platform rocker for 2.5 h
with gentle rocking at room temperature (25°C). The
plate was then washed using the supplied wash buffer.
The detection antibody was then added for 1 h at room
temperature with gentle rocking. The plate was washed
again, then a streptavidin‐HRP conjugated antibody was
added to each well for 45min at room temperature with
gentle rocking. A TMB One‐Step Reagent was then added
to each well for 30min, followed by the provided stop
solution. Absorbance was observed spectrophotometri-
cally at 450 nm immediately using a microplate reader.
The absorbance readings of the known standard values of
tissue factor were used to convert the absorbance
readings of our samples to the amount of released tissue
factor that was present.

2.6 | Statistics

All viability, density, and metabolic activity data was
normalized as described above. All ELISA data from each
independent experiment was normalized to the paired
control samples (e.g., cells incubated for the same
duration in pure media), with background subtraction,
as appropriate. Note that since there were no statistical
differences in the culture conditions after the experi-
mental conditions, we did not normalize ELISA data
by cell growth characteristics. All experiments were

conducted with multiple dependent technical replicates
(n= 2–3). The dependent data was first averaged to
obtain a single independent data point for the particular
experimental condition. Normalized data from at least
three independent experiments are shown and used for
statistical analysis (all sample size numbers are reported
in the Figure legends). Statistical analysis was carried out
in SAS (v 9.4, SAS Institute) using a one‐way analysis of
variance (ANOVA) procedure (factor is the incubation
condition) and the Duncan post‐hoc test. Note that all
exposures were compared to a negative control (termed
“Basal Media”), which was cells incubated for the
appropriate duration in standard cell culture media.

3 | RESULTS

3.1 | Cell viability, density, and
metabolic activity

To determine the effects of C1q on AF (Figure 1) or SMC
(Figure 2) culture conditions, we quantified cell viability,
density, and metabolic activity. Cell viability is a measure of
cell death in response to our exposure conditions.
Following 24‐hour exposure with C1q, we observed little
to no changes in cell viability (Figures 1A [AF] and 2A
[SMC]). Cell density is a measure of whether or not the
exposure conditions have an effect on cell proliferation.
After a 24‐h incubation with C1q, we observed no changes
in cell density as compared to our negative control
(Figures 1B [AF] and 2B [SMC]). There was also no
statistically significant change in metabolic activity follow-
ing exposure to C1q as compared to our negative control
(Figures 1C [AF] and 2C [SMC]). These data indicate that
C1q does not directly interfere with cell viability, cell
growth, and metabolic activity over a 24‐h period. Note that
the exposure to 1:10 PPP significantly reduce cell viability
and cell density for both cell types. Since there was no
change in culture parameters following C1q incubation, no
further normalization of ELISA data was conducted.

3.2 | Tissue factor and ICAM‐1
expression

Quantification of both coagulation and inflammatory
response markers was performed. After a 1‐h exposure to
C1q, we observed an elevated expression for both
markers as compared with cells that were exposed to
basal media. In particular, the expression of TF and
ICAM‐1 was significantly enhanced in AFs after ex-
posure to C1q (Figure 3A, ANOVA, p< .05). Addition-
ally, when SMCs were conditioned with C1q for 1 h,
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FIGURE 1 Human aortic adventitial fibroblast cell viability (A),
density (B) and metabolic activity (C) after a short duration exposure to
human C1q, LPS, or platelet poor plasma (PPP). Viability and density
were measured with a standard live/dead cell cytotoxicity assay and
metabolic activity was measured with the MTT assay, using absorbance
and immunofluorescence microscopy as described in the materials and
methods section. Cells were incubated with the various conditions and
then assessed for surface expression. All data is reported as the
mean+ standard error of the mean from 2 to 18 independent
experiments (each independent experiment included at least two
technical repeats; cell viability and cell density n=9–18; metabolic
activity n=2–4). Independent data points are marked with closed
circles for each condition. *Significantly different than negative control
(analysis of variance, Duncan method, p< .05).

FIGURE 2 Human coronary artery smooth muscle cell
viability (A), density (B) and metabolic activity (C) after a short
duration exposure to human C1q, LPS, or platelet poor plasma
(PPP). Viability and density were measured with a standard live/
dead cell cytotoxicity assay and metabolic activity was measured
with the MTT assay, using absorbance and immunofluorescence
microscopy as described in the materials and methods section.
Cells were incubated with the various conditions and then assessed
for surface expression. All data is reported as the mean + standard
error of the mean from 2 to 3 independent experiments (each
independent experiment included at least two technical repeats;
cell viability and cell density n= 3; metabolic activity n= 2).
Independent data points are marked with closed circles for each
condition. *Significantly different than negative control (analysis of
variance, Duncan method, p< .05).
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there was a significant increase in the expression of both
tissue factor and ICAM‐1. (Figure 3B, ANOVA, p< .05).
It is important to note that for AFs, the increase in tissue
factor and ICAM‐1 expression, after exposure to C1q,
mimicked the increases observed after exposure to our
positive controls. Similarly, for SMCs, the exposure to
C1q significantly increased ICAM‐1 and tissue factor
expression to similar levels as PPP exposure.

3.3 | Tissue factor expression while
blocking gC1qR

After confirming the increase in tissue factor expression
in both adventitial fibroblasts and coronary artery
smooth muscle cells in response to C1q exposure, we
observed TF expression while blocking C1q association
with gC1qR. A monoclonal antibody (60.11) that
specifically and selectively targets the C1q binding
domain of gC1qR was used. After a 1‐h incubation with
the blocking antibody, followed by a 1‐h incubation with
C1q, there was no statistically significant change in the
expression of tissue factor when compared to cells that
were treated with the blocking antibody but not C1q
(Figure 4A [AF] and 4B [SMC]). For SMCs, we did not
quantify 60.11 + LPS, since LPS itself could not elicit
tissue factor expression. Further, since ICAM‐1 was used
as a confirmatory inflammatory marker, we did not
observe its expression under these conditions. It is also
important to note, that under these conditions, there was
no increase in tissue factor observed for any of our
experimental conditions.

3.4 | Secreted tissue factor

In order to quantify if cells released soluble tissue factor
in response to C1q, in lieu of surface‐bound tissue factor,
a capture ELISA was used to determine TF concentration
within media after the experimental conditions. After
exposing cells to C1q (as above), secreted tissue factor
was found to be at a concentration less than 50 pg/ml
(Figure 5); nearly identical to our negative control (cells
with media only, “Basal Media”), indicating that there
were no changes in secreted tissue factor when the cells
were exposed to C1q. As a confirmation, we observed the
role of blocking gC1qR on the secretion of tissue factor.
There were no differences between tissue factor secretion
in the presence/absence of gC1qR blocking antibodies.
As a confirmation we also observed the concentration of
tissue factor in our PPP samples (labeled as “Pure
PPP,” Figure 5) and observed a concentration around
1300–1400 pg/ml.

4 | DISCUSSION

4.1 | Cell viability, density, and
metabolic activity

To determine whether or not C1q alters AF cell survival
and growth, we quantified cell viability and density
(Figure 1A,B, respectively) after 24 h of exposure.

FIGURE 3 Human aortic adventitial fibroblast (A) and human
coronary artery smooth muscle cell (B) gC1qR (A), ICAM‐1 (A),
and tissue factor (A,B) surface expression after a short duration
exposure to C1q, LPS, or platelet poor plasma (PPP). Using an
enzyme‐linked immunosorbent assay approach, the surface
expression of the ICAM‐1 and tissue factor were assessed, as
described in the methods section. Cells were incubated with the
various conditions and then assessed for surface expression. All
data is reported as the mean + standard error of the mean for a
minimum of four independent experiments (each independent
experiment included at least two technical repeats; Figure 3A
ICAM‐1, n= 6–7; Figure 3A tissue factor, n= 16–24; Figure 3B
ICAM‐1, n= 4–6; Figure 3B Tissue Factor n= 5–7). Independent
data points are marked with closed circles for each condition.
*Significantly different than negative control (analysis of variance,
Duncan method, p< .05).
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Additionally, cell viability and density for SMCs was also
quantified (Figure 2A,B, respectively) after 1 h of
exposure. Our data suggests C1q has no direct effect on
cell survival nor growth. Although C1q has been shown
to be associated with a wide variety of positive and

negative cellular activities in liver32 and prostate cancer
cells,33 embryonic kidney cells,32 murine fibroblasts,32

and human vascular smooth muscle cells,34 and has also
been shown to alter human fibroblast cell growth after
stimulation with platelet derived growth factor,35 a direct
association between C1q and cell viability has not been
cited. Our findings suggest that C1q exposure does not
influence cell viability or density in both AFs and SMCs.
Although C1q plays an important role in apoptosis by
recognizing and binding to apoptotic cells and initiating
the complement cascade of the immune system,36 which
ultimately results in cell death, this has not been
observed in cell culture where subsequent complement
proteins are not in abundance. C1q has not been shown
to promote cell death or induce apoptosis in healthy
cultured cells. Although C1q has been shown to regulate
mitochondrial metabolism in memory precursor effector
cells37 and stimulate adenylyl cyclase activity of human
fibroblasts,38 a direct association between C1q and the
metabolic activity of AFs/SMCs has not been reported.
We examined the metabolic activity of AFs and SMCs to
determine whether or not C1q has an effect on the
metabolism of these cells. Our data suggests that
exposure to C1q does not alter metabolic activity in
AFs nor SMCs (Figures 1C and 2C, respectively). These
findings allowed us to conclude that there were no
changes to the culture conditions, due to the exposure to
C1q and agree with the majority of the previous reports
relating these cell functions.

FIGURE 4 Human aortic adventitial fibroblast (A) and human
coronary artery smooth muscle cell (B) tissue factor expression
after a short duration exposure to gC1qR blocking antibodies
(60.11) followed by a short duration exposure to either C1q, LPS, or
platelet poor plasma (PPP). Using an enzyme‐linked
immunosorbent assay approach, the surface expression of the
ICAM‐1 and tissue factor were assessed, as described in the
methods section. Cells were incubated with the various conditions
and then assessed for surface expression. No significant changes
were observed, indicating successful blocking of gC1qR and
indication that C1q binding to gC1qR induces changes in tissue
factor expression. All data is reported as the mean + standard error
of the mean for a minimum of six independent experiments (each
independent experiment included at least two technical repeats).
Independent data points are marked with closed circles for each
condition.

FIGURE 5 Secretion of tissue factor from human aortic
adventitial fibroblast in the presence or absence of gC1qR blocking
antibodies (60.11). C1q, LPS, or platelet poor plasma (PPP) was
used to antagonize tissue factor secretion. Using an enzyme‐linked
immunosorbent assay approach, the secretion of tissue factor was
assessed, as described in the methods section. Cells were incubated
with the various conditions and then assessed for tissue factor
secretion. No significant changes were observed. Data is reported as
the mean + standard error of the mean from 2 to 3 independent
experiments. Independent data points are marked with closed
circles for each condition.
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4.2 | Tissue factor and ICAM‐1
expression

The expression of tissue factor and ICAM‐1 was assessed to
determine whether the exposure to C1q alters the
expression of these markers. Our data suggests that both
of these markers are sensitive to the presence of C1q in AFs
and SMCs (Figure 3A,B, respectively). Enhanced tissue
factor expression can lead to the increased association with
factor VII (FVII), activation of FVII and the resulting
formation of the enzymatically active TF:FVIIa complex. In
the presence of Factor X, an active TF:FVIIa complex,
would allow for the progression of coagulation through the
initiation of the extrinsic coagulation arm.7 Complement
activation has been shown to enhance the expression of
tissue factor on intravascular cells.39 Our data extends this
knowledge to extravascular cells, specifically via the
presence of circulating C1q. There have been many other
findings that support a link between the complement
system and the coagulation cascade at various points along
both pathways.25,40,41 For example, one group has found
that in the absence of complement component C3, which is
normally required to activate C5, thrombin alone was able
to generate activated C5a.42 It has also been shown that
both C3 and C5 can be activated by thrombin, factor XIa,
Xa, and IXa.43 Also, Hageman factor (FXII) is able to
activate the C1 complex, initiating the classical pathway of
the complement system.44 Furthermore, complement
component C1q has been associated with platelet activa-
tion, indicating a role in coagulation.45,46 Overall, our data
suggests that when AFs and SMCs are exposed to C1q, this
can stimulate the initiation of extrinsic coagulation via the
increased expression of tissue factor, providing a new link
between inflammation and coagulation.

Intercellular adhesion molecule‐1, or ICAM‐1, is a
membrane‐bound glycoprotein that plays a key role in
various immune system processes such as lymphocyte
activation and leukocyte migration during an immune
response.47–49 Thus, the upregulation of ICAM‐1 (as
observed in Figure 3A,B) is a signature event that
occurs during inflammation, vascular inflammation and
throughout the inflammatory response. Our findings
illustrate significant upregulation of ICAM‐1 in the
presence of C1q, indicating a potential relationship
between the complement system and the TNF‐α path-
way.49 Although C1q has not directly been shown to be
associated with this relationship, other links between
complement and ICAM‐1 have been observed. For
example, C5b and the membrane attack complex
(MAC) have both been shown to enhance ICAM‐1
expression in endothelial cells.50,51 Our results confirm
these findings and show additional relationships between
complement and ICAM‐1 expression.

4.3 | Tissue factor expression while
blocking gC1qR

The expression of tissue factor in both AFs and SMCs
was assessed to determine if the previously observed
elevated expression in TF by C1q was through the
binding of C1q to gC1qR. Our findings illustrate no
changes in TF expression when the binding of C1q to its
receptor, gC1qR, is blocked in both studied cell types
(Figure 4A,B). This indicates that that gC1qR is necessary
in C1q‐mediated TF expression. It is well‐known that
gC1qR serves as a receptor for the globular head of
C1q18,19,52 and that the epitope of gC1qR within amino
acids 76 to 93 (60.11 antibody binding domain) is the site
at which C1q associates with gC1qR.53,54 We assessed the
changes in TF expression while blocking with an
antibody toward 60.11 and observed no changes in TF
expression in either cell type. Thus, our data supports the
role of the C1q‐gC1qR axis on tissue factor expression
within sub‐endothelial cells. As there was no direct
previous work that we can compare with, our findings
indicate a new link between inflammatory and throm-
botic changes. It is important to remember that C1q‐
gC1qR association has been linked with intrinsic
coagulation activity55 and thus, we now illustrate that
there is a relationship between extrinsic coagulation and
C1q‐gC1qR activity.

4.4 | Secreted tissue factor

We also investigated the potential for C1q‐gC1qR activity
to increase the secretion of tissue factor from AFs and
SMCs and whether or not pharmacologically blocking
this association alters tissue factor secretion (Figure 5).
There were no changes in the secretion of tissue factor as
a function of exposure to C1q or the blocking antibody,
illustrating that any potential changes in extrinsic
coagulation due to C1q exposure, would be induced by
changes in membrane bound tissue factor. To the best of
our knowledge, no previous work quantified the secre-
tion of tissue factor as a function in C1q exposure, under
any relevant comparison conditions.

5 | CONCLUSION AND STUDY
LIMITATIONS

It has become apparent that C1q and the complement
system, in general, are strongly linked to inflammation,
thrombosis, and cardiovascular complications. However, a
complete understanding of this interrelationship has yet to
be elucidated. Thus, we aimed to investigate whether or
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not there is a link between C1q association with gC1qR
and tissue factor expression in subendothelial cells.
Combining our data, we illustrate that a short‐term
exposure to C1q induces a rapid and significant change
in the expression of tissue factor, which is the rate‐limiting
step for extrinsic coagulation initiation. Our data provides
means to further investigate the intracellular mechanism
behind the expression of tissue factor as a result of C1q/
gC1qR interactions as well as the downstream effects on
the extrinsic coagulation cascade. However, it must be
noted that our study is limited by the model system that
we have employed, the short duration exposure to C1q
and assessment of receptor expression. Even with these
limitations it is important to note that we still observed,
for the first time, the convergence of innate inflammatory
signals with extrinsic coagulation, via gC1qR activity.
Determining the relevance of this link in vivo is important
for future studies. It is also important to note that if gC1qR
can serve as a convergent receptor for inflammation and
coagulation, then the role of gC1qR in disease processes,
the ability to therapeutically target gC1qR, and down-
stream activation of the common coagulation cascade

must be investigated. It is possible that gC1qR can serve
as a new therapeutic target to minimize diseases
characterized by vascular inflammatory and thrombotic
processes. A summary figure illustrating the known and
newly identified roles of gC1qR and the potential
outcomes of antagonizing these pathways has been
prepared (Figure 6).
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